On a class of differential equations connected with number-theoretic polynomials

KRYSTYNA GRYTCZUK

Abstract. In this paper we consider the special class of differential equations of second order. For this class we find a general solution which is strictly connected with some number-theoretic polynomials such as Dickson, Chebyshev, Pell and Fibonacci.

1. Introduction

Consider the following class of the polynomials:

\[(1) \quad W_n(x, c) = \left(\frac{x + \sqrt{x^2 + c}}{2} \right)^n + \left(\frac{x - \sqrt{x^2 + c}}{2} \right)^n \]

with respect to \(c\), where \(n \geq 1\) is the degree of the polynomial \(W_n(x, c)\). It is known (see [2], p. 94) that the Dickson polynomial \(D_n(x, a)\) of degree \(n \geq 1\) and integer parameter \(a\) can be represent in the form:

\[(D) \quad D_n(x, a) = \left(\frac{x + \sqrt{x^2 - 4a}}{2} \right)^n + \left(\frac{x - \sqrt{x^2 - 4a}}{2} \right)^n .\]

We note that the Dickson polynomial belongs to class (1) if we take \(c = -4a\). Taking \(c = -1\) in (1) we obtain the Chebyshev polynomial of the second kind. For \(c = 1\) we get the Pell polynomial and for \(c = 4\) the Fibonacci polynomial.

We prove the following:

Theorem. The general solution of the differential equation

\[(*) \quad (x^2 + c) y'' + xy' - n^2 y = 0; \quad x^2 + c > 0\]

is of the form

\[(** \quad y = C_1 \left(\frac{x + \sqrt{x^2 + c}}{2} \right)^n + C_2 \left(\frac{x - \sqrt{x^2 + c}}{2} \right)^n ,\]

where \(C_1, C_2\) are arbitrary constants.
We remark that the general solution (***) is strictly connected with the polynomials \(W_\alpha(x, c) \) defined by (1).

2. Basic Lemmas

Lemma 1. (see [1], Thm. 2.) Let the real-valued functions \(s_0, t_0 u, v \in C^2(J) \), where \(J \subset \mathbb{R} \) and \(u \neq 0, v \neq 0 \). Then the functions

\[
y_1 = s_0 u^\lambda, \quad y_2 = t_0 v^\lambda,
\]

where \(\lambda \) is non-zero real constant, are the particular solutions of the differential equation

\[
D_0 y'' + D_1 y' + D_2 y = 0,
\]

where

\[
D_0 = \det \begin{pmatrix} s_0 & s_1 \\ t_0 & t_1 \end{pmatrix}, \quad D_1 = \det \begin{pmatrix} s_2 & s_0 \\ t_2 & t_0 \end{pmatrix}, \quad D_2 = \det \begin{pmatrix} s_1 & s_2 \\ t_1 & t_2 \end{pmatrix}
\]

and

\[
s_1 = s_0' + \lambda s_0 \frac{u'}{u}, \quad t_1 = t_0' + \lambda t_0 \frac{v'}{v}
\]

\[
s_2 = s_1' + \lambda s_1 \frac{u'}{u}, \quad t_2 = t_1' + \lambda t_1 \frac{v'}{v}.
\]

Lemma 2. Let \(\lambda, s_0, t_0 \) be non-zero real constants and let non-zero real functions \(u, v \in C^2(J), J \subset \mathbb{R} \) be linearly independent over the real number field \(\mathbb{R} \). Then the general solution of the differential equation:

\[(***) \quad \det \begin{pmatrix} 1 & \frac{u'}{u} & \frac{v'}{v} \\ 1 & \frac{v'}{v} & \frac{u'}{u} \\ 1 & 1 & 1 \end{pmatrix} g'' + \lambda \det \begin{pmatrix} \frac{u'}{u} & 1 \\ \frac{v'}{v} & 1 \\ g & h \end{pmatrix} g' y = 0,
\]

where

\[
g = \frac{u''}{u} - (1 - \lambda) \left(\frac{u'}{u} \right)^2, \quad h = \frac{v''}{v} - (1 - \lambda) \left(\frac{v'}{v} \right)^2
\]

is of the form

\[
y = C_1 s_0 u^\lambda + C_2 t_0 v^\lambda,
\]
where C_1, C_2 are arbitrary constants.

Proof. By the assumptions of Lemma 1 and Lemma 2 it follows that

$$s_1 = \lambda s_0 \frac{u'}{u}, \quad t_1 = \lambda t_0 \frac{v'}{v}. \tag{9}$$

From (9) and (6) we obtain

$$s_2 = s_1' + \lambda s_1 \frac{u'}{u} = \lambda s_0 \left(\frac{u''}{u} - (1 - \lambda) \left(\frac{u'}{u} \right)^2 \right)\tag{10}$$

and

$$t_2 = t_1' + \lambda t_1 \frac{v'}{v} = \lambda t_0 \left(\frac{v''}{v} - (1 - \lambda) \left(\frac{v'}{v} \right)^2 \right). \tag{11}$$

Let us denote by $g = \frac{u''}{u} - (1 - \lambda) \left(\frac{u'}{u} \right)^2$ and by $h = \frac{v''}{v} - (1 - \lambda) \left(\frac{v'}{v} \right)^2$. Then the formulae (10) and (11) have the form:

$$s_2 = \lambda s_0 g, \quad t_2 = \lambda t_0 h. \tag{12}$$

By (12), (9) and Lemma 1 it follows that the differential equation (3) reduce to $(***)$). On the other hand from Lemma 1 it follows that the functions $y_1 = s_0 u^\lambda$ and $y_2 = t_0 v^\lambda$ are the particular solutions of $(***)$. Now we observe that the functions u, v are linearly independent over \mathbb{R} if and only if the functions u^λ and v^λ are linearly independent over \mathbb{R}. Indeed, denote by $W(u^\lambda, v^\lambda)$ the Wronskian of the functions u^λ and v^λ and let

$$D_0 = \det \begin{pmatrix} 1 & \frac{u'}{u} \\ 1 & \frac{v'}{v} \end{pmatrix}. \tag{13}$$

Then we have

$$D_0 = (uv)^{-1} \det \begin{pmatrix} u & v \\ u' & v' \end{pmatrix},$$

and

$$W(u^\lambda, v^\lambda) = \det \begin{pmatrix} u^\lambda & v^\lambda \\ (u^\lambda)' & (v^\lambda)' \end{pmatrix} = \lambda (uv)^\lambda \det \begin{pmatrix} 1 & 1 \\ \frac{u'}{u} & \frac{v'}{v} \end{pmatrix}. \tag{14}$$
Since \(\det \begin{pmatrix} 1 & 1 \\ \frac{u}{u'} & \frac{v}{v'} \end{pmatrix} = \det \begin{pmatrix} 1 & 1 \\ \frac{u}{u'} & \frac{v}{v'} \end{pmatrix} \), from the definition of \(D_0 \), (13) and (14) we get

\[
W \left(u^\lambda, v^\lambda \right) = \lambda(uc)^\lambda D_0 = \lambda(uc)^\lambda^{-1} \det \begin{pmatrix} u & v \\ u' & v' \end{pmatrix}.
\]

(15)

From (15) easily follows that the functions \(u^\lambda, v^\lambda \) are linearly independent over \(\mathbb{R} \) if and only if the functions \(u, v \) have the same property. Using the assumption of Lemma 2 about the functions \(u, v \) we obtain that the functions \(u^\lambda, v^\lambda \) and also \(y_1 = s_0 u^\lambda, y_2 = t_0 v^\lambda \) are linearly independent over \(\mathbb{R} \). Since the functions \(y_1, y_2 \) are the particular solutions of \((\ast \ast \ast)\), the function \(y = C_1 y_1 + C_2 y_2 = C_1 s_0 u^\lambda + C_2 t_0 v^\lambda \) is a general solution of \((\ast \ast \ast)\). The proof of Lemma 2 is complete.

3. Proof of the Theorem

Let \(\lambda = n \) be a natural number and let \(s_0 = t_0 = 1 \). Moreover, let \(u = a(x) + b(x) \sqrt{k} \) and \(v = a(x) - b(x) \sqrt{k} \), where \(k \) is fixed non-zero constant. If the functions \(u, v \) are linearly independent over \(\mathbb{R} \) then by Lemma 2 it follows that the general solution of the differential equation

\[
\det \begin{pmatrix} 1 & \frac{n}{u'} \\ \frac{u}{u'} & \frac{v}{v'} \end{pmatrix} y'' + \det \begin{pmatrix} g & 1 \\ h & 1 \end{pmatrix} y' + n \det \begin{pmatrix} \frac{n}{u'} & g \\ \frac{v}{v'} & h \end{pmatrix} y = 0
\]

is of the form

\[
y = C_1 \left(a(x) + b(x) \sqrt{k} \right)^n + C_2 \left(a(x) - b(x) \sqrt{k} \right)^n,
\]

where \(g = \frac{u^{n'}}{u} - (1 - n) \left(\frac{n'}{u} \right)^2 \) and \(h = \frac{v^{n'}}{v} - (1 - n) \left(\frac{n'}{v} \right)^2 \) and \(C_1, C_2 \) are arbitrary constants. Now, we put \(a(x) = \frac{x}{2}, \quad b(x) = \frac{\sqrt{x^2 + c}}{2}, \quad k = 1, \) where \(x^2 + c > 0 \). Then we have

\[
u = \frac{x + \sqrt{x^2 + c}}{2}, \quad v = \frac{x - \sqrt{x^2 + c}}{2}.
\]

From (18) we obtain

\[
u' = \frac{1}{2} \left(\frac{x + \sqrt{x^2 + c}}{\sqrt{x^2 + c}} \right), \quad v' = -\frac{1}{2} \left(\frac{x - \sqrt{x^2 + c}}{\sqrt{x^2 + c}} \right).
\]
By (18) and (19) easily follows that the functions u, v are linearly independent over \mathbb{R}, because the Wronskian $W(u, v) \neq 0$. On the other hand from (19) we obtain

\begin{align}
(20) \quad u'' &= \frac{1}{2} \frac{c}{(x^2 + c) \sqrt{x^2 + c}}, \quad v'' = -\frac{1}{2} \frac{c}{(x^2 + c) \sqrt{x^2 + c}}.
\end{align}

From (19) and (18) we get

\begin{align}
(21) \quad \frac{u'}{u} &= \frac{1}{\sqrt{x^2 + c}}, \quad \frac{v'}{v} = -\frac{1}{\sqrt{x^2 + c}},
\end{align}

hence by (21) it follows that

\begin{align}
(22) \quad \left(\frac{u'}{u}\right)^2 = \left(\frac{v'}{v}\right)^2 = \frac{1}{x^2 + c}.
\end{align}

Similarly from (20) and (18) we obtain

\begin{align}
\frac{u''}{u} &= \frac{c}{(x^2 + c) (x + \sqrt{x^2 + c}) \sqrt{x^2 + c}},
\end{align}

(23)

\begin{align}
\frac{v''}{v} &= -\frac{c}{(x^2 + c) (x - \sqrt{x^2 + c}) \sqrt{x^2 + c}}.
\end{align}

From (21) we calculate that

\begin{align}
(24) \quad D_0 &= \det \begin{pmatrix} 1 & \frac{u'}{u} \\ 1 & \frac{v'}{v} \end{pmatrix} = \frac{v'}{v} - \frac{u'}{u} = -\frac{2}{\sqrt{x^2 + c}}.
\end{align}

In similar way from (22) and (23) we get

\begin{align}
(25) \quad D_1 &= \det \begin{pmatrix} g & 1 \\ h & 1 \end{pmatrix} = g - h = -\frac{2x}{(x^2 + c) \sqrt{x^2 + c}}.
\end{align}

On the other hand by (21) and (23) it follows that

\begin{align}
(26) \quad D_2 &= \det \begin{pmatrix} \frac{u'}{u} & g \\ \frac{v'}{v} & h \end{pmatrix} = h \frac{u'}{u} - g \frac{v'}{v} = \frac{2u}{(x^2 + c) \sqrt{x^2 + c}}.
\end{align}
Now, we see that from (24), (25) and (26) the differential equation (16) has the following form:

\[(x^2 + c) y'' + xy' - n^2 y = 0,\]

so denote that (27) is the same equation as in our Theorem. Thus, by Lemma 2 it follows that the general solution of (27) is given by the formula

\[y = C_1 \left(\frac{x + \sqrt{x^2 + c}}{2} \right)^n + C_2 \left(\frac{x - \sqrt{x^2 + c}}{2} \right)^n\]

and the proof of the Theorem is complete.

Remark. Consider the following functional matrix;

\[M(x) = \frac{1}{2} \begin{pmatrix} x & \sqrt{x^2 + c} \\ \sqrt{x^2 + c} & x \end{pmatrix} .\]

Then we can calculate that the functions \(u = \frac{x + \sqrt{x^2 + c}}{2} \) and \(v = \frac{x - \sqrt{x^2 + c}}{2} \) are the characteristic roots of this matrix. Hence, we observe that the general solution of the differential equation (16) is linear combination of the powers such roots.

References

Institute of Mathematics
Technical University
Zielona Góra, ul. Podgórna 50
Poland