RESULTS CONCERNING PRODUCTS AND SUMS OF THE TERMS OF LINEAR RECURRENCES

Péter Kiss (Eger, Hungary)

Abstract. Many papers have investigated perfect powers and polynomial values as terms of linear recursive sequences of rational integers. Many results show, under some restrictions, that if a term of a sequence is a perfect power or a polynomial value, then the exponent of the powers and the degree of the polynomials are bounded above. In this paper we show and prove some similar results where the terms are substituted by products and sums of the terms of sequences.

AMS Classification Number: 11B37

1. Introduction

For a given positive integer \(t \geq 1 \) we define linear recursive sequences \(G^{(i)} = \{G^{(i)}_n\}_{n=0}^{\infty} \) of order \(t_i \geq 2 \) \((i = 1, 2, \ldots, t)\) by the recursion formulae

\[
G^{(i)}_n = A^{(i)}_1 G^{(i)}_{n-1} + A^{(i)}_2 G^{(i)}_{n-2} + \cdots + A^{(i)}_{t_i} G^{(i)}_{n-t_i},
\]

where \(A^{(i)}_1, \ldots, A^{(i)}_{t_i} \) and the initial values \(G^{(i)}_0, \ldots, G^{(i)}_{t_i-1} \) are fixed rational integers such that \(A^{(i)}_{t_i} \neq 0 \) and the initial terms are not all zero for \(1 \leq i \leq t \). The polynomial

\[
g^{(i)}(x) = x^{t_i} - A^{(i)}_1 x^{t_i-1} - \cdots - A^{(i)}_{t_i}
\]

is called the characteristic polynomial of the sequence \(G^{(i)} \) and we denote its distinct roots by \(\alpha^{(i)}_1, \alpha^{(i)}_2, \ldots, \alpha^{(i)}_{k_i} \) and suppose that

\[
|\alpha^{(i)}_1| \geq |\alpha^{(i)}_2| \geq \cdots \geq |\alpha^{(i)}_{k_i}|.
\]

Denote the multiplicity of \(\alpha^{(i)}_1, \ldots, \alpha^{(i)}_{k_i} \) by \(m^{(i)}_1, \ldots, m^{(i)}_{k_i} \), respectively. Then, as it is well-known, the terms of the sequences can be expressed as

\[
G^{(i)}_n = P^{(i)}_1(n)(\alpha^{(i)}_1)^n + P^{(i)}_2(n)(\alpha^{(i)}_2)^n + \cdots + P^{(i)}_{k_i}(n)(\alpha^{(i)}_{k_i})^n
\]

Research was supported by the Hungarian OTKA Foundation, No. T 29330 and 032898.
for any \(n \geq 0 \), where \(P_j^{(i)} \) are polynomials of degree \(m_j^{(i)} - 1 \) and the coefficients of \(P_j^{(i)} \) are algebraic numbers from the number field \(\mathbb{Q}(a_1^{(i)}, \ldots, a_{k_1}^{(i)}) \). If \(m_1^{(i)} = 1 \)
and \(|a_j^{(i)}| > |a_j^{(i)}| (j = 2, \ldots, k_i) \) for some \(i \), then \(a_i^{(i)} \) will be denote by \(a_i \). In this case \(|a_i| > 1\), since \(|A_i^{(i)}| \geq 1\), and by (1) we have

\[
G_n^{(i)} = a_1 a_i^n + P_2^{(i)}(n)(a_2^{(i)})^n + \cdots + P_k^{(i)}(n)(a_k^{(i)})^n,
\]

where \(a_i \in \mathbb{Q}(a_1, a_2, \ldots, a_k) \) and we suppose that \(a_i \neq 0 \). If \(t = 1 \) then we omit (i) in (2) and we write \(G_n \) instead of \(G_n^{(1)} \).

In the following we need some notations. Let \(p_1, \ldots, p_r \) be given distinct prime numbers. In the results and theorems \(S \) will denote the set of integers defined by

\[
S = \{ \pm p_1^{c_1} \cdots p_r^{c_r} : c_i \geq 0, \ 1 \leq i \leq r \}.
\]

Furthermore \(c_0, c_1, \ldots, n_0, n_1, \ldots \) will denote positive effectively computable constants depending only on \(t \), the parameters of the sequences, the primes \(p_1, \ldots, p_r \) and the constants which are given in some of the mentioned results and theorems (\(\delta, \gamma \) and \(K \)). We note that the constants can be exactly determined similarly as in the papers [4] and [8].

Perfect powers and polynomial values among the terms of linear recurrences have been investigated for many years. For second order linear recurrences many particular results are known concerning perfect squares and higher powers in the sequences (see e.g. Cohn [2], Wylie [17], Mignotte and Pethő [9,11]). A general result was obtained by Shorey and Stewart [14] and Pethő [13]; Any non degenerate second order linear recursive sequence contains only finitely many perfect powers.

For general linear recurrences, which satisfy (2), Shorey and Stewart [14] proved that if \(G_x \neq a \omega^x \) and \(G_x = d \omega^x \) for positive integers \(w > 1, q > 1 \) and a fixed integer \(d \neq 0 \), then \(q < n_0 \). In [3] we improved this result substituting \(d \) by integers \(s \in S \), furthermore we showed, under some conditions, that \(|sw^q - G_x| > \omega^{c_0} \) for all integers \(s, w \) and \(x \) with \(s \in S \) and \(x, q > n_1 \). Similar results were obtained by Shorey and Stewart [15].

2. Results

If we replace \(G_x \) by the sums or products of the terms of linear recurrences \(G^{(i)}_x \) we can obtain similar results as the above ones, E.g. Brindza, Liptai and Szalay [1] proved, under some conditions, that the equation

\[
G^{(1)}_x G^{(2)}_y = w^q
\]
can be satisfied only if \(q \) is bounded above. This result was extended by Szalay [16]. Now we present some other more general results. In the results we shall use the above notations and the following ones:

\[
G_{x_1}^{(1)} \cdot G_{x_2}^{(2)} \cdots G_{x_t}^{(t)} = \Pi_{x_1, \ldots, x_t},
\]

and

\[
G_{x_1}^{(1)} + G_{x_2}^{(2)} + \cdots + G_{x_t}^{(t)} = \Sigma_{x_1, \ldots, x_t},
\]

where \(x_1, \ldots, x_t \) are positive integers.

Theorem 1. (Szalay [16]). Let \(G^{(i)} (i = 1, \ldots, t) \) be linear recursive sequences defined in (2) and let \(0 < \delta < 1 \) be a real number. If \(\Pi_{x_1, \ldots, x_t} \neq \Pi_{1 \leq i \leq t} a_i \alpha_i^z \) and

\[
\Pi_{x_1, \ldots, x_t} = sw^y
\]

with \(w > 1, s \in S \) and \(z_j > \delta \cdot \max(x_1, \ldots, x_t) \) for \(1 \leq j \leq t \), then \(q < n_2 \).

Theorem 2. (Kiss and Mátayás [4]). Let \(G^{(i)} (i = 1, \ldots, t) \) be linear recursive sequences defined in (2) and let \(0 < \delta < 1 \) be a fixed number. Then there is an effectively computable positive number \(c_1 \) such that if \(sw^y \neq \Pi_{1 \leq i \leq t} a_i \alpha_i^z \), then

\[
|sw^y - \Pi_{x_1, \ldots, x_t}| > c_1 \max(x_1, \ldots, x_t)
\]

for any positive integer \(s, w, q, x_1, \ldots, x_t \) satisfying the conditions \(s \in S, w > 1, z_i > \delta \cdot \max(x_1, \ldots, x_t) \) and \(\min(q, \max(x_1, \ldots, x_t)) > n_3 \).

Theorem 3. (Kiss and Mátayás [5]). Under the conditions of Theorem 2 concerning the sequences \(G^{(i)} \) and integers \(x_1, \ldots, x_t \), we have

\[
|s - \Pi_{x_1, \ldots, x_t}| > c_2 \max(x_1, \ldots, x_t)
\]

for any \(s \in S \) and \(\max(x_1, \ldots, x_t) > n_4 \).

Theorem 4. (Kiss and Mátayás [6]). Let \(G^{(1)} \) and \(G^{(i)} (i = 2, \ldots, t) \) be linear recurrences defined by (2) and (1), respectively, and let \(K > 1 \) be a real number. Suppose that \(|\alpha_1| \geq |\alpha_j^{(i)}| \) for \(i = 2, \ldots, t \) and \(j = 1, \ldots, k_i \). If

\[
|\Sigma_{x_1, \ldots, x_t}| \neq |a_1 \alpha_1^z|
\]

and

\[
\Sigma_{x_1, \ldots, x_t} = sw^y
\]

for positive integers \(w > 1, q, x_1, \ldots, x_t \) and \(s \in S \) such that

\[
x_1 > K \cdot \max(x_2, \ldots, x_t),
\]
then $q < n_5$.

Theorem 5. (Mátyás [8]). Under the conditions of Theorem 4 for the sequences $G^{(i)}$ and integers x_1, \ldots, x_t we have

$$|su^q - \Sigma_{x_1, \ldots, x_t}| > e^{\epsilon x_1}$$

for any $s \in S$ and $\min(x_1, q) > n_6$.

Theorem 6. (Kiss and Mátyás [5]). Under the conditions of Theorem 4 for the sequences $G^{(i)}$ and integers x_1, \ldots, x_t we have

$$|s - \Sigma_{x_1, \ldots, x_t}| > e^{\epsilon x_1}$$

for any $s \in S$ and $x_1 > n_7$.

Corollary 1. Under the conditions implied by Theorem 2 and Theorem 4, Theorem 3 and Theorem 6 imply that the relations

$$\Pi_{x_1, \ldots, x_t} \in S \quad \text{and} \quad \Sigma_{x_1, \ldots, x_t} \in S$$

hold only for finitely many positive integers x_1, \ldots, x_t.

If we replace su^q in Theorem 1, 2, 4 and 5 by a polynomial, we can obtain similar results. Nemes and Pethő [10] furthermore Kiss [7] proved, that if G is a linear recurrence defined by (2) and $F(y)$ is a polynomial satisfying some conditions, then the equation $G_x = F(y)$ implies that the degree of $F(y)$ is bounded above. Now we give some generalizations of this result.

Theorem 7. Let $G^{(i)}$ ($i = 1, \ldots, t$) be linear recursive sequences defined by (2) and let $0 < \delta < 1$ be a fixed positive real number. Further let

$$F(y) = by^q + b_k y^k + b_{k-1} y^{k-1} + \cdots + b_0$$

be a polynomial of integer coefficients with $b \neq 0$ and $k < \gamma q$, where $0 < \gamma < 1$. If

$$\gamma < \epsilon_6 \quad \text{and} \quad \delta y^q \neq \prod_{i=1}^t a_i \alpha_i^{x_i},$$

then

$$|F(y) - \Pi_{x_1, \ldots, x_t}| > e^{\epsilon_8 \max(x_1, \ldots, x_t)}$$

for any positive integers y, q, x_1, \ldots, x_t satisfying the conditions $y > 1$, $x_i > \delta \cdot \max(x_1, \ldots, x_t)$, and $\min(q, \max(x_1, \ldots, x_t)) > n_8$.

Theorem 8. Let $G^{(i)}$ ($i = 1, \ldots, t$) be linear recurrences and x_1, \ldots, x_t positive integers which satisfy the conditions of Theorem 4. Let $F(y)$ be a polynomial given in Theorem 7. Then

$$|F(y) - \Sigma_{x_1, \ldots, x_t}| > e^{\epsilon x_1}$$
for any positive integers $y > 1$, x_1, \ldots, x_t with $\min(q, x_1) > n_9$.

Corollary 2. From Theorem 7 and 8 it follows, that if the sequences $G^{(i)}$, the integers x_1, \ldots, x_t and the polynomial $F(y)$ satisfy the conditions of Theorem 7 and Theorem 8, then the equations

$$\Pi_{x_1, \ldots, x_t} = F(y)$$

and

$$\Sigma_{x_1, \ldots, x_t} = F(y)$$

imply the inequalities $q < n_{10}$ and $q < n_{11}$, respectively.

3. Proofs

The proofs of the Theorems 1–6 can be found in the papers mentioned in the theorems. The proofs are based upon Baker-type estimations of linear forms of logarithms of algebraic numbers, using the explicit form of the terms of the sequences.

Proof of Theorem 7. Let $G^{(i)}$ and $F(y)$ be linear recurrences given in the theorem and let y, q, x_1, \ldots, x_t be positive integers such that $y, q > 1$, $k < \gamma q$ and $x_i > \delta \cdot \max(x_1, \ldots, x_t)$ for $i = 1, \ldots, t$. Denote by x the maximum values of x_1, \ldots, x_t, i.e.

$$x = \max(x_1, \ldots, x_t).$$

Suppose that

$$|F(y) - \Pi_{x_1, \ldots, x_t}| < e^{cy}$$

for some $c > 0$. Then by (2) and (3), using that $\delta x < x_i \leq x$ and $k < \gamma q$

$$|by^q (1 + \varepsilon_1) - \left(\prod_{i=1}^{t} a_i \alpha_i^{x_i} \right) (1 + \varepsilon_2) | < e^{cy}$$

follows, where

$$|\varepsilon_1| < e^{-c_0 q} \quad \text{and} \quad |\varepsilon_2| < e^{-c_0 q}$$

if $q, x > n_{12}$. By (5), using that $x_i > \delta x$, we obtain the inequalities

$$\left| \frac{by^q}{\prod_{i=1}^{t} a_i \alpha_i^{x_i}} - \frac{1 + \varepsilon_2}{1 + \varepsilon_1} \right| < \left| \frac{e^{x}}{\prod_{i=1}^{t} a_i \alpha_i^{x_i}} \right| \cdot \frac{1}{|1 + \varepsilon_1|} < \frac{e^{cy}}{e^{c_{10} x}} < e^{-c_{11} x}$$
if \(c < c_{10} \). From these it follows that

\[
1 - \varepsilon < \left| \frac{b y^q}{\prod_{i=1}^{l} a_i \alpha_i^{x_i}} \right| < 1 + \varepsilon,
\]

where \(0 \leq \varepsilon < c_{12} \cdot \max(|\varepsilon_1|, |\varepsilon_2|, e^{-c_{11}x}) \). By (6) we get the inequality

\[
|b y^q| < (1 + \varepsilon) \left| \prod_{i=1}^{l} a_i \alpha_i^{x_i} \right| < e^{c_{14}x}
\]

and so

\[
q \cdot \log y < c_{14}x.
\]

Using (7), by Theorem 2 we have

\[
|F(y) - \Pi_{x_1, \ldots, x_l}| \geq \left| \frac{b y^q - \Pi_{x_1, \ldots, x_l}}{|d_k y^k + \cdots + b_0|} \right| \geq
\]

\[
|e^{c_{15}x} - e^{c_{16}x}| = |e^{c_{15}x} - e^{c_{16}x} \log y| >
\]

\[
|e^{c_{15}x} - e^{c_{16}x} \gamma^x \log y| > |e^{c_{15}x} - e^{c_{16}x} \gamma^x| > e^{c_{18}x}
\]

if \(c_{15} > c_{17} \gamma \), i.e. if \(\gamma < c_{15}/c_{17} \). It contradicts to (4) if \(c < c_{18} \), which proves the theorem with \(c_5 = c_{18}, c_6 = c_{15}/c_{17} \) and \(n_8 = \max(n_{12}, n_{13}) \), where \(n_{13} \) is implied by Theorem 2.

Proof of Theorem 8. The theorem can be proved similarly as Theorem 7 using the result of Theorem 5.

References

[17] O. Wylie, In the Fibonacci series $F_1 = 1$, $F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$ the first, second and twelfth terms are squares, *Amer. Math. Monthly*, 71 (1964), 220–222.

Péter Kiss

Institute of Mathematics and Informatics
Eszterházy Károly College
Leányka str. 4.
H-3301 Eger, Hungary

e-mail: kisp@ektf.hu