REMARKS ON UNIFORM DENSITY OF SETS OF INTEGERS

Zuzana Gáliková & Béla László (Nitra, Slovakia)
Tibor Šalát (Bratislava, Slovakia)

Dedicated to the memory of Professor Péter Kiss

Abstract. The concept of the uniform density is introduced in papers [1], [2]. Some properties of this concept are studied in this paper. It is proved here that the uniform density has the Darboux property.

AMS Classification Number: 11B05

Keywords: asymptotic density, uniform density, almost convergence, Darboux property

Introduction

Let \(A \subseteq \mathbb{Z} = \{1, 2, 3, \ldots \} \) and \(m, n \in \mathbb{N}, m < n \). Denote by \(A(m, n) \) the cardinality of the set \(A \cap \mathbb{N} \cap \mathbb{Z} \). The numbers

\[
\underline{d}(A) = \lim_{n \to \infty} \frac{A(1, n)}{n}, \quad \overline{d}(A) = \lim_{n \to \infty} \frac{A(1, n)}{n}
\]

are called the lower and the upper asymptotic density of the set \(A \). If there exists

\[
d(A) = \lim_{n \to \infty} \frac{A(1, n)}{n}
\]

then it is called the asymptotic density of \(A \).

According to [1], [2] we set

\[
\alpha_s = \min_{t \geq 0} A(t + 1, t + s), \quad \alpha^s = \max_{t \geq 0} A(t + 1, t + s).
\]

Then there exist

\[
\underline{u}(A) = \lim_{s \to \infty} \frac{\alpha_s}{s}, \quad \overline{u}(A) = \lim_{s \to \infty} \frac{\alpha^s}{s}
\]

and they are called the lower and the upper uniform density of \(A \), respectively.
It is obvious that for every $A \subseteq N$

$$u(A) \leq d(A) \leq \overline{d}(A) \leq \underline{u}(A).$$

Hence if $u(A)$ exists then $d(A)$ exists as well and $u(A) = d(A)$. The converse is not true. For example put

$$A = \bigcup_{k=1}^{\infty} \{10^k + 1, 10^k + 2, \ldots, 10^k + k\}.$$

Then $d(A) = 0$, but $\underline{u}(A) = 0$, $\overline{u}(A) = 1$.

Note that the numbers α_s and α^s can be replaced by the numbers β_s and β^s, respectively, where

$$\beta_s = \lim_{t \to \infty} A(t + 1, t + s), \quad \beta^s = \lim_{t \to \infty} A(t + 1, t + s)$$

(cf. [1], [2]).

In this paper we introduce some elementary remarks, observations on the concept of the uniform density and prove that this density has the Darboux property.

1. **Uniform density $u(A)$ and $\lim_{s \to \infty} \frac{A(t + 1, t + s)}{s}$ (uniformly with respect to $t \geq 0$)**

We introduce the following observation.

Theorem 1.1. If there exists

$$\lim_{s \to \infty} \frac{A(t + 1, t + s)}{s} = L$$

uniformly with respect to $t \geq 0$, then there exists $u(A)$ and $u(A) = L$.

Proof. Let $\varepsilon > 0$. By the assumption there exists an $s_0 = s_0(\varepsilon) \in N$ such that for each $s > s_0$ and each $t \geq 0$ we have

$$(L - \varepsilon)s < A(t + 1, t + s) < (L + \varepsilon)s.$$

By the definition of the numbers β_s, β^s we get from this for $s > s_0$

$$L - \varepsilon \leq \frac{\beta_s}{s} \leq \frac{\beta^s}{s} \leq L + \varepsilon.$$
If \(s \to \infty \) we get
\[
L - \varepsilon \leq u(A) \leq \bar{u}(A) \leq L + \varepsilon.
\]
Since \(\varepsilon > 0 \) is an arbitrary positive number, we get \(u(A) = L \).

The foregoing theorem can be conversed.

Theorem 1.2. If there exists \(u(A) \) then
\[
\lim_{s \to \infty} \frac{A(t + 1, t + s)}{s} = u(A)
\]
uniformly with respect to \(t \geq 0 \).

Proof. Put \(u(A) = L \). Since
\[
L = \lim_{p \to \infty} \frac{\alpha_p}{p} = \lim_{p \to \infty} \frac{\alpha^p}{p}
\]
for every \(\varepsilon > 0 \), there exists a \(p_0 \) such that for each \(p > p_0 \) we have
\[
(L - \varepsilon)p < \alpha_p \leq \alpha^p < (L + \varepsilon)p.
\]
So we get
\[
(L - \varepsilon)p < \min_{t \geq 0} A(t + 1, t + p) \leq \max_{t \geq 0} A(t + 1, t + p) < (L + \varepsilon)p.
\]
By the definition of \(A(t + 1, t + p) \) we get from this
\[
\left| \frac{A(t + 1, t + p)}{p} - L \right| \leq \varepsilon
\]
for each \(p > p_0 \) and each \(t \geq 0 \). Hence
\[
\lim_{p \to \infty} \frac{A(t + 1, t + p)}{p} = L \quad (= u(A))
\]
uniformly with respect to \(t \geq 0 \).

2. Uniform density and almost convergence

The concept of almost convergence was introduced in [5] (see also [10], p. 60).
A sequence \((x_n)_{n=1}^{\infty} \) of real numbers almost converges to \(L \) if
\[
\lim_{p \to \infty} \frac{x_{n+1} + x_{n+2} + \cdots + x_{n+p}}{p} = L
\]
uniformly with respect to \(n \geq 0 \). If \((x_n)_{1}^{\infty}\) almost converges to \(L \), we write

\[
F - \lim x_n = L.
\]

One can conjecture that there is a relationship between the uniform density of a set \(A \subseteq N \) and the characteristic function \(\chi_{A} \) of this set \((\chi_{A}(n) = 1 \text{ if } n \in A, \chi_{A}(n) = 0 \text{ if } n \in N \setminus A)\).

Theorem 2.1. Let \(A \subseteq N \). Then \(u(A) = v \) if and only if \(F - \lim \chi_{A}(n) = v \).

Proof. Let \(t \geq 0, s \in N \). By the definition of the sequence \((\chi_{A}(n))_{1}^{\infty}\) we see that

\[
\frac{A(t+1, t+s)}{s} = \chi_{A}(t+1) + \chi_{A}(t+2) + \cdots + \chi_{A}(t+s) - t.
\]

The assertion follows from this equality by Theorem 1.1 and 1.2.

3. Another way for defining the uniform density of sets

If \(A = \{a_1 < a_2 < \cdots < a_n < \cdots\} \subseteq N \) is an infinite set then it is well-known that

\[
d(A) = \lim_{n \to \infty} \frac{n}{a_n}, \quad \overline{d}(A) = \lim_{n \to \infty} \frac{n}{a_n}
\]

and

\[
d(A) = \lim_{n \to \infty} \frac{n}{a_n}
\]

(if \(d(A) \) exists) (cf. [8], p. 247). A similar result can be stated also for the uniform density.

Theorem 3.1. Let \(A = \{a_1 < a_2 < \cdots < a_n < \cdots\} \subseteq N \) be an infinite set. Then \(u(A) = L \) if and only if

\[
\lim_{p \to \infty} \frac{p}{a_{k+p} - a_{k+1}} = L
\]

uniformly with respect to \(k \geq 0 \).

Proof. 1. Let \(u(A) = L \). Consider that for \(p \geq 2 \)

\[
\frac{p}{a_{k+p} - a_{k+1}} = \frac{A(a_{k+1}, a_{k+p})}{a_{k+p} - a_{k+1}}.
\]

By Theorem 1.2 (see (1)) the right-hand side converges by \(p \to \infty \) (uniformly with respect to \(k \geq 0 \)) to \(u(A) = L \). Hence (2) holds.

2. Suppose that (2) holds (uniformly with respect to \(k \geq 0 \)). By Theorem 1.1 it suffices to prove that

\[
\lim_{p \to \infty} \frac{A(t+1, t+p)}{p} = L
\]
uniformly with respect to \(t \geq 0 \).

We shall show it. Suppose in the first place that \(t \geq a_1 \). Then there exist

\[
a_k < t + 1 \leq a_{k+1} < \cdots < a_{k+s} \leq t + p < a_{k+s+1}.
\]

Then \(A(t + 1, t + p) \) equals to \(s \) and so

\[
\frac{A(t + 1, t + p)}{p} = \frac{s}{p}.
\]

Further on the basis of choice of the numbers \(k, s \) we get

\[
a_{k+s} - a_{k+1} \leq p - 1 < a_{k+s+1} - a_k.
\]

Therefore

\[
\frac{s}{a_{k+s+1} - a_k + 1} < \frac{A(t + 1, t + p)}{p} < \frac{s}{a_{k+s} - a_k + 1}.
\]

But \(-a_k + 1 \leq -a_{k-1} \), so that

\[
\frac{s}{a_{k+s+1} - a_k + 1} \geq \frac{s}{a_{k+s+1} - a_{k-1}} = \frac{s + 3}{a_{k+s+1} - a_{k-1}} \frac{s}{s + 3} = \frac{s + 3}{a_{k+s+1} - a_{k-1}} \left(1 - \frac{3}{s + 3} \right).
\]

So we get wholly

\[
(3) \quad \frac{s + 3}{a_{k+s+1} - a_{k-1}} \left(1 - \frac{3}{s + 3} \right) < \frac{A(t + 1, t + p)}{p} < \frac{s}{a_{k+s} - a_k + 1}.
\]

Let \(\gamma > 0 \). Then by assumption (see (2)) there exists a \(v_0 \) such that for each \(v > v_0 \) we have

\[
(4) \quad -\gamma < \frac{v}{a_{k+v} - a_{k+1}} - L < \gamma
\]

for all \(k \geq 0 \).

Using (4) we get from (3)

\[
(5) \quad \frac{s + 3}{a_{k+s+1} - a_{k-1}} - L - \frac{3}{a_{k+s+1} - a_{k-1}} \leq \frac{A(t + 1, t + p)}{p} - L \leq \frac{s}{a_{k+s} - a_k + 1} - L.
\]

Let \(s > v_0 \). Then by (4) the right-hand side of (5) is less than \(\gamma \). On the left-hand side we get

\[
\frac{s + 3}{a_{k+s+1} - a_{k-1}} - L > -\gamma.
\]
Further
\[\frac{-3}{a_{k+1} - a_{k-1}} \geq \frac{-3}{s + 2}, \]

since
\[a_{k+1} - a_{k-1} = (a_k - a_{k-1})+(a_{k+1} - a_k) + \cdots + (a_{k+1} - a_{k+s}) \]

and each summand on the right-hand side is \(\geq 1 \).

Hence for every \(t \geq a_1 \) we get from (5) \((s > v_0) \)

\[-\gamma - \frac{3}{s + 2} < \frac{A(t+1, t+p)}{p} - L < \gamma \]

From this
\[\lim_{p \to \infty} \frac{A(t+1, t+p)}{p} = L \]

uniformly with respect to \(t \geq a_1 \).

It remains the case if \(0 \leq t < a_1 \). Since there is only a finite number of such \(t \)'s, it suffices to show that for each fixed \(t \), \(0 \leq t < a_1 \), we have

\[\lim_{p \to \infty} \frac{A(t+1, t+p)}{p} = L. \]

If \(t \) is fixed, \(0 \leq t < a_1 \) and \(p \) is sufficiently large we can determine a \(k \) such that \(a_k \leq t + p < a_{k+1} \). Then
\[0 \leq t < a_1 < a_2 < \cdots < a_k \leq t + p < a_{k+1} \]

and
\[A(t+1, t+p) = A(t+1, a_1) + A(a_2, a_k). \]

From this
\[p < a_{k+1}, \quad p > a_k - a_1 \]

and so from (8), (8') we obtain

\[\frac{A(t+1, a_1)}{p} + \frac{A(a_2, a_{k+1}) - 1}{a_{k+1}} \leq \frac{A(t+1, t+p)}{p} \]

\[\leq \frac{A(t+1, a_1)}{p} + \frac{k - 1}{a_k - a_1}. \]
Obviously we have $A(t+1, a_1) \leq a_1$ and so
\[
\frac{A(t+1, a_1)}{p} = o(1) \quad (p \to \infty).
\]

We arrange the left-hand side of (9). We get
\[
\frac{A(a_2, a_{k+1}) - 1}{a_{k+1}} = -\frac{1}{a_{k+1}} + \frac{k}{a_{k+1} - a_2} \frac{a_{k+1} - a_2}{a_{k+1}} = o(1) + \frac{k}{a_{k+1} - a_2}
\]
(if $p \to \infty$ then $k \to \infty$, as well).

Wholly we have
\[
\frac{k}{a_{k+1} - a_2} + o(1) \leq \frac{A(t+1, t+p)}{p} \leq \frac{k - 1}{a_k - a_1} + o(1).
\]

If $p \to \infty$, then $k \to \infty$ and by assumption (cf (2)) the terms
\[
\frac{k - 1}{a_k - a_1} - L, \quad \frac{k}{a_{k+1} - a_2} - L
\]
converge to zero. But then (9) yields
\[
\lim_{p \to \infty} \frac{A(t+1, t+p)}{p} = L
\]
uniformly with respect to $t \geq 0$. So $u(A) = L$.

The following theorem is a simple consequence of Theorem 3.1

Theorem 3.2. Let $A = \{a_1 < a_2 < \cdots \} \subseteq \mathbb{N}$ be a lacunary set, i.e.
\[
(10) \quad \lim_{n \to \infty} (a_{n+1} - a_n) = +\infty.
\]

Then $u(A) = 0$.

Proof. Let $\varepsilon > 0$. Choose $M \in \mathbb{N}$ such that $M^{-1} < \varepsilon$. By the assumption there exists an n_0 such that for each $n > n_0$ we get $a_{n+1} - a_n > M$.

Let $k > n_0$, $s \in \mathbb{N}$, $s > 1$. Then
\[
a_{k+s} - a_{k+1} = (a_{k+2} - a_{k+1}) + (a_{k+3} - a_{k+2}) + \cdots + (a_{k+s} - a_{k+s-1}) > (s-1)M
\]
and so
\[
\frac{s}{a_{k+s} - a_{k+1}} < \frac{1}{(s-1)M} < 2\varepsilon.
\]
Hence for each \(k > n_0 \) and \(s \geq 2 \) we have
\[
\frac{s}{a_{k+s} - a_{k+1}} < 2\varepsilon.
\]

If \(0 \leq k \leq n_0, \) \(k \) is fixed, then
\[
\lim_{s \to \infty} \frac{s}{a_{k+s} - a_{k+1}} = 0,
\]
(11) since, for sufficiently large \(s \)

\[
a_{k+s} - a_{k+1} = [(a_{k+2} - a_{k+1}) + \cdots + (a_{n_0+1} - a_{n_0})] \\
+ [(a_{n_0+2} - a_{n_0+1}) + \cdots + (a_{k+s} - a_{k+s-1})] > M(k + s - n_0 - 1) \\
\geq M(s - (n_0 + 1)).
\]

There exists only a finite number of \(k \)'s with \(0 \leq k \leq n_0, \) so we see that (11) holds uniformly with respect to \(k, \) \(0 \leq k \leq n_0. \) So we get wholly
\[
\lim_{s \to \infty} \frac{s}{a_{k+s} - a_{k+1}} = 0
\]
uniformly with respect to \(k \geq 0. \) So according to Theorem 3.1, \(u(A) = 0. \)

Remark. The assumption (10) in Theorem 3.2 cannot be replaced by the weaker assumption
\[
(10') \quad \lim_{n \to \infty} (a_{n+1} - a_n) = +\infty.
\]

This can be shown by the following example:

\[
A = \bigcup_{k=1}^{\infty} \{k! + 1, k! + 2, \ldots, k! + k\} = \{a_1 < a_2 < \cdots < a_n < \cdots\}.
\]

Here we have \(g(A) = 0, \) \(\bar{u}(A) = 1 \) and (10') is satisfied.

Example 3.1 Let \(\alpha \in R, \) \(\alpha > 1. \) Put \(a_k = [\alpha k], \) \((k = 1, 2, \ldots) \), where \([x] \) denotes the integer part of \(x. \) We show that the uniform density of the set \(A \) is \(\frac{1}{\alpha}. \) This follows from Theorem 3.1, since
\[
\lim_{p \to \infty} \frac{p}{a_{k+p} - a_{k+1}} = \frac{1}{\alpha}
\]
uniformly with respect to \(k \geq 0 \). This uniform convergence can be shown by a simple calculation which gives the estimates (\(p \geq 2 \))
\[
\frac{p}{(p-1)\alpha + 1} \leq \frac{p}{a_{k+p} - a_{k+1}} \leq \frac{p}{(p-1)\alpha - 1}.
\]

4. Darboux property of the uniform density

For every \(A \subseteq N \) having the uniform density the number \(u(A) \) belongs to \([0, 1]\). The natural question arises whether also conversely for every \(t \in [0, 1] \) there is a set \(A \subseteq N \) such that \(u(A) = t \). The answer to this question is positive.

Theorem 4.1.
If \(t \in [0, 1] \) then there is a set \(A \subseteq N \) with \(u(A) = t \).

Proof. We can already suppose that \(0 < t < 1 \). Construct the set
\[
A = \left\{ \left\lceil \frac{1}{t} \right\rceil, \left\lceil \frac{2}{t} \right\rceil, \ldots, \left\lceil \frac{k}{t} \right\rceil, \ldots \right\} = \{ a_1 < a_2 < \cdots \}.
\]
Put \(a_k = \left\lceil \frac{k}{t} \right\rceil (k = 1, 2, \ldots) \) and set in Example 3.1 \(\alpha = \frac{1}{t} > 1 \). So we get
\[
\lim_{p \to \infty} \frac{p}{a_{k+p} - a_{k+1}} = \frac{1}{\alpha} = t
\]
uniformly with respect to \(k \geq 0 \). The assertion follows by Theorem 3.1.

Let \(v \) be a non-negative set function defined on a class \(S \subseteq 2^N \). The function \(v \) is said to have the Darboux property provided that if \(v(A) > 0 \) for \(A \in S \) and \(0 < t < v(A) \), then there is a set \(B \subseteq A, B \in S \) such that \(v(B) = t \) (cf. [6], [7], [9]).

Theorem 4.2. The uniform density has the Darboux property.

Proof. Let \(u(A) = \delta > 0 \),
\[
A = \{ a_1 < a_2 < \cdots < a_k < \cdots \}
\]
and \(0 < t < \delta \). Construct the set
\[
B = \{ b_1 < b_2 < \cdots < b_k < \cdots \}
\]
in such a way that we set
\[
b_k = a_{\left\lceil \frac{k}{t} \right\rceil} \quad (k = 1, 2, \ldots).
\]
Put \(n_k = \lceil k^\alpha \rceil \) \((k = 1, 2, \ldots)\). Then \(n_1 < n_2 < \cdots < n_k < \cdots \),

\[B = \{ a_{n_1} < a_{n_2} < \cdots < a_{n_k} < \cdots \}, \quad B \subseteq A. \]

We prove that \(u(B) = t \).

By Theorem 3.1 it suffices to show that

\[\lim_{p \to \infty} \frac{p}{b_{m+p} - b_{m+1}} = t \]

uniformly with respect to \(m \geq 0 \).

We have \((p > 1)\)

\[\frac{p}{b_{m+p} - b_{m+1}} = \frac{p}{a_{n_{m+p}} - a_{n_{m+1}}}. \]

By a simple arrangement we get

\[\frac{p}{b_{m+p} - b_{m+1}} = \frac{p}{a_{n_{m+p}} - a_{n_{m+1}} + 1} \]

A simple estimation gives

\((p - 1) \frac{\delta}{t} - 1 < n_{m+p} - n_{m+1} < (p - 1) \frac{\delta}{t} + 1.\)

Using this in (13) we get

\[\lim_{p \to \infty} \frac{p}{n_{m+p} - n_{m+1} + 1} = \frac{t}{\delta} \]

uniformly with respect to \(m \geq 0 \).

Further by assumption

\[\lim_{p \to \infty} \frac{p}{a_{s+p} - a_{s+1}} = \delta \]

uniformly with respect to \(s \geq 0 \) (Theorem 3.1).

So we get

\[\lim_{p \to \infty} \frac{n_{m+p} - n_{m+1} + 1}{a_{n_{m+p}} - a_{n_{m+1}}} = \delta \]

uniformly with respect to \(m \geq 0 \) since the sequence

\[\left(\frac{n_{m+p} - n_{m+1} + 1}{a_{n_{m+p}} - a_{n_{m+1}}} \right)^\infty_{p=2} \]
is a subsequence of the sequence
\[
\left(p \frac{a_{x+p} - a_{x+1}}{a_{x+p} - a_{x+1}} \right)_{p=1}^{\infty}.
\]

By (13), (14), (15) we get (12) uniformly with respect to \(m \geq 0 \).

References

Zuzana Gáliková and Béla László
Constantine Philosopher University
Department of Algebra and Number Theory
Tr. A. Hlinku 1
949 74 Nitra
Slovakia
E-mail: kate@ukf.sk

Tibor Šalát
Department of Algebra and Number Theory
Mlynská dolina
842 15 Bratislava
Slovakia