ON ADDITIVE FUNCTIONS SATISFYING CONGRUENCE PROPERTIES

Bui Minh Phong (Budapest, Hungary)

Dedicated to the memory of Professor Péter Kiss

Abstract. In this paper, we consider those integer-valued additive functions f_1 and f_2 for which the congruence $f_1(mn+b) \equiv f_2(cn)+d \pmod{n}$ is satisfied for all positive integers n and for some fixed integers $a \geq 1$, $b \geq 1$, $c \geq 1$ and d. Our result improve some earlier results of K. Kovács, I. Joó, I. Joó & B. M. Phong and F. V. Chung concerning the above congruence.

1. Introduction

The problem concerning the characterization of some arithmetical functions by congruence properties initiated by Subbarao [10] was studied later by several authors. M. V. Subbarao proved that if an integer-valued multiplicative function $g(n)$ satisfies the congruence

$$g(n + m) \equiv g(m) \pmod{n}$$

for all positive integers n and m, then there is a non-negative integer α such that $g(n) = n^\alpha$

holds for all positive integers n. Recently some authors generalized and improved this result in a variety of ways. A. Iványi [3] obtained that the same result holds when m is a fixed positive integer and g is an integer-valued completely multiplicative function. For further results and generalizations of this problem we refer to the works of B. M. Phong [7]–[8], B. M. Phong & J. Fehér [9], I. Joó [4] and I. Joó & B. M. Phong [5]. For example, it follows from [8] that if an integer-valued multiplicative function $g(n)$ satisfies the congruence

$$g(An + B) \equiv C \pmod{n}$$

for all positive integers n and for some fixed integers $A \geq 1$, $B \geq 1$ and $C \neq 0$ with $(A, B) = 1$, then there are a non-negative integer α and a real-valued Dirichlet character $\chi_A \pmod{A}$ such that

$$g(n) = \chi_A(n)n^\alpha$$

It was financially supported by OTKA T 043657
holds for all positive integers n which are prime to A.

In the following let \mathcal{A} and \mathcal{A}^* denote the set of all integer-valued additive and completely additive functions, respectively. Let \mathbb{N} denote the set of all positive integers. A similar problem concerning the characterisation of a zero-function as an integer-valued additive function satisfying a congruence property have been studied by K. Kovács [6], P. V. Chung [1]–[2], I. Joó [4] and I. Joó & B. M. Phong [5]. It was proved by K. Kovács [6] that if $f \in \mathcal{A}^*$ satisfies the congruence

$$f(Au + B) \equiv C \pmod{n}$$

for some integers $A \geq 1$, $B \geq 1$, C and for all $n \in \mathbb{N}$, then

$$f(n) = 0$$

holds for all $n \in \mathbb{N}$ which are prime to A. This result was extended in [1], [2], [4] and [5] for integer-valued additive functions f. It follows from the results of [2] and [4] that for integers $A \geq 1$, $B \geq 1$, C and functions $f_1 \in \mathcal{A}$, $f_2 \in \mathcal{A}^*$ the congruence

$$f_1(Au + B) \equiv f_2(n) + C \pmod{n} \quad (\forall n \in \mathbb{N})$$

implies that $f_2(n) = 0$ for all $n \in \mathbb{N}$ and $f_1(n) = 0$ for all $n \in \mathbb{N}$ which are prime to A.

Our purpose in this paper is to improve the above results by showing the following

Theorem 1. Assume that $a \geq 1$, $b \geq 1$, $c \geq 1$ and d are fixed integers and the functions f_1, f_2 are additive. Then the congruence

(1) \hspace{1cm} f_1(an + b) \equiv f_2(cn) + d \pmod{n}

is satisfied for all $n \in \mathbb{N}$ if and only if the equation

(2) \hspace{1cm} f_1(an + b) = f_2(cn) + d

holds for all $n \in \mathbb{N}$.

Theorem 2. Assume that $a \geq 1$, $b \geq 1$, $c \geq 1$ and d are fixed integers. Let $a_1 = \frac{a}{(a, b)}$, $b_1 = \frac{b}{(a, b)}$ and

$$\mu := \begin{cases} 1 & \text{if } 2 \mid a_1 b_1 \\ 2 & \text{if } 2 \nmid a_1 b_1. \end{cases}$$

If the additive functions f_1 and f_2 satisfy the equation (2) for all $n \in \mathbb{N}$, then

$$f_1(n) = 0 \quad \text{for all } n \in \mathbb{N}, \quad (n, \mu a_1 b_1) = 1$$
and
\[f_2(n) = 0 \quad \text{for all} \quad n \in \mathbb{N}, \quad (n, \mu c_1) = 1. \]

2. Lemmas

Lemma 1. Assume that \(f^* \in A^* \) satisfies the congruence
\[f^*(An + B) \equiv f^*(n) + D \pmod{n} \]
for some fixed integers \(A \geq 1, B \geq 1 \) and \(D \). Then \(f^*(n) = 0 \) holds for all \(n \in \mathbb{N} \).

Proof. Lemma 1 follows from Theorem 2 of [4].

Lemma 2. Assume that \(f \in A \) satisfies the congruence
\[f(An + B) \equiv D \pmod{n} \]
for some fixed integers \(A \geq 1, B \geq 1 \) and \(D \). Then \(f(n) = 0 \) holds for all \(n \in \mathbb{N} \) which are prime to \(A \).

Proof. This is the result of [1].

Lemma 3. Assume that \(f_1, f \in A \) satisfy the congruence
\[f_1(An + 1) \equiv f(Cn) + D \pmod{n} \]
holds for all \(n \in \mathbb{N} \) with some integers \(A \geq 1, C \geq 1 \) and \(D \). Then
\[f(n) = f\left(\lceil n, 6C^2 \rceil\right) \quad \text{for all} \quad n \in \mathbb{N} \]
and \(f_1(m) = 0 \) holds for all \(m \in \mathbb{N} \), which are prime to \(6AC \). Here \((x, y) \) denotes the greatest common divisor of the integers \(x \) and \(y \).

Proof. In the following we shall denote by \(n^* \) the product of all distinct prime divisors of positive integer \(n \).

For each positive integer \(M \) let \(P = P(M) \) be a positive integer for which
\[(M^2 - 1)^* | ACP. \]

It is obvious from (4) that
\[(ACM(M + 1)Pn + 1, ACM(M + 1)Pn + 1) = 1, \]
\[(C^2(M + 1)^2 Pn, ACM Pn + 1) = 1 \]
and

\[(AC(M + 1)Pn + 1)(AC(M + 1)Pn + 1) = AC(M + 1)^2 Pn[ACMPn + 1] + 1\]

hold for all \(n \in \mathbb{N}\). Using these relations and appealing to the additive nature of the functions \(f_1\) and \(f\), we can deduce from (3) that

\[(5) \quad f(ACMPn + 1) \equiv -f(C^2(M + 1)^2 Pn) + f(C^2(M + 1)Pn) + f(C^2(M + 1)Pn) + D \pmod{n}\]

is satisfied for all \(n, M \in \mathbb{N}\), where \(P = P(M)\) satisfies the condition (4).

Let \(M = 2, P(2) = 3\) and \(M = 3, P(3) = 2\). In these cases (4) is true and so it follows from (5) that

\[(6) \quad f(6ACn + 1) \equiv -f(27C^2n) + f(18C^2n) + f(9C^2n) + D \pmod{n}\]

and

\[(7) \quad f(6ACn + 1) \equiv -f(32C^2n) + f(24C^2n) + f(8C^2n) + D \pmod{n}\]

are satisfied for all \(n \in \mathbb{N}\). Let \(N\) and \(n\) be positive integers with the condition

\[(8) \quad (N(N + 1), 6ACn + 1) = 1.\]

By using the relation

\[(6ACn + 1)(6^2 A^2C^2 Nn^2 + 1) = 6ACn[6ACNn(6ACn + 1) + 1] + 1\]

and that

\[(6ACn + 1, 6^2 A^2C^2 Nn^2 + 1) = (6ACn + 1, N + 1) = 1,\]

\[(6ACNn, 6ACn + 1) = (6ACn + 1, N) = 1,\]

it follows from (6) and (7) that

\[(9) \quad -f(162AC^3Nn^2) + f(108AC^3Nn^2) + f(54AC^3Nn^2) \equiv -f(27C^2Nn) + f(18C^2Nn) + f(9C^2n) + f(9C^2n) + D \pmod{n}\]

and

\[(10) \quad -f(192AC^3Nn^2) + f(144AC^3Nn^2) + f(48AC^3Nn^2) \equiv -f(32C^2Nn) + f(24C^2Nn) + f(8C^2n) + f(8C^2n) + D \pmod{n}\]

hold for all \(n, N \in \mathbb{N}\) satisfying (8).
Let Q be a fixed positive integer. First we apply (9) when $N = 1$, $n = Qm$, $(m, Q) = 1$ and $m \to \infty$. It is obvious that (8) holds, and so by (9) we have

\begin{equation}
(11) \quad f(Q^2) = 2f(Q) \quad \text{for} \quad Q \in \mathbb{N}, (Q, 6AC) = 1.
\end{equation}

Now let $N = Q$ and $n = Q^k(6CQm + 1)$ with $k, m \in \mathbb{N}$. It is obvious that (8) holds for infinity many integers m, because $(36AC^2Q^{k+1}, 6ACQ^k + 1) = 1$. These with (9) show that

\begin{equation}
(12) \quad f(Q^{2k+1}) = f(Q^k) + f(Q^{k+1}) \quad \text{for all} \quad Q \in \mathbb{N}, (Q, 6AC) = 1.
\end{equation}

From (11) and (12) we obtain that

\begin{equation}
(13) \quad f(Q^k) = kf(Q) \quad \text{for all} \quad Q \in \mathbb{N}, (Q, 6AC) = 1.
\end{equation}

Thus, by using the additivity of f it follows from (8) and (13) that (9) and (10) hold for all $N, n \in \mathbb{N}$, and they with $n = Qm$, $(m, 6ACNQ) = 1, m \to \infty$ imply that

\begin{align*}
&-f(162AC^3NQ^2) + f(108AC^3NQ^2) + f(54AC^3NQ^2) = -f(27C^2NQ) \\
&+f(18C^2NQ) + f(9C^2NQ) - f(27C^2Q) + f(18C^2Q) + f(9C^2Q)D
\end{align*}

and

\begin{align*}
&-f(192AC^3NQ^2) + f(144AC^3NQ^2) + f(48AC^3NQ^2) = -f(32C^2NQ) \\
&+f(24C^2NQ) + f(8C^2NQ) - f(32C^2Q) + f(24C^2Q) + f(8C^2Q) + D
\end{align*}

hold for all $N, Q \in \mathbb{N}$. Consequently

\begin{equation}
(14) \quad f(27C^2NQ) = f(18C^2NQ) + f(9C^2NQ) - f(27C^2Q) + f(18C^2Q) + f(9C^2Q)
\end{equation}

\begin{equation}
(15) \quad f(32C^2NQ) = f(24C^2NQ) + f(8C^2NQ) - f(32C^2Q) + f(24C^2Q) + f(8C^2Q)
\end{equation}

are satisfied for all $N, Q \in \mathbb{N}$.

For each prime p let $e = e(p)$ be a non-negative integer for which $p^e \| C^2$.

First we consider the case when \((p, 6) = 1\). By applying (14) with \(Q = p, N = p^l (l \geq 0)\), we have

\[
f \left(p^{l+1}p^{e(p)+2} \right) - f \left(p^{l+1}p^{e(p)+1} \right) = f \left(p^{e(p)+1} \right) - f \left(p^{e(p)} \right) \quad \text{for all} \quad l \geq 0,
\]

which shows that for all integers \(\beta \geq e(p)\)

\[
f \left(p^{\beta+1} \right) - f \left(p^{\beta} \right) = f \left(p^{e(p)+1} \right) - f \left(p^{e(p)} \right).
\]

Now we consider the case \(p = 2\). Applying (14) with \(Q = 2, n = 2^l, (l \geq 0)\) one can check as above that

\[
f \left(2^{2l+1} \right) - f \left(2^l \right) = f \left(2^{(2l+2)} \right) - f \left(2^{(2l+1)} \right).
\]

Finally, we consider the case \(p = 3\). Applying (15) with \(Q = 3, N = 3^l, l \geq 0\) we also get

\[
f \left(3^{3l+1} \right) - f \left(3^l \right) = f \left(3^{(3l+2)} \right) - f \left(3^{(3l+1)} \right).
\]

Now we write

\[
f(n) = f^*(n) + F(n),
\]

where \(f^*\) is a completely additive function defined as follows:

\[
f^*(p) := \begin{cases} f \left(p^{e(p)+1} \right) - f \left(p^{e(p)} \right) & \text{for } (p, 6) = 1 \\ f \left(p^{e(p)+2} \right) - f \left(p^{e(p)+1} \right) & \text{for } p = 2 \text{ or } p = 3 \end{cases}.
\]

Then, from (16)-(19) it follows that

\[
F \left(p^k \right) = F \left[(p^k, 6C^2) \right] \quad \text{for } (k = 0, 1, \ldots).
\]

Thus, we have proved that

\[
F(n) = F \left[(n, 6C^2) \right]
\]

is satisfied for all \(n \in 6N\).

We shall prove that \(f^*(n) = 0\) for all \(n \in 6N\) and \(f_1(m) = 0\) for all \(m \in 6N\) which are prime to \(6AC\).

We note that, by considering \(n = 2m\) and taking into account (6), we have

\[
f(12ACm + 1) \equiv -f(54C^2m) + f(36C^2m) + f(18C^2m) + D \pmod{m}
\]
Since \(f = f^* + F \), from the last relation and (20) we get
\[
f^*(12ACm + 1) \equiv f^*(m) + [f^*(12C^2) + F(6C^2) + D] \pmod{m},
\]
which with Lemma 1 shows that \(f^*(n) = 0 \) for all \(n \in \mathbb{N} \). This shows that \(f \equiv F \), i.e.
\[
f(n) = f([n, 6C^2])
\]
holds for all \(n \in \mathbb{N} \). Now, by applying (3) with \(n = 6Cm \) and using the last relation and Lemma 2, we have that \(f_1(n) = 0 \) holds for all \(n \in \mathbb{N} \) which are prime to \(6AC \).

The proof of Lemma 3 is completed.

3. Proof of Theorem 1

It is obvious that (1) follows from (2). We shall prove that if (1) is true, then (2) holds.

Assume that the functions \(f_1 \) and \(f_2 \in A \) satisfy the congruence (1) for some integers \(a \geq 1, b \geq 1, c \geq 1 \) and \(d \). It is obvious that (1) implies the fulfilment of
\[
f_1(abn + 1) \equiv f_2(b^2cn + d - f_1(b)) \pmod{n}
\]
for all \(n \in \mathbb{N} \). By Lemma 3,
\[
f_2(n) = f_2([n, 6b^4c^2]) \quad \text{for all} \quad n \in \mathbb{N}
\]
and
\[
f_1(n) = 0
\]
for all \(n \in \mathbb{N} \) which are prime to \(6abc \).

We shall prove that
\[
f_1(an + b) = f_2(cn + d)
\]
is true for all \(n \in \mathbb{N} \).

Let \(K \) be a positive integer. By (21) and (22), we have
\[
f_1(6ab^4ct + 1) = 0,
\]
\[
f_2(6b^4c^2(aK + b)t + cK) = f_2(cK)
\]
hold for all positive integers t, consequently
\[
\begin{align*}
 f_1(aK + b) - f_2(cK) - d &= f_1(aK + b) + f_1(6ab^4t + 1) - f_2(cK) - d \\
 &= f_1[6b^4c(aK + b)t + K] + b] - f_2[6b^4c^2(aK + b) + 1] - d
\end{align*}
\]
holds for every positive integer t. Thus, by applying (1) with $n = 6b^4c(aK + b)t + K$, the last relation proves that (23) holds for $n = K$.

This completes the proof of Theorem 1.

4. Proof of Theorem 2

As we have shown in the proof of Theorem 1, if the functions $f_1, f_2 \in A$ satisfy (2), then (21) and (22) imply
\[
(24) \quad f_1(m) = 0 \quad \text{for all} \quad m \in \mathbb{N}, \ (m, 6abc) = 1
\]
and
\[
(25) \quad f_2(n) = 0 \quad \text{for all} \quad n \in \mathbb{N}, \ (m, 6bc) = 1.
\]

Let $D = (a, b)$, $a_1 = \frac{a}{d}$, $b_1 = \frac{b}{d}$. It is clear that for each positive integer M, $(M, a_1) = 1$ there are $m_0, n_0 \in \mathbb{N}$ such that
\[
(26) \quad Mm_0 = a_1n_0 + b_1, \ (m_0, a_1) = 1 \quad \text{and} \quad (M, n_0) = (M, b_1).
\]

Let
\[
(27) \quad u(M) := \begin{cases}
1, \quad \text{if} \quad 2 \mid a_1(M, b_1) \ (M, b_1), \\
2, \quad \text{if} \quad 2 \notmid a_1(M, b_1) \ (M, b_1).
\end{cases}
\]

By applying the Chinese Remainder Theorem and using (26)–(27), we can choose a positive integer t_1 such that $m_1 = a_1t_1 + m_0$, $n_1 = Mt_1 + n_0$ satisfy the following conditions:

\[
Mm_1 = a_1n_1 + b_1\ ,
\]

\[
\frac{n_1}{u(M)(M, b_1)} \text{ is an integer,}
\]

and
\[
(m_1, 6abc) = \left(\frac{n_1}{u(M)(M, b_1)}, 6bc\right) = 1.
\]

Hence, we infer from (2) and (24)-(25) that
\[
f_1(DM) = f_1(DMm_1) = f_1(an_1 + b) = f_2(cn_1) + d = f_2 \left[\frac{a_1n_1}{u(M)(M, b_1)}\right] + d,
\]
consequently

(28) \[f_1[DM] = f_2[\mu v(M)(M, b_1)] + d \]

hold for all \(M \in \mathbb{N}, \ (M, a_1) = 1 \). This implies that

(29) \[f_1(n) = 0 \quad \text{for all} \quad n \in \mathbb{N}, \ (n, \mu ab_1) = 1, \]

where \(\mu \in \{1, 2\} \) such that \(2|\mu a_1 b_1 \).

Now we prove that

(30) \[f_2(n) = 0 \quad \text{for all} \quad n \in \mathbb{N}, \ (n, \mu cb_1) = 1. \]

For each positive integer \(n \), let \(M(n) := a_1 n + b_1 \) and \(U(n) := v(a_1 n + b_1) \).

Since \((M(n), b_1) = (n, b_1) \) and

\[\frac{M(n)}{b_1} - \frac{b_1}{(M(n), b_1)} = a_1 \frac{b_1}{(n, b_1)} \left[\frac{n}{(n, b_1)} + 1 \right] \pmod{2}, \]

we have

\[U(n) := \begin{cases} 1, & \text{if } 2 \mid a_1 \frac{b_1}{(n, b_1)} \left[\frac{n}{(n, b_1)} + 1 \right], \\ 2, & \text{if } 2 \not\mid a_1 \frac{b_1}{(n, b_1)} \left[\frac{n}{(n, b_1)} + 1 \right]. \end{cases} \]

Hence, (2) and (28) show that

\[f_2(\mu v n) = f_1(an + b) - d = f_1[DM(n)] - d = f_2[\mu v U(n), b_1] \]

is satisfied for all \(n \in \mathbb{N} \), which implies (29). Thus, (29) is proved.

By (29) and (30), the proof of Theorem 2 is completed.

References

Bui Minh Phong
Eötvös Loránd University
Department of Computer Algebra
Pázmány Péter sét. I/C
H-1117 Budapest
Hungary
e-mail: bui@compalg.inf.elte.hu

