Distribution of terms of a logarithmic sequence*

Peter Csibaa, Ferdinánd Filipa, János T. Tótha,b

aDepartment of Mathematics, J. Selye University
e-mail: csiba.peter@selyeuni.sk
e-mail: filip.ferdinand@selyeuni.sk
e-mail: toth.janos@selyeuni.sk

bDepartment of Mathematics, University of Ostrava
e-mail: janos.toth@osu.cz

Submitted 22 October 2007; Accepted 28 November 2007

Abstract

The number \(L(a, b) = \frac{a - b}{\ln a - \ln b} \) for \(a \neq b \) and \(L(a, a) = a \), is said to be the logarithmic mean of the positive numbers \(a, b \). We shall say that a sequence \((a_n)_{n=1}^{\infty} \) with positive terms is a logarithmic sequence if \(a_n = L(a_{n-1}, a_{n+1}) \). In the present paper some basic estimations of the terms of logarithmic sequences are investigated.

Keywords: logarithmic mean, power mean, logarithmic sequence.

MSC: Primary 11K31, Secondary 26E60.

1. Introduction

Let \(a, b \) be positive real numbers. The logarithmic mean of \(a, b \) is defined as follows:

\[
L(a, b) = \frac{a - b}{\ln a - \ln b} \quad \text{if} \quad a \neq b \quad \text{and} \quad L(a, a) = a
\]

(see [5]).

The logarithmic sequence is defined in paper [2] by means of logarithmic mean in the following way:

*Supported by grants VEGA no. 1/4006/07, GAČR no. 201/07/0191.
Definition 1.1. A sequence \((a_n)_{n=1}^\infty\) of positive real numbers is called logarithmic if
\[
a_n = L(a_{n-1}, a_{n+1}) \quad \text{for each } n \geq 2.
\]

Moreover, in [2] the existence of logarithmic sequence is proved and even it is shown that if a sequence \((a_n)_{n=1}^\infty\) is logarithmic and \(a_1 < a_2 < \cdots < a_n < \cdots\). On the other hand, if \(a_1 > a_2\) then \(a_1 > a_2 > \cdots > a_n > \cdots\) (see [2], Theorem 2.1). Thus we see that the logarithmic sequence is either increasing or decreasing if \(a_1 \neq a_2\). In the case \(a_1 = a_2\) the logarithmic sequence \((a_n)_{n=1}^\infty\) is stationary and \(a_n = a_1 \quad (n = 1, 2, \ldots)\). In the present paper we will consider only the logarithmic sequences \((a_n)_{n=1}^\infty\) for which \(a_1 \neq a_2\).

The following theorem holds for logarithmic sequences.

Theorem 1.2. ([2; Th. 2.2., Th. 2.3.]) Let the sequence \((a_n)_{n=1}^\infty\) be logarithmic and \(a_1 \neq a_2\). Then the following implications hold.

(i) If \(a_1 < a_2\) then
\[
\lim_{n \to \infty} a_n = \infty.
\]

(ii) If \(a_1 > a_2\) then the series
\[
\sum_{n=1}^\infty a_n
\]
converges.

Now we introduce the power mean of degree \(\alpha \in \mathbb{R}\) of two positive numbers \(a, b\) as follows:
\[
M_\alpha(a, b) = \left(\frac{a^\alpha + b^\alpha}{2}\right)^{\frac{1}{\alpha}} \quad \text{if } \alpha \neq 0 \quad \text{and} \quad M_0(a, b) = \lim_{\alpha \to 0} M_\alpha(a, b).
\]

It is well known that \(M_0(a, b) = \sqrt{ab}\) and \(M_\alpha(a, b)\) is increasing with respect to \(\alpha\) (see [6]).

In paper [3] the following relation between \(L(a, b)\) and \(M_\alpha(a, b)\) is proved for arbitrary positive numbers \(a, b\):
\[
M_0(a, b) \leq L(a, b) \leq M_{\frac{1}{2}}(a, b), \quad (1.1)
\]
and the equality occurs if and only if \(a = b\).

As \(M_\alpha(a, b)\) is increasing with respect to \(\alpha\), from (1.1) we have
\[
M_0(a, b) \leq L(a, b) \leq M_\alpha(a, b) \quad (1.2)
\]
for all \(a, b > 0\) and \(\alpha \geq \frac{1}{3}\).

Thus, if the sequence \((a_n)_{n=1}^\infty\) is logarithmic then (1.2) implies that for all \(n \geq 2\) and \(\alpha \geq \frac{1}{3}\) the inequality
\[
\sqrt{a_{n-1}a_{n+1}} \leq a_n \leq \left(\frac{a_{n-1}^\alpha + a_{n+1}^\alpha}{2}\right)^{\frac{1}{\alpha}}
\]
Distribution of terms of a logarithmic sequence

holds. Consequently we have for all \(n \geq 2 \) and \(\alpha \geq \frac{1}{3} \)

\[
\frac{a_{n+1}}{a_n} \leq \frac{a_n}{a_{n-1}} \quad \text{and} \quad a_n^\alpha - a_{n-1}^\alpha \leq a_{n+1}^\alpha - a_n^\alpha. \tag{1.3}
\]

From (1.3) we obtain that in the case of increasing logarithmic sequence \((a_n)_{n=1}^\infty\)
for each \(n \geq 2 \) the inequalities

\[
1 < \frac{a_{n+1}}{a_n} < \frac{a_n}{a_{n-1}} \quad \text{and} \quad 0 < a_n - a_{n-1} < a_{n+1} - a_n \tag{1.4}
\]

hold.

A natural question arises. What can be said about the asymptotic behaviour
of differences \(a_{n+1} - a_n \) and fractions \(\frac{a_{n+1}}{a_n} \) if \((a_n)_{n=1}^\infty\) is an increasing logarithmic sequence? More precisely, does it hold

\[
\lim_{n \to \infty} (a_{n+1} - a_n) = \infty \quad \text{and} \quad \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1? \tag{1.5}
\]

In the first part of the present paper, among others, we give the answer to the
previous question. We will determine the lower bounds for terms \(a_n \),
differences \(a_{n+1} - a_n \) and fractions \(\frac{a_{n+1}}{a_n} \) if \((a_n)_{n=1}^\infty\) is a logarithmic sequence.

2. Estimates for differences and quotients of consecutive terms of a logarithmic sequence

Theorem 2.1. Let \((a_n)_{n=1}^\infty\) be a logarithmic sequence. Then the following implications hold.

(i) If \((a_n)_{n=1}^\infty\) is increasing then

\[
a_n > \left(\frac{a_2^\alpha - a_1^\alpha}{2} \right)^\frac{1}{\alpha} n^{\frac{1}{\alpha}} \tag{2.1}
\]

for every \(\alpha \geq \frac{1}{3} \) and \(n \in \mathbb{N} \).

(ii) If \((a_n)_{n=1}^\infty\) is decreasing then

\[
a_n < \left(\frac{a_2^\beta - a_1^\beta}{2} \right)^\frac{1}{\beta} n^{\frac{1}{\beta}} \tag{2.2}
\]

for every \(\beta < 0 \) and \(n \in \mathbb{N} \).

Proof. (i) Let \((a_n)_{n=1}^\infty\) be an increasing logarithmic sequence. Then (1.3) implies
for \(\alpha \geq \frac{1}{3} \)

\[
a_n^\alpha - a_{n-1}^\alpha < a_{n+1}^\alpha - a_n^\alpha \quad \text{for} \quad n \geq 2.
\]
Consequently, for every \(n \geq 2 \) we have
\[
a_2^\alpha - a_1^\alpha < a_{n+1}^\alpha - a_n^\alpha, \quad \text{i.e.}
\]
\[
(a_n^\alpha + a_2^\alpha - a_1^\alpha)^{\frac{1}{\alpha}} < a_{n+1}.
\]
(2.3)

Now we will show by induction the inequality
\[
((n-1)a_2^\alpha - (n-2)a_1^\alpha)^{\frac{1}{\alpha}} \leq a_n
\]
(2.4)
for every \(n \geq 2 \). For \(n = 2 \) evidently the equality takes place in (2.4). Suppose that (2.4) holds for some \(n = k \geq 2 \). Then we obtain
\[
\begin{align*}
(ka_2^\alpha - (k-1)a_1^\alpha)^{\frac{1}{\alpha}} &= ((k-1)a_2^\alpha - (k-2)a_1^\alpha + a_2^\alpha - a_1^\alpha)^{\frac{1}{\alpha}} \\
&\leq (a_k^\alpha + a_2^\alpha - a_1^\alpha)^{\frac{1}{\alpha}}.
\end{align*}
\]
Consequently, using (2.3) we obtain
\[
(ka_2^\alpha - (k-1)a_1^\alpha)^{\frac{1}{\alpha}} \leq a_{k+1}
\]
proving (2.4) for every \(n \geq 2 \). Finally, for \(n \geq 2 \) we obtain
\[
a_n \geq ((n-1)(a_2^\alpha - a_1^\alpha) + a_1^\alpha)^{\frac{1}{\alpha}} > (n-1)^{\frac{1}{\alpha}} (a_2^\alpha - a_1^\alpha)^{\frac{1}{\alpha}} \geq n^{\frac{1}{\alpha}} \left(\frac{a_2^\alpha - a_1^\alpha}{2} \right)^{\frac{1}{\alpha}}.
\]

(ii) Let \((a_n)_{n=1}^\infty \) be a decreasing logarithmic sequence. Then (1.2) and the fact that \(M_\alpha(a, b) \) is increasing with respect to \(\alpha \) imply the inequality
\[
\left(\frac{a_n^\beta + a_{n+1}^\beta}{2} \right)^{\frac{1}{\beta}} < a_n = L(a_{n-1}, a_{n+1})
\]
holding for every real \(\beta < 0 \). Consequently
\[
a_n^\beta - a_{n-1}^\beta < a_{n+1}^\beta - a_n^\beta
\]
holds for every \(n \geq 2 \). Especially,
\[
a_{n+1}^\beta - a_n^\beta > a_2^\beta - a_1^\beta, \quad \text{i.e.}
\]
\[
a_{n+1} < \left(a_n^\beta + a_2^\beta - a_1^\beta \right)^{\frac{1}{\beta}}
\]
(2.5)
holds for every \(n \geq 2 \). Now we will show by induction the inequality
\[
a_n \leq \left((n-1)a_2^\beta - (n-2)a_1^\beta \right)^{\frac{1}{\beta}}
\]
(2.6)
for every $n \geq 2$. In the case $n = 2$ the equality takes place in (2.6). Suppose that (2.6) holds for some $n = k \geq 2$. The we obtain

$$
\left(ka^\beta_2 - (k - 1)a^\beta_1\right)^\frac{1}{\beta} = \left((k - 1)a^\beta_2 - (k - 2)a^\beta_1 + a^\beta_2 - a^\beta_1\right)^\frac{1}{\beta} \geq \left(a^\beta_k + a^\beta_2 - a^\beta_1\right)^\frac{1}{\beta}.
$$

Applying (2.5) we obtain

$$
\left(ka^\beta_2 - (k - 1)a^\beta_1\right)^\frac{1}{\beta} \geq a_{k+1}
$$

proving (2.6) for every integer $n \geq 2$. Finally, for every $n \geq 2$ we have

$$
a_n \leq \left((n - 1)(a^\beta_2 - a^\beta_1) + a^\beta_1\right)^\frac{1}{\beta} < \left(a^\beta_2 - a^\beta_1\right)^\frac{1}{\beta} \frac{1}{n^\beta}.
$$

\[\square\]

Corollary 2.2. Let $(a_n)_{n=1}^{\infty}$ be an increasing logarithmic sequence. Then for every $n \geq 2$ the inequality

$$
a_n > \left(\frac{\sqrt[3]{a_2} - \sqrt[3]{a_1}}{2}\right)^3 n^3
$$

holds.

Proof. Follows directly from Theorem 2.1 (i) for $\alpha = \frac{1}{3}$. \[\square\]

Corollary 2.3. If $(a_n)_{n=1}^{\infty}$ is an increasing logarithmic sequence then the series

$$
\sum_{n=1}^{\infty} \frac{1}{a_n}
$$

converges.

Proof. By Corollary 2.2 we have for every $n \geq 2$

$$
a_n > c.n^3 \text{ where } c = \left(\frac{\sqrt[3]{a_2} - \sqrt[3]{a_1}}{2}\right)^3.
$$

Evidently the series $\sum_{n=2}^{\infty} \frac{1}{a_n}$ majorises the series $\sum_{n=2}^{\infty} \frac{1}{a_n}$. Consequently the series $\sum_{n=1}^{\infty} \frac{1}{a_n}$ converges. \[\square\]
Corollary 2.4. Let \((a_n)_{n=1}^{\infty}\) be a decreasing logarithmic sequence and let \(l > 0\) be a real number. Then the inequality
\[
a_n < c_1 \frac{1}{n^{1/l}}, \quad \text{where} \quad c_1 = \left(\frac{a_2^{-l} - a_1^{-l}}{2}\right)^{-\frac{1}{l}}
\]
holds for every \(n \geq 2\).

Proof. Follows from Theorem 2.1 (ii) for \(\beta = -l, \ l > 0\).

Corollary 2.5. If \((a_n)_{n=1}^{\infty}\) is a decreasing logarithmic sequence then the series \(\sum_{n=1}^{\infty} a_n\) converges.

Theorem 2.6. Let \((a_n)_{n=1}^{\infty}\) be an increasing logarithmic sequence. Then the inequality
\[
a_{n+1} - a_n > (\sqrt{a_2} - \sqrt{a_1})^2(n + 1)
\]
holds for every \(n \geq 2\).

Proof. We will proceed by induction. From (1.3) for \(\alpha = \frac{1}{2}\) follows the inequality
\[
\sqrt{a_n} - \sqrt{a_{n-1}} < \sqrt{a_{n+1}} - \sqrt{a_n}.
\]
(2.8)

For \(n = 2\) we obtain from (2.8)
\[
\sqrt{a_3} - \sqrt{a_2} > \sqrt{a_2} - \sqrt{a_1}
\]
and
\[
a_3 - a_2 > (\sqrt{a_2} - \sqrt{a_1})(\sqrt{a_3} + \sqrt{a_2}) > 3(\sqrt{a_2} - \sqrt{a_1})(\sqrt{a_2} - \sqrt{a_1}).
\]

Suppose that (2.7) holds for some \(n = k \geq 2\). Then from (2.8) for \(n = k + 1\) we obtain
\[
\sqrt{a_{k+2}} - \sqrt{a_{k+1}} > \sqrt{a_{k+1}} - \sqrt{a_k}.
\]
Moreover
\[
a_{k+2} - a_{k+1} > (a_{k+1} - a_k)\frac{\sqrt{a_{k+2}} + \sqrt{a_{k+1}}}{\sqrt{a_{k+1}} + \sqrt{a_k}}
\]
\[
= (a_{k+1} - a_k) + (a_{k+1} - a_k)\frac{\sqrt{a_{k+2}} - \sqrt{a_k}}{\sqrt{a_{k+1}} + \sqrt{a_k}}
\]
\[
= (a_{k+1} - a_k) + (\sqrt{a_{k+1}} - \sqrt{a_k})(\sqrt{a_{k+2}} - \sqrt{a_k}) > (a_{k+1} - a_k) + (\sqrt{a_{k+1}} - \sqrt{a_k})^2.
\]
As (2.8) implies
\[
\sqrt{a_{k+1}} - \sqrt{a_k} > \sqrt{a_2} - \sqrt{a_1}
\]
we have
\[a_{k+2} - a_{k+1} > a_{k+1} - a_k + (\sqrt{a_2} - \sqrt{a_1})^2. \]
Finally
\[a_{k+2} - a_{k+1} > (k + 2)(\sqrt{a_2} - \sqrt{a_1})^2. \]

\[\square \]

Theorem 2.7. Let \((a_n)_{n=1}^{\infty} \) be a logarithmic sequence. Then \(\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \) exists and the following implications hold.

1. If \((a_n)_{n=1}^{\infty} \) is increasing then
\[
\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1.
\]

2. If \((a_n)_{n=1}^{\infty} \) is decreasing then
\[
\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 0.
\]

Proof. The sequence \((a_n)_{n=1}^{\infty} \) is logarithmic, thus
\[
a_n = \frac{a_{n+1} - a_{n-1}}{\ln a_{n+1} - \ln a_{n-1}} \text{ for } n \geq 2.
\]
Consequently
\[
\frac{a_n}{a_{n-1}} = \frac{\frac{a_{n+1} - 1}{a_{n-1}}}{\ln \frac{a_{n+1}}{a_{n-1}}}
\]
which is equivalent with
\[
\frac{a_n}{a_{n-1}} \ln \frac{a_{n+1}}{a_n} = \frac{a_{n+1} - a_n}{a_{n-1}} - 1. \quad (2.9)
\]
The first relation in (1.3) implies that the sequence \((\frac{a_{n+1}}{a_n})_{n=1}^{\infty} \) is decreasing and bounded from below. Consequently the limit \(\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \) exists and it is finite.
Denote \(x = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} \).
If the sequence \((a_n)_{n=1}^{\infty} \) is increasing then obviously \(x \geq 1 \). Taking limit in (2.9) for \(n \to \infty \) we obtain
\[
x \ln x^2 = x^2 - 1 \text{ i.e. } 2x \ln x = x^2 - 1.
\]
The above inequality can not hold for \(x > 1 \) since for all real \(x \in (0, 1) \cup (1, \infty) \) the inequality \(2x \ln x < x^2 - 1 \) holds. Thus \(\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1 \).
If the sequence \((a_n)_{n=1}^{\infty} \) is decreasing then obviously \(0 \leq x < 1 \). In the case \(0 < x < 1 \) again we obtain \(2x \ln x = x^2 - 1 \) what is impossible. Thus we have \(\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 0 \) in the case of a decreasing sequence \((a_n)_{n=1}^{\infty} \). \(\square \)
Corollary 2.8. Let \((a_n)_{n=1}^{\infty}\) be a logarithmic sequence. Then

\[
\lim_{n \to \infty} \frac{a_n}{q^n} = 0
\]

1. for every real \(q > 1\) if \((a_n)_{n=1}^{\infty}\) is increasing,
2. for every real \(q > 0\) if \((a_n)_{n=1}^{\infty}\) is decreasing.

Proof. 1. Consider the power series

\[
\sum_{n=1}^{\infty} a_n x^n.
\]

Then Theorem 2.7 implies that the radius of its convergence is \(R = 1\). Thus for every \(0 < x < 1\) the series \(\sum_{n=1}^{\infty} a_n x^n\) converges. Consequently

\[
\lim_{n \to \infty} a_n x^n = 0.
\]

Denoting \(q = \frac{1}{x}\) we have \(q > 1\) arbitrary and \(\frac{a_m}{q^n} \to 0\) \((n \to \infty)\) holds.

2. If \((a_n)_{n=1}^{\infty}\) is decreasing then Theorem 2.7 implies that the radius of convergence \(R\) of the considered power series is infinity. Thus for every real \(x > 0\) we have \(\lim_{n \to \infty} a_n x^n = 0\). \(\square\)

Corollary 2.9. If \((a_n)_{n=1}^{\infty}\) is an increasing logarithmic sequence then the set

\[
\left\{ \frac{a_m}{a_n} : m, n = 1, 2, \ldots \right\}
\]

is dense in \((0, \infty)\).

Proof. The proof follows from Theorem 2.7 and the following theorem: If for an unbounded sequence \((a_n)_{n=1}^{\infty}\) of positive real numbers

\[
\limsup_{n \to \infty} \frac{a_{n+1}}{a_n} = 1
\]

holds then the set \(\left\{ \frac{a_m}{a_n} : m, n = 1, 2, \ldots \right\}\) is dense in \((0, \infty)\) (see Theorem 1.1 of [1]). \(\square\)

3. Comparison of terms of logarithmic sequence with terms of other sequences

First we will show that the function \(L(x, b)\) is increasing in \(x > 0\) with fixed \(b > 0\). This property of the function \(L(x, b)\) will be later used in the proof of Theorem 3.3.
Theorem 3.1. Let \(a, b, c, \in \mathbb{R}^+\). Then

\[L(c, b) \leq L(a, b) \iff c \leq a. \]

Proof. For \(0 < x \neq b\) we have

\[L(x, b) = b \frac{x - 1}{\ln \frac{x}{b}}. \]

Thus \(L(x, b)\) is increasing with respect to \(x\) if and only if the function

\[f(y) = b \frac{y - 1}{\ln y} \]

is increasing with respect to \(y\) \((y \neq 1)\), i.e. \(\frac{df}{dy} \geq 0\) for \(y > 0, y \neq 1\). This is equivalent to

\[g(y) = \frac{1}{y} + \ln y - 1 \geq 0 \]

for each \(y > 0\). Since \(\frac{dg}{dy} = \frac{1}{y} - \frac{1}{y^2} = \frac{y - 1}{y^2}\) we obviously have \(\frac{dg}{dy} \leq 0\) for \(0 < y < 1\) and \(\frac{dg}{dy} \geq 0\) for \(y \geq 1\). Thus \(g(y)\) attains its minimum at \(y = 1\), i.e. \(g(y) \geq g(1) = 0\) for each \(y > 0\). \(\square\)

First we are going to compare the terms of a given logarithmic sequence with terms of another logarithmic sequence.

Theorem 3.2. Let \((a_n)_{n=1}^{\infty}\) and \((b_n)_{n=1}^{\infty}\) be such logarithmic sequences that \(a_1 = b_1\) and \(a_2 \geq b_2\). Then

\[a_n \geq b_n \quad \text{and} \quad \frac{a_n}{a_{n-1}} \geq \frac{b_n}{b_{n-1}} \]

hold for every \(n \geq 2\).

Proof. We will proceed by induction. For \(n = 2\) the statement obviously holds. Assume that it holds for some \(n = k \geq 2\), i.e.

\[a_k \geq b_k \quad \text{and} \quad \frac{a_k}{a_{k-1}} \geq \frac{b_k}{b_{k-1}}. \tag{3.1} \]

Let us consider the terms \(a_{k+1}, b_{k+1}\). Since both \((a_n)_{n=1}^{\infty}\) and \((b_n)_{n=1}^{\infty}\) are logarithmic sequences, we have

\[a_k = L(a_{k-1}, a_{k+1}) \quad \text{and} \quad b_k = L(b_{k-1}, b_{k+1}) \]

Consequently

\[\frac{a_k}{a_{k-1}} = L \left(\frac{a_{k+1}}{a_{k-1}}, 1 \right) \quad \text{and} \quad \frac{b_k}{b_{k-1}} = L \left(\frac{b_{k+1}}{b_{k-1}}, 1 \right). \tag{3.2} \]
We will use the notation
\[\alpha_1 = \frac{a_k}{a_{k-1}}, \alpha_2 = \frac{a_{k+1}}{a_{k-1}}, \beta_1 = \frac{b_k}{b_{k-1}} \quad \text{and} \quad \beta_2 = \frac{b_{k+1}}{b_{k-1}} \]
in the rest of the proof. Then (3.2) implies

\[
\frac{\alpha_1}{\beta_1} = \frac{L(\alpha_2, 1)}{L(\beta_2, 1)} = \frac{\alpha_2 - 1}{\beta_2 - 1} \cdot \ln \beta_2 = \frac{\alpha_2^\frac{1}{2} + 1}{\beta_2^\frac{1}{2} + 1} \cdot \frac{\alpha_2^\frac{1}{2} - 1}{\beta_2^\frac{1}{2} - 1} \cdot \ln \frac{\beta_2^\frac{1}{2}}{\alpha_2^\frac{1}{2}} = \ldots = \left(\prod_{k=1}^{n} \frac{\alpha_2^\frac{1}{k} + 1}{\beta_2^\frac{1}{k} + 1} \right) \cdot \frac{\alpha_2^\frac{1}{n} - 1}{\beta_2^\frac{1}{n} - 1} \cdot \ln \frac{\beta_2^\frac{1}{n}}{\alpha_2^\frac{1}{n}}.
\]
Taking into account that \(\frac{a+b}{b+1} \leq \frac{a}{b} \) holds in the case when \(a \geq b > 0 \), we obtain:

\[
\frac{\alpha_1}{\beta_1} \leq \left(\frac{\alpha_2}{\beta_2} \right)^\sum_{k=1}^{n} \frac{1}{k} \frac{L(\alpha_2^\frac{1}{k}, 1)}{L(\beta_2^\frac{1}{k}, 1)}.
\]
Taking limit for \(n \to \infty \) we obtain \(\frac{\alpha_1}{\beta_1} \leq \frac{\alpha_2}{\beta_2} \) as

\[
\lim_{n \to \infty} L\left(a^\frac{1}{n}, 1 \right) = 1 \quad \text{where} \quad a > 0.
\]
The inequality \(\frac{\alpha_1}{\beta_1} \leq \frac{\alpha_2}{\beta_2} \) is equivalent with the inequality \(\frac{a_{k+1}}{a_k} \geq \frac{b_{k+1}}{b_k} \). Since \(a_k \geq b_k \) using the induction assumption (3.1) we obtain \(a_{k+1} \geq b_{k+1} \) which completes the proof.

The next theorem generalizes the previous one.

Theorem 3.3. Let \((a_n)_{n=1}^\infty\) be a logarithmic sequence and let a sequence \((b_n)_{n=1}^\infty\) fulfils the following conditions

\[
b_1 = a_1, \quad b_2 \leq a_2 \quad \text{and} \quad b_n \geq L(b_{n-1}, b_{n+1}) \quad \text{for} \quad n \geq 2 \quad (3.3)
\]
Then for every positive integer \(n \) the inequality

\[
a_n \geq b_n
\]
holds.

Proof. Let \(k \geq 0 \) be a given integer. Define the sequence \((a_{k,n})_{n=1}^\infty\) as follows:

\[
a_{k,1} = b_{k+1}, \quad a_{k,2} = b_{k+2} \quad \text{and} \quad a_{k,n} = L(a_{k,n-1}, a_{k,n+1}) \quad \text{for} \quad n \geq 2. \quad (3.4)
\]
Thus the sequence \((a_{k,n})_{n=1}^\infty\) is logarithmic for every \(k \geq 0 \).
We will show that

\[
a_{k,n} \leq a_{k+n} \quad \text{and} \quad b_{k+3} \leq a_{k,3} \quad (3.5)
\]
Distribution of terms of a logarithmic sequence

holds for every integer \(k \geq 0 \) and positive integer \(n \). We will proceed by induction with respect to \(k \).

For \(k = 0 \) from (3.3), (3.4) we have

\[
a_{0,1} = b_1 = a_1, \quad a_{0,2} = b_2 \leq a_2.
\]

The assumption that both sequences \((a_n)_{n=1}^{\infty}\) and \((a_{0,n})_{n=1}^{\infty}\) are logarithmic and Theorem 3.2 imply that for every \(n \in \mathbb{N} \) the inequality

\[
a_{0,n} \leq a_n
\]

holds. On the other hand, (3.3) and (3.4) imply

\[
L(b_3, b_1) \leq b_2 = a_{0,2} = L(a_{0,3}, a_{0,1}) = L(a_{0,3}, b_1),
\]

and consequently, using Theorem 3.1, we obtain

\[
b_3 \leq a_{0,3}.
\]

Suppose that for some \(k = l \geq 0 \) inequalities (3.5) hold. In the case \(k = l + 1 \) we obtain

\[
a_{l+1,1} = b_{l+2} = a_{l,2} \quad \text{and} \quad a_{l+1,2} = b_{l+3} \leq a_{l,3}.
\]

By use of Theorem 3.2 and induction assumption we obtain

\[
a_{l+1,n} \leq a_{l,n+1} \leq a_{l+1,n}
\]

for every \(n \in \mathbb{N} \). On the other hand, (3.3) and (3.4) imply

\[
L(b_{l+4}, b_{l+2}) \leq b_{l+3} = a_{l+1,2} = L(a_{l+1,3}, a_{l+1,1}).
\]

As \(b_{l+2} = a_{l+1,1} \), Theorem 3.1 implies

\[
b_{l+4} \leq a_{l+1,3}.
\]

Thus we proved (3.5) by induction. Finally, from (3.5) we obtain

\[
b_k \leq a_{k-3,3} \leq a_k
\]

for every \(k \geq 3 \).

\[\square \]

The proof of the following theorem is an application of the previous one.

Theorem 3.4. Let \((a_n)_{n=1}^{\infty}\) be such a logarithmic sequence that \(a_1 < a_2 \). Then the series \(\sum_{n=1}^{\infty} \frac{1}{a_n} \) converges and

\[
\sum_{n=1}^{\infty} \frac{1}{a_n} < \frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{(\sqrt{a_2} - \sqrt{a_1})^2} \frac{\pi^2}{6}
\]

holds.
Proof. Define the sequence \((b_n)_{n=1}^{\infty}\) by:

\[b_1 = a_1, \quad b_2 = a_2 \quad \text{and} \quad b_n = \frac{1}{2} (b_{n-1} + b_{n+1}) \quad \text{for} \quad n \geq 2. \]

As

\[M_{\frac{1}{2}}(b_{n-1}, b_{n+1}) \geq L(b_{n-1}, b_{n+1}), \]

we have \(b_n \geq L(b_{n-1}, b_{n+1})\). Thus the sequence \((b_n)_{n=1}^{\infty}\) fulfills the assumptions of Theorem 3.2.

Consequently \(b_n \leq a_n\) for every \(n \in \mathbb{N}\). Using ([2] Th.1.1) we have

\[b_n = \left((n-1)\sqrt{b_2} - (n-2)\sqrt{b_1} \right)^2, \]

i.e. for every \(n > 2\)

\[b_n = \left((n-2)(\sqrt{b_2} - \sqrt{b_1}) + \sqrt{b_2} \right)^2 > (n-2)^2 \left(\sqrt{b_2} - \sqrt{b_1} \right)^2 = \]

\[= (n-2)^2 (\sqrt{a_2} - \sqrt{a_1})^2 \]

holds. Finally we obtain

\[
\sum_{n=1}^{\infty} \frac{1}{a_n} \leq \sum_{n=1}^{\infty} \frac{1}{b_n} < \frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{(\sqrt{a_2} - \sqrt{a_1})^2} \frac{\pi^2}{6}.
\]

\(\square\)

References

Peter Csiba, Ferdinánd Filip, János T. Tóth
Department of Mathematics,
J. Selye University,
P.O.Box 54,
945 01 Komárno,
Slovakia

János T. Tóth
Department of Mathematics,
University of Ostrava,
30. dubna 22,
701 03 Ostrava,
Czech Republic