On group rings with restricted minimum condition

Bertalan Király

Institute of Mathematics and Informatics, Eszterházy Károly College
e-mail: kiraly@ektf.hu

Submitted 28 September 2007; Accepted 18 December 2007

Abstract

In this paper we investigate the group rings $\mathbb{R}G$ satisfying the restricted minimum condition.

Keywords: restricted minimum condition, group ring

MSC: 16S34

1. Results

Let R be an associative ring with unit element. R is said to satisfy the left restricted minimum condition, if for each nontrivial ideal J of R the ring R/J is left artinian. In this paper we consider the group rings with left restricted minimum condition, in the case when $\mathbb{R}G$ itself is not left artinian.

We prove the following:

Theorem 1.1. Let G be a group with non-trivial center and let R be a commutative ring with unit element. If the group ring $\mathbb{R}G$ satisfies the left restricted minimum condition, then R is left artinian and either G is finite, or G is the infinite cyclic group.

For group algebras the converse assertion is also true.

Theorem 1.2. Let G be a group with non-trivial center and let R be a field. The group algebra $\mathbb{R}G$ satisfies the left restricted minimum condition if and only if either G is finite, or G is the infinite cyclic group.

By $A(\mathbb{R}G)$ we mean the augmentation ideal of $\mathbb{R}G$, that is the kernel of the ring homomorphism $\phi : \mathbb{R}G \to R$ sending each group element to 1. It is easy to see that
A(RG) is a free R-module in which the set of the elements \(g - 1 \) with \(1 \neq g \in G \) form a basis. For a normal subgroup \(H \) of \(G \) we denote by \(I(H) \) the ideal of \(RG \) generated by all elements of the form \(h - 1 \) with \(h \in H \). As it is well-known, \(I(H) \) is the kernel of the natural epimorphism \(\overline{\phi} : RG \to R[G/H] \) induced by the group homomorphism \(\phi \) of \(G \) onto \(G/H \), furthermore

\[
RG/I(H) \cong R[G/H], \tag{1.1}
\]

and \(I(G) = A(RG) \).

The commutator subgroup and the center of the group \(G \) will be denoted by \(G' \) and \(\zeta(G) \), respectively.

2. Proof of Theorems

We need the following two statements.

Proposition 2.1 (Theorem 4.12 in [2]). If \(G \) is a group whose center has finite index \(n \), then \(G' \) is finite and \((G')^n = 1 \).

Proposition 2.2 (Theorem 4.33 in [2]). An infinite group has each non-trivial subgroup of finite index if and only if it is infinite cyclic.

Proof of Theorem 1.1. It is well-known that the group ring \(RG \) is left artinian if and only if \(R \) is left artinian and \(G \) is finite. Assume that \(RG \) satisfies the left restricted minimum condition. According to (1.1) for every normal subgroup \(H \) the factor group \(G/H \) is finite and from the isomorphism \(RG/A(RG) \cong R \) it follows that \(R \) is left artinian. Furthermore, \(RG/I(\zeta(G)) \) is left artinian and therefore, by (1.1), \(G/\zeta(G) \) is finite. Then Proposition 2.1 guarantees that \(G' \) is finite. If \(G' \neq 1 \) then, by (1.1) \(G/G' \) is finite, and so \(G \) is finite. On the other hand, if \(G \) is abelian and infinite, then by (1.1) we have that every non-trivial subgroup of \(G \) has finite index. But then Proposition 2.2 states that \(G \) is the infinite cyclic group and the proof of the theorem is complete. \(\square \)

Let \(R \) be an euclidean ring with the euclidean norm \(\varphi \) such that \(\varphi(ab) \geq \varphi(a) \) for all \(a \neq 0, b \neq 0 \) \((a, b \in R\).) Then \(R \) is a principal ideal ring. Let \(I = (r) \) and \(J = (s) \) be the ideals of \(R \) generated by the element \(r \) and \(s \) respectively, and assume that \(I \supseteq J \). Then \(s = rt \) for a suitable \(t \in R \), and \(\varphi(s) = \varphi(rt) \geq \varphi(r) \). It is easy to see that \(\varphi(e) = 1 \) if and only if \(e \) is an unit in \(R \) and that \(I = J \) if and only if \(\varphi(r) = \varphi(s) \).

Let \(J = (s) \) be an arbitrary ideal of an euclidean ring \(R \) and let

\[
\overline{R} \supseteq J_1 \supseteq J_2 \supseteq \ldots \supseteq J_n \supseteq \ldots \supseteq \bigcap_{i=1}^{\infty} J_i = J_\omega \tag{2.1}
\]

a sequence of ideals, where \(\overline{R} = R/J \) and \(\omega \) the first limit ordinal. Denote by \(J_k \) the inverse image of \(J_k \) in \(R \) \((k = 1, 2, \ldots \text{ or } k = \omega) \). Then \(J_k \)'s are principal ideals.

and, in view of (2.1) we have that
\[R \supseteq J_1 \supseteq J_2 \supseteq \ldots \supseteq J_n \supseteq \ldots \supseteq J_\omega \supseteq J = (s). \] (2.2)

Suppose that \(J_k = (s_k) \). Since \(J_k \supseteq J = (s) \), so \(\varphi(s) \geq \varphi(s_k) \) for all \(k \) (\(k = 1, 2, \ldots \) and \(k = \omega \)). But \(\varphi(s) \) and \(\varphi(s_k) \) are non-negative integers, therefore there exists a natural number \(n \) such that \(\varphi(s_n) = \varphi(s_{n+1}) = \ldots = \varphi(s) \). Thus the sequence (2.2) has finite length and consequently, the sequence (2.1) is finite, too. It follows that for each ideal \(J \) of \(R \) the ring \(R/J \) is artinian, and we have

Lemma 2.3. Euclidean rings satisfy the restricted minimum condition.

It was proved in [1] that the group algebra of the infinite cyclic group over a field is an euclidean ring. Hence, Theorem 1.2 is a direct consequence of Lemma 2.3 and Theorem 1.1.

References
