COMPOSITION OPERATORS BETWEEN GENERALLY WEIGHTED BLOCH SPACE AND \(Q_{\log}^q \) SPACE

HAIYING LI\(^*\) AND PEIDE LIU\(^2\)

Communicated by J. M. Isidro

Abstract. Let \(\varphi \) be a holomorphic self-map of the open unit disk \(D \) on the complex plane and \(p, q > 0 \). In this paper, the boundedness and compactness of composition operator \(C_\varphi \) from generally weighted Bloch space \(B_{\log}^p \) to \(Q_{\log}^q \) are investigated.

1. Introduction and preliminaries

Suppose that \(D \) is the unit disc on the complex plane, \(\partial D \) its boundary and \(\varphi \) a holomorphic self-map of \(D \). We denote by \(H(D) \) the space of all holomorphic functions on \(D \), denote by \(dm(z) \) the normalized Lebesgue area measure and define the composition operator \(C_\varphi \) on \(H(D) \) by \(C_\varphi f = f \circ \varphi \).

For \(0 < p \leq \infty \), the Hardy space \(H^p \) is the Banach space of analytic functions on \(D \) such that

\[
\|f\|_{H^p}^p = \sup_{r \in (0,1)} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta < \infty, \quad 0 < p < \infty,
\]

and

\[
\|f\|_{H^\infty} = \sup_{z \in D} |f(z)| < \infty.
\]

For more details see [15] and [16].

\(^*\) Corresponding author.

2000 Mathematics Subject Classification. Primary 47B38; Secondary 47B33, 32A36.

Key words and phrases. Holomorphic self-map, composition operator, generally weighted Bloch space, \(Q_{\log}^q \).
We say that \(f \in H(D) \) belongs to \(\text{BMOA}_{\log} \) if \(f \in H^2 \) and has weighted bounded mean oscillation, i.e.

\[
\|f\|_{\text{BMOA}_{\log}} = \sup_{I \subseteq \partial D} \frac{\left(\log \frac{2}{|I|}\right)^2}{|I|} \int_{S(I)} |f'(z)|^2 \log \frac{1}{|z|} \, dm(z) < \infty,
\]

where

\[
S(I) = \{z \in D : 1 - |I| \leq |z| < 1, \frac{z}{|z|} \in I\}
\]
is the Carleson square of the arc \(I \) and \(|I|\) its length.

By definition it is immediate that \(\text{BMOA}_{\log} \) is exactly \(Q^1_{\log} \). In [10], the above relation helped to describe the pointwise multipliers of the Möbius invariant Banach spaces \(Q_q, q \in [0, 1] \), consisting of \(f \in H(D) \), such that

\[
\|f\|_{Q_q} = |f(0)| + \sup_{\alpha \in D} \int_D |f'(z)|^2 g^q(z, \alpha) \, dm(z) < \infty,
\]

where \(g(z, \alpha) = \log \frac{1}{|\phi_\alpha(z)|} \) is the Green’s function and \(\phi_\alpha(z) = \frac{\alpha - z}{1 - \overline{\alpha} z} \). For more details on these spaces see for example [2] and the two monographs [11] and [12].

The space of analytic functions on \(D \) such that

\[
\|f\|_{B_{\log}} = |f(0)| + \sup_{z \in D} |f'(z)|(1 - |z|^2) \log \frac{2}{1 - |z|^2} < \infty
\]
is called weighted Bloch space \(B_{\log} \).

\(B_{\log} \) and \(\text{BMOA}_{\log} \) first appeared in the study of boundedness of the Hankel operators on the Bergman space

\[
A^1 = \{f \in H(D) : \int_D |f(z)| \, dm(z) < \infty\}
\]
and the Hardy space \(H^1 \), respectively. \(\text{BMOA}_{\log} \) also appeared in the study of a Volterra type operator. For more details [1], [3], [8] and [9].

In [13], Yoneda studied the composition operators from \(B_{\log} \) to \(\text{BMOA}_{\log} \). He found one sufficient and a different necessary condition for the boundedness of the composition operators from \(B_{\log} \) to \(\text{BMOA}_{\log} \). So it is natural to ask for the approximate conditions that characterize boundedness and compactness of the composition operators \(C_\varphi : B_{\log}^p \to \text{BMOA}_{\log} \).

In [6], we introduced the space \(B_{\log}^p \). The space of analytic functions on \(D \) such that

\[
\|f\|_{B_{\log}^p} = |f(0)| + \sup_{z \in D} |f'(z)|(1 - |z|^2)^p \log \frac{2}{1 - |z|^2} < \infty
\]
is called generally weighted Bloch space \(B_{\log}^p \). When \(p = 1 \), the space \(B_{\log}^p \) is just the weighted Bloch space \(B_{\log} \).

In [5], Petros Galanopoulos considered the space \(Q_{\log}^q \), \(q > 0 \), the spaces of analytic functions on the unit disc such that

\[
\|f\|_* = \sup_{I \subseteq \partial D} \frac{(\log \frac{2}{|I|})^2}{|I|^q} \int_{S(I)} |f'(z)|^2 (\log \frac{1}{|z|})^q \, dm(z) < \infty.
\]

In this paper, we consider composition operator \(C_\varphi \) from generally weighted Bloch space \(B_{\log}^p(D) \) to \(Q_{\log}^q(D) \). We find a necessary and sufficient condition for
Taylor coefficients of a function in B^p_\log. Using the results for the Hadamard gap series and following a technique used before in the Bloch space in [7], we construct two functions $f, g \in B^p_\log$ such that for each $z \in D$,

$$|f'(z)| + |g'(z)| \geq \frac{C}{(1 - |z|)^p \log \frac{2}{1 - |z|}},$$

where C is a positive constant. Using this fact we prove the following theorems:

Theorem 1.1. Let $p, q > 0$. If φ is an analytic self-map of the unit disc, then the induced composition operator $C_\varphi : B^p_\log \to Q^q_\log$ is bounded if and only if

$$\sup_{\alpha \in D} (\log \frac{2}{1 - |\alpha|^2})^2 \int_D |\varphi'(z)|^2 \frac{(1 - |\phi_\alpha(z)|^2)^q}{(1 - |\varphi(z)|^2)^2 p (\log \frac{2}{1 - |\varphi(z)|^2})^2} \, dm(z) < \infty.$$

Theorem 1.2. Let $p, q > 0$. If φ is an analytic self-map of the unit disc, then the induced composition operator $C_\varphi : B^p_\log \to Q^q_\log$ is compact if and only if $\varphi \in Q^q_\log$ and

$$\lim_{r \to 1} \sup_{\alpha \in D} (\log \frac{2}{1 - |\alpha|^2})^2 \int_{\{|\varphi(z)| > r\}} |\varphi'(z)|^2 \frac{(1 - |\phi_\alpha(z)|^2)^q}{(1 - |\varphi(z)|^2)^2 p (\log \frac{2}{1 - |\varphi(z)|^2})^2} \, dm(z) = 0.$$

By the definition of B^p_\log, we can easily obtain the following corollaries.

Corollary 1.3. Let $q > 0$. If φ is an analytic self-map of the unit disc, then the induced composition operator $C_\varphi : B^p_\log \to Q^q_\log$ is bounded if and only if

$$\sup_{\alpha \in D} (\log \frac{2}{1 - |\alpha|^2})^2 \int_D |\varphi'(z)|^2 \frac{(1 - |\phi_\alpha(z)|^2)^q}{(1 - |\varphi(z)|^2)^2} \, dm(z) < \infty.$$

Corollary 1.4. Let $q > 0$. If φ is an analytic self-map of the unit disc, then the induced composition operator $C_\varphi : B^p_\log \to Q^q_\log$ is compact if and only if $\varphi \in Q^q_\log$ and

$$\lim_{r \to 1} \sup_{\alpha \in D} (\log \frac{2}{1 - |\alpha|^2})^2 \int_{\{|\varphi(z)| > r\}} |\varphi'(z)|^2 \frac{(1 - |\phi_\alpha(z)|^2)^q}{(1 - |\varphi(z)|^2)^2} \, dm(z) = 0.$$

Throughout the remainder of this paper C will denote a positive constant, the exact value of which will vary from one appearance to the next.

2. Main results

Let f be a holomorphic function in D with the gap series expansion

$$f(z) = \sum_{k=1}^{\infty} a_k z^{n_k}, \quad z \in D,$$

where for a constant $\lambda > 1$, the natural numbers n_k satisfy

$$\frac{n_{k+1}}{n_k} \geq \lambda, \quad k \geq 1.$$
Lemma 2.1. Let f be a holomorphic function in D with (a) and (b). Then for $p > 0$, $f \in B^p_{\log}$ if and only if
\[
\limsup_{k \to \infty} |a_k| \cdot n_k^{1-p} \cdot \log n_k < \infty.
\]

Proof. Let f be a holomorphic function in D, $f(z) = \sum_{k \geq 0} a_k z^k \in B^p_{\log}$. Since $a_k = \frac{1}{2\pi i} \int_0^{2\pi} f'(re^{i\theta}) r^{1-k} e^{i(1-k)\theta} d\theta$, then
\[
|a_k| \leq \frac{1}{2\pi} \int_0^{2\pi} |f'(re^{i\theta})| r^{1-k} d\theta
\leq \frac{\|f\|_{B^p_{\log}} \cdot r^{1-k}}{k(1-r)^p \log \frac{1}{1-r}}.
\]

Let $r = 1 - \frac{1}{k}$, then
\[
|a_k| \leq \frac{\|f\|_{B^p_{\log}} (1 - \frac{1}{k})^{1-k}}{k^{1-p} \log k} = \frac{\|f\|_{B^p_{\log}} (1 + \frac{1}{k})^{-k}(1 - \frac{1}{k})}{k^{1-p} \log k},
\]

then
\[
\limsup_{k \to \infty} |a_k| \cdot k^{1-p} \cdot \log k \leq e \cdot \|f\|_{B^p_{\log}} < \infty.
\]

Conversely, Since $f(z) = \sum_{k \geq 0} a_k z^{n_k}$, then
\[
|z f'(z)| \leq \sum_{k \geq 0} |a_k| n_k |z|^{n_k} \leq C \sum_{k \geq 0} \frac{n_k^p}{\log n_k} |z|^{n_k},
\]

\[
\frac{n_{k+1}^p \log n_{k+1}}{n_k^p \log n_{k+1}} = (\frac{n_{k+1}}{n_k})^p \frac{\log n_{k+1}}{\log n_k}^{-1} = (\frac{n_{k+1}}{n_k})^p (1 + \frac{\log n_{k+1}}{\log n_k})^{-1} = \lambda^p (1 + \frac{\log \lambda}{\log n_k})^{-1}.
\]

Then for each $\varepsilon \in (0, 1)$, there exists k_0 such that when $k \geq k_0$ we have
\[
\frac{n_{k+1}^p \log n_{k+1}}{n_k^p \log n_{k+1}} \geq (1 - \varepsilon) \lambda^p
\]

(2.1)

thus
\[
\frac{n_k^p}{\log n_k} \leq \frac{1}{(1 - \varepsilon) \lambda^p} \cdot \frac{n_{k+1}^p}{\log n_{k+1}}.
\]

\[
\frac{|z f'(z)| \log \frac{1}{1-|z|}}{1-|z|} \leq C (\sum_{k \geq 0} \frac{n_k^p}{\log n_k} |z|^{n_k}) (\sum_{n \geq 0} |z|^n) |z| \sum_{n \geq 0} \frac{|z|^n}{n+1}
\leq C'(\sum_{n \geq n_0} (\sum_{n_0 \leq n} \frac{n_k^p}{\log n_k} |z|^{n_k})) \sum_{n \geq 0} \frac{|z|^n}{n+1}.
\]

Let k' be a positive integer number such that $n_{k'} \leq n \leq n_{k'+1}$, we fix $(1 - \varepsilon) \lambda^p > 1$, $\varepsilon > 0$, then we get an index k_0 such that (2.1) holds.
If \(k' \geq k_0 \), then
\[
\sum_{n_k \leq n} \frac{n_k^p}{\log n_k} = \sum_{k \leq k_0} \frac{n_k^p}{\log n_k} + \sum_{k' > k_0} \frac{n_k^p}{\log n_k} \\
\leq C \frac{n_k^p}{\log n} + \frac{n_k^p}{\log n} \cdot \sum_{k' > k_0} \frac{1}{\lambda^p(1-\varepsilon)^{k'-k}} \\
\leq C \frac{n_k^p}{\log n} + \frac{n_k^p}{\log n} \cdot \frac{1}{\lambda^p(1-\varepsilon)^{k'-(k_0+1)}} (1 - [\lambda^p(1-\varepsilon)]^{k'-k_0}) \\
= C \frac{n_k^p}{\log n} + \frac{n_k^p}{\log n} \cdot \frac{\lambda^p(1-\varepsilon) - 1}{\lambda^p(1-\varepsilon) - 1} \\
\leq (C + 1) \frac{n_k^p}{\log n} + \frac{n_k^p}{\log n} \cdot \frac{1}{\lambda^p(1-\varepsilon) - 1}.
\]

Since
\[
\sum_{n=0}^{\infty} (n+1)^p |z|^n \leq \frac{C}{(1-|z|)^{1+p}}, \quad z \in D,
\]
thus
\[
\frac{|zf'(z)| \log \frac{1}{1-|z|}}{1-|z|} \leq C \left(\sum_{n \geq 3} \frac{n^p}{\log n} |z|^n \right) \left(\sum_{n \geq 0} \frac{|z|^n}{n+1} \right) \\
\leq C \sum_{n \geq 3} n^p |z|^n \\
= C |z| \sum_{n \geq 2} (n+1)^p |z|^n \\
\leq C \frac{|z|}{(1-|z|)^{1+p}}.
\]

\(\square \)

Lemma 2.2. There exist \(f, g \in B^{p}_{\log} \) such that
\[
|f'(z)| + |g'(z)| \geq \frac{C}{(1-|z|)^p \log \frac{2}{1-|z|}}.
\]

Proof. We consider the function
\[
f(z) = Kz + \sum_{j \geq 1} \frac{q^{(j+k_0)(p-1)+\frac{p}{j}}}{\log q^{j+k_0}} - z^{j+k_0}
\]
for \(q \) an appropriately large integer, \(K \) a properly small chosen positive constant and \(k_0 \) the index for which (2.1) holds for the sequence \(n_j \) such that \(n_j = q^{j+k_0} \).
So this function is a member of the \(B^{p}_{\log} \) space.
\[
1 - q^{-(k+k_0)} \leq |z| < 1 - q^{-(k+k_0+\frac{1}{2})} \quad (k \geq 1),
\]
\[|f'(z)| = |K + \sum_{j \geq 1} q^{(j+k_0)p+\frac{p}{2}} \log q^{j+k_0} z^{q(j+k_0)-1}| \]
\[= |K + \sum_{j=1}^{k-1} q^{(j+k_0)p+\frac{p}{2}} \log q^{j+k_0} z^{q(j+k_0)-1} \]
\[+ q^{(k+k_0)p+\frac{p}{2}} \log q^{k+k_0} z^{q(k+k_0)-1} \sum_{j=k+1}^\infty \frac{q^{(j+k_0)p+\frac{p}{2}}}{\log q^{j+k_0}} |z|^{q(j+k_0)-1} | \]
\[\geq \frac{q^{(k+k_0)p+\frac{p}{2}}}{\log q^{k+k_0}} |z|^{q^{k+k_0}} - (K + \sum_{j=1}^{k-1} \frac{q^{(j+k_0)p+\frac{p}{2}}}{\log q^{j+k_0}} |z|^{q(j+k_0)}) \]
\[- \sum_{j=k+1}^\infty \frac{q^{(j+k_0)p+\frac{p}{2}}}{\log q^{j+k_0}} |z|^{q(j+k_0)} \]
\[= I_1 - I_2 - I_3. \]

Since
\[1 - q^{-(k+k_0)} \leq |z| < 1 - q^{-(k+k_0+\frac{1}{2})}. \]

Thus
\[(1 - q^{-(k+k_0)})q^{k+k_0} \leq |z|q^{k+k_0} < (1 - q^{-(k+k_0+\frac{1}{2})})q^{k+k_0}. \]

Then
\[\frac{1}{3} \leq |z|q^{k+k_0} < \left(\frac{1}{2}\right)q^{-\frac{1}{2}}. \]

\[I_1 = q^{(k+k_0)p+\frac{p}{2}} \log q^{k+k_0} \]
\[\geq \frac{1}{3} q^{(k+k_0)p+\frac{p}{2}} \log q^{k+k_0}. \]

\[I_2 = K + \sum_{j=1}^{k-1} \frac{q^{(j+k_0)p+\frac{p}{2}}}{\log q^{j+k_0}} |z|^{q(j+k_0)} \]
\[\leq K \cdot \frac{q^{(k+k_0)p+\frac{p}{2}}}{\log q^{k+k_0}} \left(1 - \frac{1}{q^{k+k_0+\frac{1}{2}}}\right) + \frac{q^{(k+k_0)p+\frac{p}{2}}}{\log q^{k+k_0}} \cdot \sum_{j=1}^{k-1} \frac{1}{((1-\varepsilon)q^p)^{k-j}} \]
\[\leq \frac{q^{(k+k_0)p+\frac{p}{2}}}{\log q^{k+k_0}} \cdot \frac{1}{(1-\varepsilon)q^p - 1} + K \cdot \frac{q^{(k+k_0)p+\frac{p}{2}}}{\log q^{k+k_0}}. \]
where n.

Now with a similar argument for the function $K = j |f(q^j(z))| \geq q^{j+k+1} \sum_{j=0}^{\infty} \log q^{j+k+1} |z|^{q^j}$.

Thus

$I_3 = \sum_{j=k+1}^{\infty} \frac{q^{(j+k_0)p+\frac{p}{2}}}{\log q^{j+k_0}} |z|^{q^j}$

$= \sum_{j=0}^{\infty} \frac{q^{(j+k+1+k_0)p+\frac{p}{2}}}{\log q^{j+k+1+k_0}} |z|^{q^{j+k+1+k_0}}$

$= q^{(k+1+k_0)p+\frac{p}{2}} |z|^{q^{k+1+k_0}} \sum_{j=0}^{\infty} \frac{q^{jp}}{\log q^{j+k+1+k_0}} |z|^{q^j}$

$\leq \frac{q^{(k+1+k_0)p+\frac{p}{2}}}{\log q^{k+k_0}} |z|^{q^{k+1+k_0}} \sum_{j=0}^{\infty} (q^p |z|^q) |q^{(k+2)-q^{(k+1)})}j$

$= q^{(k+1+k_0)p+\frac{p}{2}} \frac{1 - q^p |z|^q}{1 - q^p |z|^q^{(k+2)-q^{(k+1)}}}$

$= q^{(k+k_0)p+\frac{p}{2}} \frac{q^p |z|^{q^{k+k_0}} q}{1 - q^p |z|^q^{(k+2)-q^{(k+1)}}}$

$\leq \frac{q^{(k+k_0)p+\frac{p}{2}}}{\log q^{k+k_0}} q^{\frac{1}{2}} |1 - q^p |z|^q^{(k+2)-q^{(k+1)}}$.

Thus

$|f'(z)| \geq \frac{q^{(k+k_0)p+\frac{p}{2}}}{\log q^{k+k_0}} \left(\frac{1}{3} - \frac{1}{(1 - \varepsilon)q^p - 1} - K - \frac{q^p(\frac{1}{2})q^{\frac{1}{2}}}{1 - q^p(\frac{1}{2})(q^{\frac{1}{2}}-q^{\frac{1}{2}})} \right)$.

If K is so small that

$\frac{1}{3} - \frac{1}{(1 - \varepsilon)q^p - 1} - K - \frac{q^p(\frac{1}{2})q^{\frac{1}{2}}}{1 - q^p(\frac{1}{2})(q^{\frac{1}{2}}-q^{\frac{1}{2}})} > 0$,

then we have

$|f'(z)| \geq C \frac{q^{(k+k_0)p+\frac{p}{2}}}{\log q^{k+k_0}} \geq C \frac{1}{(1 - |z|)^p \log \frac{2}{1 - |z|}}$.

Now with a similar argument for the function

$g(z) = \sum_{j \geq 1} \frac{q^{(j+k_0)(p-1)+\frac{p}{2}}}{\log q^{j+k_0+\frac{1}{2}}} |z|^{q^{j+k_0+\frac{1}{2}}}$,

where $n_j = q^{j+k_0+\frac{1}{2}}$, for q a large positive integer, $k = 1, 2, \ldots$, $1 - q^{-(k+k_0+\frac{1}{2})} \leq |z| < 1 - q^{-(k+k_0+1)}$,

we get

$|g'(z)| \geq \frac{C}{(1 - |z|)^p \log \frac{2}{1 - |z|}}$.
In the case where \(f', g' \) have common zeros (\(\neq 0 \)) in \(\{ |z| < 1 - q^{-(k+\ell_0+1)} \} \), we can prove that the function \(g(e^{i\theta}z) \) for suitable \(\theta \).

In order to understand better the \(Q^q_{log} \), we need the following definition introduced in [14].

Definition 2.3. A positive Borel measure on \(D \) is called an \(s \)-logarithmic \(q \)-Carleson measure (\(q, s > 0 \)) if

\[
\sup_{I \subseteq \partial D} \frac{\mu(S(I))(\log \frac{2}{|I|})^s}{|I|^q} < \infty.
\]

In [14], the sufficient and necessary condition of the measure is given as follows.

Lemma 2.4. \(\mu \) is an \(s \)-logarithmic \(q \)-Carleson measure on \(D \) if and only if

\[
\sup_{\alpha \in D} (\log \frac{2}{1 - |\alpha|^2})^s \int_D |\phi'_\alpha(z)|^q d\mu(z) < \infty.
\]

Using techniques well known to mathematics and by Lemma 2.4 we can prove the following proposition.

Proposition 2.5. Let \(q > 0 \). Then the following are equivalent:

(i) \(f \in Q^q_{log} \);

(ii) \(\sup_{\alpha \in D} (\log \frac{2}{1 - |\alpha|^2})^2 \int_D |f'(z)|^2 (1 - |\phi_\alpha(z)|^2)^q dm(z) < \infty \);

(iii) \(\sup_{\alpha \in D} (\log \frac{2}{1 - |\alpha|^2})^2 \int_D |f'(z)|^2 g^q(z, \alpha) dm(z) < \infty \).

Theorem 2.6. Let \(p, q > 0 \). If \(\varphi \) is an analytic self-map of the unit disc, then the induced composition operator \(C_\varphi : B^p_{log} \to Q^q_{log} \) is bounded if and only if

\[
\sup_{\alpha \in D} (\log \frac{2}{1 - |\alpha|^2})^2 \int_D |\varphi'(z)|^2 \left(\frac{(1 - |\phi_\alpha(z)|^2)^q}{(1 - |\varphi(z)|^2)^2 p (\log \frac{2}{1 - |\varphi(z)|^2})^2} \right) dm(z) < \infty. \tag{2.2}
\]

Proof. Firstly we assume that (2.2) holds, by Proposition 2.5, then for \(f \in B^p_{log} \),

\[
\sup_{\alpha \in D} \left(\frac{2}{1 - |\alpha|^2} \right)^2 \int_D |(f \circ \varphi)'(z)|^2 (1 - |\phi_\alpha(z)|^2)^q dm(z)
\]

\[
= \sup_{\alpha \in D} \left(\frac{2}{1 - |\alpha|^2} \right)^2 \int_D |f'(\varphi(z))|^2 |\varphi'(z)|^2 (1 - |\phi_\alpha(z)|^2)^q dm(z)
\]

\[
\leq \sup_{\alpha \in D} \left(\frac{2}{1 - |\alpha|^2} \right)^2 \int_D |\varphi'(z)|^2 \left(\frac{(1 - |\phi_\alpha(z)|^2)^q}{(1 - |\varphi(z)|^2)^2 p (\log \frac{2}{1 - |\varphi(z)|^2})^2} \right) dm(z) \cdot \| f \|_{B^p_{log}}^2.
\]

By (2.2), then \(C_\varphi f \in Q^q_{log} \), thus \(C_\varphi : B^p_{log} \to Q^q_{log} \) is bounded.

Conversely, we assume that \(C_\varphi : B^p_{log} \to Q^q_{log} \) is bounded, for \(f \in B^p_{log} \), \(C_\varphi f \in Q^q_{log} \), by Lemma 2.2, there exist \(f, g \in B^p_{log} \) such that

\[
|f'(z)| + |g'(z)| \geq C \left(\frac{1 - |z|^p}{\log \frac{2}{1 - |z|^p}} \right).
\]
Then

\[\infty > \sup_{\alpha \in D} \left(\frac{2}{1 - |\alpha|^2} \right)^2 \int_D \left[2\left| (f \circ \varphi)'(z) \right|^2 + (g \circ \varphi)'(z) \right]^2 (1 - |\phi_\alpha(z)|^2) \varphi \, dm(z) \]

\[\geq \sup_{\alpha \in D} \left(\frac{2}{1 - |\alpha|^2} \right)^2 \int_D \left[|(f \circ \varphi)'(z) + (g \circ \varphi)'(z)| \right]^2 (1 - |\phi_\alpha(z)|^2) \varphi \, dm(z) \]

\[= \sup_{\alpha \in D} \left(\frac{2}{1 - |\alpha|^2} \right)^2 \int_D \left[|f'(\varphi(z))| + |g'(\varphi(z))| \right]^2 |\varphi'(z)|^2 (1 - |\phi_\alpha(z)|^2) \varphi \, dm(z) \]

\[\geq C \sup_{\alpha \in D} \left(\frac{2}{1 - |\alpha|^2} \right)^2 \int_D \left| \varphi'(z) \right|^2 \frac{(1 - |\phi_\alpha(z)|^2)^q}{\left(1 - |\varphi(z)|^2 \right)^2 (1 - |\phi_\alpha(z)|^2)^q} \, dm(z). \]

\[\Box \]

Remark 2.7. Since every element of \(Q^q_{\log} \) satisfies the following radial growth condition:

\[|f(z) - f(0)| \leq C \log(\log \frac{1}{1 - |z|}) \|f\|_{Q^q_{\log}}, \quad C > 0, \]

then \(C_\varphi : B^p_{\log} \to Q^q_{\log} \) is compact if and only if for every sequence \(\{f_n\}_{n \in N} \subseteq Q^q_{\log} \), bounded in norm and \(f_n \to 0 \) as \(n \to \infty \), uniformly on compact subsets of the unit disk, then \(\|C_\varphi(f_n)\|_{Q^q_{\log}} \to 0 \) as \(n \to \infty \).

This is similar to [4].

We give the characterization of compactness.

Theorem 2.8. Let \(p, q > 0 \). If \(\varphi \) is an analytic self-map of the unit disc, then the induced composition operator \(C_\varphi : B^p_{\log} \to Q^q_{\log} \) is compact if and only if \(\varphi \in Q^q_{\log} \) and

\[\limsup_{r \to 1} \sup_{\alpha \in D} \left(\frac{2}{1 - |\alpha|^2} \right)^2 \int_{\{\varphi(z) > r\}} |\varphi'(z)|^2 \frac{(1 - |\phi_\alpha(z)|^2)^q}{\left(1 - |\varphi(z)|^2 \right)^2 (1 - |\phi_\alpha(z)|^2)^q} \, dm(z) \]

\[= 0. \quad (2.3) \]

Proof. Firstly we assume that \(C_\varphi : B^p_{\log} \to Q^q_{\log} \) is compact, let \(f(z) = z \), then \(C_\varphi(f(z)) = \varphi(z) \in Q^q_{\log} \). Since \(\frac{z^n}{n} \|B^p_{\log} \leq C \) (in fact \(C = \frac{2p}{pq} \)) and \(z^n \to 0 \) as \(n \to \infty \), locally uniformly on the unit disc, then by the compactness of \(C_\varphi \), \(\|C_\varphi(z^n)\|_{Q^q_{\log}} \to 0 \) as \(n \to \infty \). This means that for each \(r \in (0, 1) \) and each \(\varepsilon > 0 \), there exists \(n_0 \in N \) such that

\[r^{2(n_0 - 1)} \sup_{\alpha \in D} \left(\frac{2}{1 - |\alpha|^2} \right)^2 \int_{\{\varphi(z) > r\}} |\varphi'(z)|^2 (1 - |\phi_\alpha(z)|^2)^q \, dm(z) < \varepsilon. \]

If we choose \(r \geq 2^{-\frac{1}{(n_0 - 1)}} \), then

\[\sup_{\alpha \in D} \left(\frac{2}{1 - |\alpha|^2} \right)^2 \int_{\{\varphi(z) > r\}} |\varphi'(z)|^2 (1 - |\phi_\alpha(z)|^2)^q \, dm(z) < 2\varepsilon. \quad (2.4) \]

Let now \(f \) with \(\|f\|_{B^p_{\log}} < 1 \). We consider the functions \(f_t(z) = f(tz) \), \(t \in (0, 1) \). By the compactness of \(C_\varphi \) we get that for each \(\varepsilon > 0 \), there exists \(t_0 \in (0, 1) \) such
that for all \(t > t_0, \)
\[
\sup_{\alpha \in D} (\log \frac{2}{1 - |\alpha|^2})^2 \int_{D} \left| (f \circ \varphi)'(z) - (f_t \circ \varphi)'(z) \right|^2 (1 - |\phi_\alpha(z)|^2)^\eta \, dm(z) < \varepsilon.
\]

Then we fix \(t, \) by (2.4)
\[
\sup_{\alpha \in D} (\log \frac{2}{1 - |\alpha|^2})^2 \int_{\{|\varphi(z)| > r\}} \left| (f \circ \varphi)'(z) \right|^2 (1 - |\phi_\alpha(z)|^2)^\eta \, dm(z)
\leq 2 \sup_{\alpha \in D} (\log \frac{2}{1 - |\alpha|^2})^2 \int_{\{|\varphi(z)| > r\}} \left| (f_t \circ \varphi)'(z) \right|^2 (1 - |\phi_\alpha(z)|^2)^\eta \, dm(z)
+ 2 \sup_{\alpha \in D} (\log \frac{2}{1 - |\alpha|^2})^2 \int_{\{|\varphi(z)| > r\}} \left| (f \circ \varphi)'(z) - (f_t \circ \varphi)'(z) \right|^2 (1 - |\phi_\alpha(z)|^2)^\eta \, dm(z)
\leq 2 \varepsilon + 2 \|f_t''\|_{H^\infty} \sup_{\alpha \in D} (\log \frac{2}{1 - |\alpha|^2})^2 \int_{\{|\varphi(z)| > r\}} \left| \varphi'(z) \right|^2 (1 - |\phi_\alpha(z)|^2)^\eta \, dm(z)
\leq 4 \varepsilon (1 + \|f_t''\|_{H^\infty}). \tag{2.5}
\]

Having in mind (2.4) and (2.5) we conclude that for each \(\|f\|_{B^p_{\log}} \leq 1 \) and \(\varepsilon > 0, \) there is \(\delta \) depending on \(f, \varepsilon, \) such that for \(r \in [\delta, 1), \)
\[
\sup_{\alpha \in D} (\log \frac{2}{1 - |\alpha|^2})^2 \int_{\{|\varphi(z)| > r\}} \left| (f \circ \varphi)'(z) \right|^2 (1 - |\phi_\alpha(z)|^2)^\eta \, dm(z) < \varepsilon. \tag{2.6}
\]

Since \(C_{\varphi} \) is compact, it maps the unit ball of \(B^p_{\log} \) to a relative compact subset of \(Q^p_{\varphi_{\log}}. \) Thus for each \(\varepsilon > 0, \) there exists a finite collection of functions \(f_1, f_2, \ldots, f_N \) in the unit ball of \(B^p_{\log}, \) such that for each \(\|f\|_{B^p_{\log}} \leq 1 \) there is a \(k \in \{1, 2, \ldots, N\} \) with
\[
\sup_{\alpha \in D} (\log \frac{2}{1 - |\alpha|^2})^2 \int_{D} \left| (f \circ \varphi)'(z) - (f_k \circ \varphi)'(z) \right|^2 (1 - |\phi_\alpha(z)|^2)^\eta \, dm(z) < \varepsilon.
\]

By (2.6), we get that for \(\delta = \max_{1 \leq k \leq N} \delta(f_k, \varepsilon) \) and \(r \in [\delta, 1), \)
\[
\sup_{\alpha \in D} (\log \frac{2}{1 - |\alpha|^2})^2 \int_{\{|\varphi(z)| > r\}} \left| (f_k \circ \varphi)'(z) \right|^2 (1 - |\phi_\alpha(z)|^2)^\eta \, dm(z) < \varepsilon.
\]
Thus we get that
\[
\sup_{\|f\|_{B^p_{\log}} \leq 1} \sup_{\alpha \in D} (\log \frac{2}{1 - |\alpha|^2})^2 \int_{\{|\varphi(z)| > r\}} \left| (f_k \circ \varphi)'(z) \right|^2 (1 - |\phi_\alpha(z)|^2)^\eta \, dm(z) < 2 \varepsilon.
\]

By Lemma 2.2, (2.3) holds.

Conversely, we assume that \(\varphi \in Q^p_{\varphi_{\log}} \) and (2.3) holds. Let \(\{f_n\}_{n \in \mathbb{N}} \) be a sequence of functions in the unit ball of \(B^p_{\log}, \) such that \(f_n \to 0 \) as \(n \to \infty, \) uniformly on the compact subsets of the unit disc.
Let \(r \in (0, 1) \), then
\[
\| f_n \circ \varphi \|^2_{Q_{\log}^q} \\
\leq 2 |f_n(\varphi(0))|^2 \\
+ 2 \sup_{\alpha \in D} (\log \frac{2}{1 - |\alpha|^2})^2 \int_{\{|\varphi(z)| \leq r\}} |(f_n \circ \varphi)'(z)|^2 (1 - |\phi_\alpha(z)|)^q dm(z) \\
+ 2 \sup_{\alpha \in D} (\log \frac{2}{1 - |\alpha|^2})^2 \int_{\{|\varphi(z)| > r\}} |(f_n \circ \varphi)'(z)|^2 (1 - |\phi_\alpha(z)|)^q dm(z) \\
= 2I_1 + 2I_2 + 2I_3.
\]
Since \(f_n \to 0 \) as \(n \to \infty \), uniformly on \(D \), then \(I_1 \to 0 \) as \(n \to \infty \) and for each \(\varepsilon > 0 \) there is \(n_0 \in \mathbb{N} \) such that for each \(n > n_0 \),
\[
I_2 \leq \varepsilon \| \varphi \|^2_{Q_{\log}^q}.
\]
By (2.3), then for every \(n \), that means for every \(n > n_0 \) and for every \(\varepsilon > 0 \), there exists \(r_0 \) such that for every \(r > r_0 \), \(I_3 < \varepsilon \). Thus \(\| C_\varphi(f_n) \|^2_{Q_{\log}^q} \to 0 \) as \(n \to \infty \). \(\square \)

Acknowledgements. This work was partially supported by the NSF of China (No.10671147, 10401027), the Key Project of Chinese Ministry of Education (No.208081) and the Natural Science Foundation of Henan (No.2008B110006).

References

1 College of Mathematics and Information Science, Henan Normal Univ., Xinxiang 453007, P.R.China.
E-mail address: tslhy2001@yahoo.com.cn

2 School of Mathematics and Statistics, Wuhan Univ., Wuhan 430072, P.R.China.
E-mail address: pdliu@whu.edu.cn