ON THE RADICAL BANACH ALGEBRAS RELATED TO SEMIGROUP ALGEBRAS

ALI GHAFFARI

Abstract. Let S be a compactly cancellative foundation semigroup with identity. It is well-known that $L^\infty_0(S; M_a(S))^*$ can be equipped with a multiplication that extends the original multiplication on $M_a(S)$ and makes $L^\infty_0(S; M_a(S))^*$ a Banach algebra. In this paper, among the other things, it is shown that if S is a nondiscrete compactly cancellative foundation semigroup with an identity, then the radical of $L^\infty_0(S; M_a(S))^*$ is infinite-dimensional.

1. Introduction and Notations

Let S be a locally compact, Hausdorff topological semigroup with identity e. Let $M(S)$ be the space of all complex Borel measures on S. Then $\tilde{M}(S)$ is the continuous dual of $C_0(S)$, the space of all continuous functions on S vanishing at infinity. The set of all measures $\mu \in M(S)$ for which both the mappings $x \mapsto \delta_x * |\mu|$ and $x \mapsto |\mu| * \delta_x$ are weakly continuous will denoted by $M_a(S)$, where δ_x denotes the Dirac measure at x. A topological semigroup S is called a foundation semigroup if S coincides with the closure of $\cup\{\text{supp}(\mu); \mu \in M_a(S)\}$. If S is a foundation topological semigroup, then $M_a(S)$ is a closed L-ideal of $M(S)$ called the semigroup algebra S [4]. More information on this matter can be found in [1], [4] and [5].

A complex-valued function f on S is said to be $M_a(S)$-measurable if it is μ-measurable for all $\mu \in M_a(S)$. Denote by $L^\infty(S; M_a(S))$ the space of all bounded $M_a(S)$-measurable functions on S formed by identifying functions that agree μ-almost every where for all $\mu \in M_a(S)$. Observe that $L^\infty(S; M_a(S))$ with complex cojugation as involution, the pointwise operations and the norm $\|\cdot\|$ is a commutative C^*-algebra.

It is well-known from [11] that if S is a foundation semigroup with an identity, then $L^\infty(S; M_a(S))$ can be identified with $M_a(S)^*$. We say that a function $f \in L^\infty(S; M_a(S))$ vanishes at infinity if for each $\epsilon > 0$, there is a compact subset K of S for which $\|f \chi_{S\setminus K}\| < \epsilon$, that is, for

\text{2000 Mathematics Subject Classification.} Primary: 43A05; Secondary: 46H10.

\text{Key words and phrases.} Compactly cancellative semigroup, foundation semigroup, right ideal, radical, semigroup algebra.
each \(\mu \in M_a(S) \), \(|f(x)| < \epsilon \) for \(\mu \)-almost all \(x \in S \setminus K \) (\(\mu \in M_a(S) \)).

Let \(\mathcal{L}^0_S(S; M_a(S)) \) be the \(C^* \)-algebra of all \(M_a(S) \)-measurable functions \(f \) on \(S \) such that \(f \) vanishes at infinity. Finally, let us recall that \(S \) is said to be compactly cancellative if \(C^{-1}D \) and \(CD^{-1} \) are compact subsets of \(S \) for all compact subsets \(C \) and \(D \) of \(S \) [8]. Compactly cancellative foundation semigroups form a large class of locally compact semigroups which includes locally compact groups as elementary examples. As another example, consider the semigroup

\[
S = \{0\} \cup \left\{ \frac{1}{n} ; \ n \geq 1 \right\} \cup \left\{ \frac{1}{2} + \frac{1}{n} ; \ n \geq 1 \right\}
\]

and set

\[
\mathcal{B} = \left\{ \{x\}; \ x \neq 0 \right\} \cup \left\{ \{0\} \cup \left\{ \frac{1}{n} ; \ n \geq k \right\} ; \ k \geq 1 \right\}.
\]

Then \(S \) with \(\mathcal{B} \) as a base of the topology and the operation \(xy = \max\{x, y\} \) defines a compactly cancellative foundation semigroup with identity. For an extensive study of \(\mathcal{L}^\infty_S(S; M_a(S)) \) in the compactly cancellative foundation semigroup case of \(S \), see [7], [8] and [9].

2. Main results

Let \(S \) be a compactly cancellative foundation semigroup with identity. Given any \(\mu \in M_a(S) \) and \(f \in \mathcal{L}^\infty_S(S; M_a(S)) \), define the complex-valued functions \(f \mu \) and \(\mu f \) on \(S \) by \(f \mu(x) = \mu(L_x f) \) and \(\mu f(x) = \mu(R_x f) \), where \(L_x f(y) = f(xy) \) and \(R_x f(y) = f(yx) \) for all \(x, y \in S \). It is known that \(f \mu \) and \(\mu f \) are in \(\mathcal{L}^\infty_S(S; M_a(S)) \) with \(\| f \mu \| \leq \| f \| \| \mu \| \) and \(\| \mu f \| \leq \| f \| \| \mu \| \). For \(f \in \mathcal{L}^\infty_S(S; M_a(S)) \) and \(F \in \mathcal{L}^\infty_S(S; M_a(S))^* \) we define \(Ff \in \mathcal{L}^\infty_S(S; M_a(S)) \) as a linear functional on \(M_a(S) \) by \((Ff, \mu) = \langle F, \mu f \rangle \), see Proposition 3.2 in [8]. We define the Arens product of \(G \) and \(F \), denoted by \(G.F \) to be the functional defined by \((G.F, f) = \langle G, Ff \rangle \) for \(f \in \mathcal{L}^\infty_S(S; M_a(S)) \). Equipped with this multiplication, \(\mathcal{L}^\infty_S(S; M_a(S))^* \) is a Banach algebra and this multiplication agrees on \(M_a(S) \) with the given product [8].

Theorem 1. Let \(S \) be a compactly cancellative foundation semigroup with an identity. Then \(C_0(S)^\perp \) is a closed two-sided ideal of \(\mathcal{L}^\infty_S(S; M_a(S))^* \) and \(\mathcal{L}^\infty_S(S; M_a(S))^*/C_0(S)^\perp \) is isometrically isomorphic as an algebra to \(M(S) \).

Proof. By Theorem 3.6 in [9], \(C_0(S)^\perp \) is a weak* closed two-sided ideal of \(\mathcal{L}^\infty_S(S; M_a(S))^* \), and so \(C_0(S)^\perp \) is a norm closed ideal of \(\mathcal{L}^\infty_S(S; M_a(S))^* \). From Banach space theory, there is an isometric linear space isometric between \(\mathcal{L}^\infty_S(S; M_a(S))^*/C_0(S)^\perp \) and \(C_0(S)^\perp \) [10]. In addition, there is an isometric linear space isomorphism between \(C_0(S)^* \) and \(M(S) \). The
composite isometric isomorphism T is defined by $T(F + C_0(S)^\perp) = \mu$, where $\langle F, f \rangle = \int f(x)d\mu(x)$ for all $f \in C_0(S)$. It remains for us to see that T is an algebra isomorphism when $L_0^\infty(S; M_a(S))^*/C_0(S)^\perp$ is given the quotient space multiplication induced from the multiplication in $L_0^\infty(S; M_a(S))^*$ and multiplication in $M(S)$ is convolution. For $F_1, F_2 \in L_0^\infty(S; M_a(S))^*$, we put $\mu_1 = T(F_1 + C_0(S)^\perp)$ and $\mu_2 = T(F_2 + C_0(S)^\perp)$. Let $\mu_3 = T(F_1, F_2 + C_0(S)^\perp)$. Then for each $f \in C_0(S)$, $F_2 f \in C_0(S)$. Indeed, any $f \in C_0(S)$ can be written in the form $f = \mu oh$ with $\mu \in M_a(S)$ and $h \in L_0^\infty(S; M_a(S))$, see Proposition 2.6 in [8]. On the other hand, $F_2 f = F_2 \mu oh = \mu F_2 h$. By Proposition 3.1 in [9], $L_0^\infty(S; M_a(S))$ is a left introverted subspace of $L_0^\infty(S; M_a(S))$. This shows that $F_2 h \in L_0^\infty(S; M_a(S))$. Hence $F_2 f = \mu F_2 h \in C_0(S)$ again by Proposition 2.6 in [8]. It is easy to see that $F_2 f(x) = \langle F_2, L_x f \rangle$ for all $x \in S$. Now, let $f \in C_0(S)$. We have

$$
\int f(z)d\mu_3(z) = \langle F_1, F_2, f \rangle = \langle F_1, F_2 f \rangle = \int \langle F_2, L_x f \rangle d\mu_1(x) = \int \int f(xy)d\mu_1(x)d\mu_2(y) = \int f(z)d\mu_1 \ast \mu_2(z).
$$

Since this holds for all $f \in C_0(S)$, we conclude that $\mu_3 = \mu_1 \ast \mu_2$ and so T defines an isometric algebra isomorphism from $L_0^\infty(S; M_a(S))^*/C_0(S)^\perp$ onto $M(S)$.

Theorem 2. Let S be a nondiscrete and compactly cancellative foundation semigroup with an identity. Then $L_0^\infty(S; M_a(S))^*$ is not semisimple and is not commutative.

Proof. Since S is not discrete, it is an immediate consequence of the Hahn-Banach theorem that $C_0(S)^\perp \neq \{0\}$. Now if $F \in L_0^\infty(S; M_a(S))^*$, let F' be an extension of F to $L^\infty(S; M_a(S))^*$ such that $\|F\| = \|F'\|$. By [11], $L^\infty(S; M_a(S))$ can be identified with $M_a(S)^*$. Since $M_a(S)$ is weak* dense in $M_a(S)^{**}$ [10], so that we can find a net $\{\mu_\alpha\} \in M_a(S)$ such that $\mu_\alpha \rightarrow F'$ in the weak* topology of $M_a(S)^{**}$. We conclude that $\mu_\alpha \rightarrow F$ in the weak* topology of $L_0^\infty(S; M_a(S))^*$. For $G \in C_0(S)^\perp$ and $f \in C_0(S)$, we have

$$
\langle F, G, f \rangle = \langle F, Gf \rangle = \lim_\alpha (\mu_\alpha, Gf) = \lim_\alpha (G, \mu_\alpha of) = 0,
$$

since $\mu_\alpha of \in C_0(S)$ for all α, see Proposition 2.1 in [8]. This shows that $L_0^\infty(S; M_a(S))^* C_0(S)^\perp = \{0\}$. By Proposition 1.5.6 in [3], we have $0 \neq C_0(S)^\perp \subseteq \text{rad}(L_0^\infty(S; M_a(S))^*)$ and consequently $L_0^\infty(S; M_a(S))^*$ is not semisimple.

It remains for us to see that $L_0^\infty(S; M_a(S))^*$ is not commutative. Suppose that $L_0^\infty(S; M_a(S))^*$ is commutative. Let $F \in L_0^\infty(S; M_a(S))^*$.
Clearly, the map \(G \mapsto F.G = G.F \) is weak* weak* continuous on \(L_0^\infty(S; M_a(S))^* \). This says that \(L_0^\infty(S; M_a(S))^* \) is Arens regular. By Theorem 4.3 in [8], \(S \) is discrete which is contradiction. \(\square \)

Corollary 1. Let \(S \) be a nondiscrete compactly cancellative foundation semigroup with an identity. Then the radical of \(L_0^\infty(S; M_a(S))^* \) is infinite-dimensional.

Proof. For any integer \(n \), there are \(n \) mutually disjoint relatively compact open subsets \(U_1, \ldots, U_n \) in \(S \), whose union is not all of \(S \). For \(1 \leq i \leq n \), \(1_{U_i} \) denotes the characteristic function of \(U_i \). Since \(1_{U_i} \) is not in the closure of \(C_0(S) \), there exists \(F_i \in L_0^\infty(S; M_a(S))^* \) such that \(\langle F_i, 1_{U_i} \rangle \neq 0 \) for every \(f \in C_0(S) \). For \(1 \leq i \leq n \), \(\{1_{U_1}, \ldots, 1_{U_i}\} \oplus C_0(S) \) is a closed subspace of \(L_0^\infty(S; M_a(S)) \), see Theorem 1.42 in [10]. Theorem 3.5 in [10] furnishes then a \(F_{i+1} \in C_0(S)^\perp \) such that \(\langle F_{i+1}, 1_{U_{i+1}} \rangle \neq 0 \) and \(\langle F_{i+1}, 1_{U_j} \rangle = 0 \) for all \(1 \leq j \leq i \). Clearly \(\{F_1, \ldots, F_n\} \) is a linearly independent subset of \(C_0(S)^\perp \). By Theorem 2 and its proof, the radical \(L_0^\infty(S; M_a(S))^* \) is an infinite-dimensional subspace of \(L_0^\infty(S; M_a(S))^* \). \(\square \)

By a semicharacter on \(S \) we mean a non-zero function \(\chi \) in \(B(S) \) such that \(\chi(xy) = \chi(x)\chi(y) \) for all \(x, y \in S \). We denote the set of all continuous semicharacters on \(S \) by \(\hat{S} \). Let \(A \) be a closed subalgebra of \(M(S) \). By a multiplicative linear functional on \(A \) we mean a non-zero functional \(h \in A^* \) such that \(\langle h, \mu * \nu \rangle = \langle h, \mu \rangle \langle h, \nu \rangle \) for all \(\mu, \nu \in A \). The set of all multiplicative linear functionals on \(A \) is denoted by \(\hat{A} \). There exists a one-to-one mapping \(\tau \) of \(\hat{S} \) onto \(M(S) \) such that \(\hat{\chi}(\mu) = \int \chi(x)d\mu(x) \) for all \(\hat{\chi} \in M_a(S) \) where \(\tau(\chi) = \hat{\chi} \) is in \(\hat{S} \), see Theorem 5.3 in [4].

Example 1. Let \(S \) be the additive semigroup \(\mathbb{Z}^+ \) of all nonnegative integer numbers. Then \(S \) with the discrete topology is a compactly cancellative foundation semigroup with identity. A character \(\chi \) of \(\mathbb{Z}^+ \) is plainly determined by the number \(\chi(1) \), since \(\chi(n) = \chi(1)^n (n \in \mathbb{Z}^+) \), and \(\chi(1) \) can be any number in \(\mathbb{T} \). Then clearly \(\hat{S} \) separates the points of \(S \).

Let \(S \) be a compactly cancellative foundation semigroup with an identity. A function \(f \in L_0^\infty(S; M_a(S)) \) is said to be almost periodic if the set \(\{L_x f \mid x \in S\} \) of left translates of \(f \) is norm relatively compact in \(L_0^\infty(S; M_a(S)) \). The set of all almost periodic functions on \(S \) is denoted by \(AP(S) \).
Theorem 3. Let \mathcal{S} be a compactly cancellative foundation semigroup with an identity which is not compact. Further, suppose that \mathcal{S} is commutative and $\hat{\mathcal{S}}$ separates the points of \mathcal{S}. Then

$$AP(\mathcal{S})^\perp \not\subseteq \text{rad}(L^\infty_0(\mathcal{S}; M_a(\mathcal{S}))^*) .$$

Proof. Assume that $AP(\mathcal{S})^\perp \subseteq \text{rad}(L^\infty_0(\mathcal{S}; M_a(\mathcal{S}))^*)$. By Theorem 5.9 in [4], $M(\mathcal{S})$ is semisimple. It follows from Theorem 1 and Theorem 1.5.21 in [3] that $\text{rad}(L^\infty_0(\mathcal{S}; M_a(\mathcal{S}))^*) \subseteq C_0(\mathcal{S})^\perp$. We conclude that $AP(\mathcal{S})^\perp \subseteq C_0(\mathcal{S})^\perp$, and consequently $C_0(\mathcal{S}) \subseteq AP(\mathcal{S})$. However, since \mathcal{S} is not compact, $C_0(\mathcal{S}) \cap AP(\mathcal{S}) = \{0\}$ is a consequence of the theory of almost periodic functions on semigroups [2]. \hfill \Box

Remark 1. (i): Let \mathcal{S} be a compactly cancellative foundation semigroup with an identity. By Theorem 3.3 in [9], $M_a(\mathcal{S})$ is a closed ideal in $L^\infty_0(\mathcal{S}; M_a(\mathcal{S}))^*$. Further, suppose that \mathcal{S} is commutative and $\hat{\mathcal{S}}$ separates the points of \mathcal{S}. By Theorem 5.9 in [4], $M_a(\mathcal{S})$ is semisimple. Since $\text{rad}(M_a(\mathcal{S})) = M_a(\mathcal{S}) \cap \text{rad}(L^\infty_0(\mathcal{S}; M_a(\mathcal{S}))^*)$, see Theorem 1.5.4 in [3], we conclude that $M_a(\mathcal{S}) \cap \text{rad}(L^\infty_0(\mathcal{S}; M_a(\mathcal{S}))^*) = \{0\}$. Now, let \mathcal{S} be a compact abelian group. Then $\hat{\mathcal{S}}$ separates the points of \mathcal{S} [6]. Consequently, if \mathcal{S} is a compact abelian group, then

$$\text{rad}(L^1(\mathcal{S})^{**}) \cap L^1(\mathcal{S}) = \{0\} .$$

(ii): Let \mathcal{S} be a nondiscrete and compactly cancellative foundation semigroup with an identity. By Theorem 2 and its proof, it is easy to see that

$$\text{rad}(L^\infty_0(\mathcal{S}; M_a(\mathcal{S}))^*) = \{F; L^\infty_0(\mathcal{S}; M_a(\mathcal{S}))^* F = \{0\}\} .$$

(iii) Let \mathcal{S} be a compact foundation semigroup with identity. Let $f \in M_a(\mathcal{S})$, $\mu \in M_a(\mathcal{S})$. Clearly $\mu f \in M_a(\mathcal{S})$. It follows that $L^\infty_0(\mathcal{S}; M_a(\mathcal{S}))^* M_a(\mathcal{S})^\perp = \{0\}$, and so $M_a(\mathcal{S})^\perp \subseteq \text{rad}(L^\infty_0(\mathcal{S}; M_a(\mathcal{S}))^*)$. But $L^\infty_0(\mathcal{S}; M_a(\mathcal{S}))^*/M_a(\mathcal{S})^\perp$ is semisimple. We conclude that

$$M_a(\mathcal{S})^\perp = \text{rad}(L^\infty_0(\mathcal{S}; M_a(\mathcal{S}))^*) .$$

Theorem 4. Let \mathcal{S} be a compactly cancellative foundation semigroup with an identity. Further, suppose that $M_a(\mathcal{S})$ is a semisimple Banach algebra. Then $L^\infty_0(\mathcal{S}; M_a(\mathcal{S}))^*/\text{rad}(L^\infty_0(\mathcal{S}; M_a(\mathcal{S}))^*) \cong M_a(\mathcal{S})$ if and only if \mathcal{S} is a discrete semigroup.

Proof. Let \mathcal{S} be a discrete semigroup. By Proposition 3.4 in [8], we have $L^\infty_0(\mathcal{S}; M_a(\mathcal{S}))^* \cong M_a(\mathcal{S})$. It follows that

$$L^\infty_0(\mathcal{S}; M_a(\mathcal{S}))^*/\text{rad}(L^\infty_0(\mathcal{S}; M_a(\mathcal{S}))^*) \cong M_a(\mathcal{S}) .$$
Suppose \(S \) is not discrete. Let \(U \) denote the family of relatively compact neighbourhoods of \(e \) and regard \(U \) as a directed set in the usual way: \(U \succeq V \) if \(U \subseteq V \). Since \(S \) is a foundation semigroup, we can find a probability measure \(e_U \in M_a(S) \) such that \(e_U(U) = 1 \) for all \(U \in U \). It is easy to see that \(\{e_U\}_{U \in U} \) is a bounded approximate identity for \(M_a(S) \) \[4\]. By the Banach-Alaoglu’s theorem, without loss of generality, we may assume that \(e_a \to E \) in the weak* topology of \(L_0^\infty(S; M_a(S))^* \). It is known that \(E \) is a right identity for \(L_0^\infty(S; M_a(S))^* \) \[3\]. We conclude that \(E.F - F \in rad(L_0^\infty(S; M_a(S))^*) \) for all \(F \in L_0^\infty(S; M_a(S))^* \). Thus \(E + rad(L_0^\infty(S; M_a(S))^*) \) is an identity for \(L_0^\infty(S; M_a(S))^*/rad(L_0^\infty(S; M_a(S))^*) \). By assumption, \(M_a(S) \) has an identity, say \(\mu \). Since \(\{e_U\}_{U \in U} \) is a bounded approximate identity for \(M_a(S) \), \(e_U = e_U * \mu \to \mu \) in the norm topology. It is not hard to see that \(e_U \to \delta_e \) in the \(\sigma(M(S), C_0(S)) \) topology of \(M(S) \). It follows that \(\delta_e = \mu \in M_a(S) \). This is a contradiction, see Exercise 3.10 in \[4\].

Let \(S \) be a locally compact foundation semigroup with an identity. If \(i : C_0(S) \to L_0^\infty(S; M_a(S)) \) is the inclusion map, then the restriction \(i^*(F) \) of \(F \in L_0^\infty(S; M_a(S))^* \) to the subspace \(C_0(S) \) of \(L_0^\infty(S; M_a(S))^* \) determines a quotient mapping \(i^* : L_0^\infty(S; M_a(S))^* \to M(S) \). Notice that \(i^* \) is the identity on \(M_a(S) \).

Theorem 5. Let \(S \) be a compactly cancellative foundation semigroup with identity. Then \(S \) is compact if there is a finite-dimensional right ideal \(I \) in \(L_0^\infty(S; M_a(S))^* \) such that \(i^*(I) \cap M(S) \neq \{0\} \).

Proof. Suppose that \(S \) is non-compact. Assume towards a contradiction that \(I \) is a finite-dimensional right ideal in \(L_0^\infty(S; M_a(S))^* \) such that \(i^*(I) \cap M(S) \neq \{0\} \). If \(x \in S \), let \(G \) be an extension of \(\delta_x \) (regarded as a functional on \(C_0(S) \)) to \(L_0^\infty(S; M_a(S)) \) such that \(\|G\| = \|\delta_x\| \) \[10\]. Then, for every \(F \in I \), we have \(F \delta_x = F i^*(G) = F.G \in I \). This shows that \(I \) is a right translation invariant subspace of \(L_0^\infty(S; M_a(S))^* \). Take \(F \in I \) such that \(i^*(F) \neq 0 \) and \(\|i^*(F)\| = 1 \). Take \(\nu \in M_a(S) \) such that \(i^*(F) * \nu \neq 0 \). Otherwise, \(i^*(F) = 0 \). Thus, without loss of generality, we may assume that \(i^*(F) \in M_a(S) \). Since \(I \) is a finite-dimensional subspace of \(L_0^\infty(S; M_a(S))^* \), \(\mathcal{X} := \{i^*(F) * \delta_x; \ x \in S\} \) is finite-dimensional. Let \(\dim(\mathcal{X}) = n \). Let \(i^*(F) * \delta_{x_1}, ..., i^*(F) * \delta_{x_n} \) generate \(\mathcal{X} \) as a subspace of \(M_a(S) \). It is evident that the mapping \(\varphi : \mathbb{C}^n \to \mathcal{X} \) defined by \(\varphi(c_1, ..., c_n) = \sum_{j=1}^n c_j i^*(F) * \delta_{x_j} \) is a homeomorphism \[10\]. Hence, there is a constant \(c > 0 \) such that each \(\mu \in \mathcal{X} \) can be written as \(\sum_{j=1}^n c_j i^*(F) * \delta_{x_j} \) with \(c_1, ..., c_n \in \mathbb{C} \) and \(\sum_{j=1}^n |c_j| \leq c \|\mu\| \). Choose \(\epsilon \in (0, 1) \) with \(\epsilon(1 + c) < 1 \). Let \(K \) be a
compact subset of S such that $|i^*(F)|(K) > 1 - \epsilon$. Since the semigroup is non-compact, there exists $x \in S$ such that Kx is disjoint from $Kx_1 \cup \ldots \cup Kx_n$. Clearly

$$1 - \epsilon < |i^*(F) \ast \delta_x|(Kx) \leq \sum_{j=1}^{n} |\alpha_j||i^*(F) \ast \delta_{x_j}|(Kx) < c\epsilon.$$

We conclude that $\epsilon(1 + c) > 1$ which is contradiction. \hfill \square

Theorem 6. Let S be a compactly cancellative foundation semigroup with an identity. Let I be a right ideal of $M_a(S)$ of dimension $n \geq 1$. Then $\mathcal{I}rad(L_0^\infty(S; M_a(S))^*) \subset I$.

Proof. Let $F \in rad(L_0^\infty(S; M_a(S))^*)$, $\mu \in I$ and $\{e_{\alpha}\}_{\alpha \in I}$ be a bounded approximate identity for $M_a(S)$ [4]. For $\alpha \in J$ we have $e_{\alpha} \cdot F \in M_a(S)$, since $M_a(S)$ is an ideal in $L_0^\infty(S; M_a(S))^*$ (see Proposition 3.3 in [8]). Since I is finite-dimensional, I is a closed right ideal in $M_a(S)$, see Theorem 1.21 in [10]. Clearly $\|\mu * e_{\alpha} \cdot F - \mu \cdot F\| \to 0$ and $\mu * e_{\alpha} \cdot F \in I$ for all $\alpha \in J$. We conclude that $\mu \cdot F \in I$ and so $\mathcal{I}rad(L_0^\infty(S; M_a(S))^*) \subset I$.

We assume that a contrario that $\mathcal{I} = \mathcal{I}$$L_0^\infty(S; M_a(S))^*$. If I is cyclic, say $\mathcal{I} = \mu M_a(S)$, then

$$\mathcal{I} = \mathcal{I}rad(L_0^\infty(S; M_a(S))^*) = \mu rad(L_0^\infty(S; M_a(S))^*).$$

We must have $\mu = \mu \cdot F$ for some $F \in rad(L_0^\infty(S; M_a(S))^*)$. By Corollary 1.5.3 in [3], we have $\mu = 0$ and thus $\mathcal{I} = 0$ which is a contradiction. Now suppose that $\mathcal{I} = \mu_1 M_a(S) + \ldots + \mu_n M_a(S)$, and that the Theorem holds for right $L_0^\infty(S; M_a(S))^*$-modules with $n - 1$ generators. Since $\mathcal{I}/\mu_1 M_a(S)$ has $n - 1$ generators, and since

$$\mathcal{I}/\mu_1 M_a(S)rad(L_0^\infty(S; M_a(S))^*) = \mathcal{I}/\mu_1 M_a(S),$$

it follows that $\mathcal{I}/\mu_1 M_a(S) = \{0\}$. This shows that $\mathcal{I} = \mu_1 M_a(S)$. Therefore, by cyclic case, $\mathcal{I} = 0$. This is contradiction. \hfill \square

References

Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran

E-mail address: aghaffari@semnan.ac.ir