On quasi pseudo-GP-injective rings and modules

Truong Cong Quynh* and Nguyen Van Sanh†

*Dept. of Mathematics, Danang University
459 Ton Duc Thang, DaNang city, Vietnam
tcquynh@dce.udn.vn

† Dept. of Math., Faculty of Science, Mahidol University
Center of Excellence in Mathematics, Bangkok 10400, Thailand
nguyen.san@mahidol.ac.th

Abstract

In 2010, Sanh et al. introduced a class of pseudo-M-gp-injective modules, following this, a right \(R \)-module \(N \) is called pseudo-M-gp-injective if for any homomorphism \(0 \neq \alpha \in \text{End}(M) \), there exists \(a \in \mathbb{N} \) such that \(\alpha^a \neq 0 \) and every monomorphism from \(\alpha^n(M) \) to \(N \) can be extended to a homomorphism from \(M \) to \(N \). In this paper, we give more properties of pseudo-gp-injective modules.

Mathematics Subject Classification (2010): 16D40, 16D50, 16L60.
Keywords: pseudo-M-p-injective, quasi-pseudo-p-injective, pseudo-M-gp-injective, quasi-pseudo-gp-injective.

1 Introduction

Throughout the paper, \(R \) is an associative ring with identity \(1 \neq 0 \) and all modules are unitary \(R \)-modules. We write \(M_R \) (resp., \(_RM \)) to indicate that \(M \) is a right (resp., left) \(R \)-module. Let \(J \) (resp., \(Z_r, S_r \)) be the Jacobson radical (resp. the right singular ideal, the right socle) of \(R \) and \(E(M_R) \) the injective hull of \(M_R \). If \(X \) is a subset of \(R \), the right (resp. left) annihilator of \(X \) in \(R \) is denoted by \(r_R(X) \) (resp., \(l_R(X) \)) or simply \(r(X) \) (resp. \(l(X) \)). If \(N \) is a submodule of \(M \) (resp., proper submodule) we write \(N \leq M \) (resp. \(N < M \)). Moreover, we write \(N \leq^e M, N \ll M, N \leq^0 M \) and \(N \leq^{max} M \) to indicate that \(N \) is an essential
submodule, a small submodule, a direct summand and a maximal submodule of M, respectively. A module M is called uniform if $M \neq 0$ and every non-zero submodule of M is essential in M. A module M is finite dimensional (or has finite rank) if $E(M)$ is a finite direct sum of indecomposable submodules. A right R-module N is called M-generated if there exists an epimorphism $M^{(1)} \to N$ for some index set I. If the set I is finite, then N is called finitely M-generated. In particular, N is called M-cyclic if it is isomorphic to M/L for some submodule L of M. Hence, any M-cyclic submodule X of M can be considered as the image of an endomorphism of M.

Following Nicholson, Yousif (see [15]), a ring R is called right P-injective if every R-homomorphism from a principal right ideal of R to R is a left multiplication. They studied some properties of these rings and their applications. In [18], Sanh et al. transferred this notion to modules. A right R-module N is called M-principally injective (briefly, M-p-injective) if every homomorphism from an M-cyclic submodule of M to N can be extended to one from M to N. A right R-module M is called quasi-principally injective (briefly, quasi p-injective) if M is M-principally injective. Quasi-p-injective modules were defined first by Wisbauer in [24] under the terminology of semi-injective modules, but there are no details. Following [13], a module M is called principally quasi-injective if every homomorphism from a cyclic submodule of M to M can be extended to an endomorphism of M. Since an M-cyclic submodule of M needs not to be cyclic, the notion of quasi-p-injective modules is different from that was defined in [13].

As a generalization of injective modules, the class of pseudo injective modules have been studied by Singh and Jain in 1967 [11], Teply (1975)[22], Jain and Singh (1975)[11], Wakamatsu (1979)[23]. Recently, Hai Quang Dinh ([6]) introduced the notion of pseudo M-injective modules (the original terminology is M-pseudo-injective). A right R-module N is called pseudo M-injective if for every submodule A of M, any monomorphism $\alpha : A \to N$ can be extended to a homomorphism $M \to N$. A right R-module N is called pseudo-injective if N is pseudo-N-injective.

In 2009, Sanh et al., introduced the notion of pseudo-M-p-injective modules and studied the endomorphism rings of quasi pseudo-p-injective modules. A right R-module N is called pseudo-M-p-injective if every monomorphism from an M-cyclic submodule of M to N can be extended to a homomorphism from M to N, or equivalently, for any homomorphism $\alpha \in \text{End}(M)$, every monomorphism from $\alpha(M)$ to N can be extended to a homomorphism from M to N (see [16]). A module M is called quasi pseudo-p-injective if M is pseudo-M-p-injective. A ring R is called right pseudo P-injective if R_R is quasi pseudo-p-injective. Following [8], a right R-module M is said to be generalized principally injective (briefly gp-injective), if for any $0 \in x \in R$, there exists an $n \in \mathbb{N}$ such that $x^n \neq 0$ and any R-homomorphism from $x^n R$ into M can be extended to one from R_R to M. A ring R is called right GP-injective if R_R is GP-injective. The concept of
GP-injective modules was introduced in [12] to study the class of von Neumann regular rings, V-rings, self-injective rings and their generalizations. In [2], Chen et al. studied some properties of GP-injective rings. In particular, they gave some characterizations of GP-injective ring with special chain conditions. In 2009, Sanh et al. introduced the notion of pseudo-M-gp-injective modules. A right R-module N is called for pseudo-M-gp-injective if for each homomorphism $0 \neq \alpha \in \text{End}(M)$, there exists $n \in \mathbb{N}$ such that $\alpha^n \neq 0$ and every monomorphism from $\alpha^n(M)$ to N can be extended to a homomorphism from M to N ([17]). A module M is called quasi-pseudo-gp-injective if M is pseudo-M-gp-injective. A ring R is called right pseudo GP-injective if R_R is quasi-pseudo-gp-injective. In this paper, we continue studying more properties of pseudo-p-injective modules, pseudo-gp-injective modules and the endomorphism rings of pseudo-p-injective modules.

2 On pseudo-M-gp-injective

Firstly, we give a new characterization of pseudo-M-gp-injective modules.

Theorem 2.1 Let M, N be right R-modules. Then following conditions are equivalent:

1. N is pseudo-M-gp-injective.
2. For each $0 \neq s \in \text{End}(M)$, there exists $n \in \mathbb{N}$ such that $s^n \neq 0$ and
 \[\{ f \in \text{Hom}(M, N) | \text{Ker} f = \text{Ker}s^n \} \subseteq \text{Hom}(M, N)s^n. \]
3. For each $0 \neq s \in \text{End}(M)$, there exists $n \in \mathbb{N}$ such that $s^n \neq 0$ and
 \[\{ f \in \text{Hom}(M, N) | \text{Ker} f = \text{Ker}s^n \} = \{ f \in \text{Hom}(M, N) | \text{Ker} f \cap \text{Im} s^n = 0 \} s^n. \]

Proof. $(1) \Rightarrow (2)$. Suppose that $0 \neq s \in \text{End}(M)$. Since N is pseudo-M-gp-injective, there exists $n \in \mathbb{N}$ such that $s^n \neq 0$ and every monomorphism from $s^n(M)$ to N can be extended to a homomorphism from M to N. Let $f \in \text{Hom}(M, N)$ such that $\text{Ker} f = \text{Ker}s^n$. We consider homomorphism
 \[\varphi : s^n(M) \rightarrow N \text{ via } \varphi(s^n(m)) = f(m), \forall m \in M. \]
It is easy to see that φ is a monomorphism. By our assumption, there exists a homomorphism $h : M \rightarrow N$ such that $hu = \varphi$, where ι is the inclusion map from $s^n(M) \rightarrow M$, which implies that $f = hs^n \in \text{Hom}(M, N)s^n$.

$(2) \Rightarrow (3)$. It is clear that
 \[\{ f \in \text{Hom}(M, N) | \text{Ker} f \cap \text{Im} s^n = 0 \} s^n \subseteq \{ f \in \text{Hom}(M, N) | \text{Ker} f = \text{Ker}s^n \}. \]
Let \(g \in \text{Hom}(M, N) \) such that \(\text{Ker}g = \text{Kers}^n \). Then by (2), there exists a homomorphism \(h : M \to N \) such that \(g = hs^n \). It follows that \(\text{Ker}h \cap \text{Im}s^n = 0 \). Hence, \(g \in \{ f \in \text{Hom}(M, N) \mid \text{Ker}f \cap \text{Im}s^n = 0 \} s^n \).

(3) \(\Rightarrow \) (1). For each \(0 \neq s \in \text{End}(M) \), by (3), there exists \(n \in \mathbb{N} \) such that \(s^n \neq 0 \) and

\[
\{ f \in \text{Hom}(M, N) \mid \text{Ker}f = \text{Kers}^n \} = \{ f \in \text{Hom}(M, N) \mid \text{Ker}f \cap \text{Im}s^n = 0 \} s^n.
\]

Assume that \(\phi : s^n(M) \to N \) is a monomorphism. Then \(\text{Ker}(\phi s^n) = \text{Kers}^n \). Hence there is \(h \in \text{Hom}(M, N) \) such that \(\phi s^n = hs^n \). It gives \(h\iota = \phi \), where \(\iota \) is the inclusion map, proving that \(N \) is pseudo-\(M \)-gp-injective. \(\square \)

From the above theorem, we get some characterizations of quasi-pseudo-gp-injective modules.

Corollary 2.2 Let \(M \) be right \(R \)-module and \(S = \text{End}(M) \). The following conditions are equivalent:

1. \(M \) is quasi-pseudo-gp-injective;
2. For each \(0 \neq s \in S \), there exists \(n \in \mathbb{N} \) such that \(s^n \neq 0 \) and
 \[
 \{ f \in S \mid \text{Ker}f = \text{Kers}^n \} \subseteq Ss^n;
 \]
3. For each \(0 \neq s \in S \), there exists \(n \in \mathbb{N} \) such that \(s^n \neq 0 \) and
 \[
 \{ f \in S \mid \text{Ker}f = \text{Kers}^n \} = \{ f \in S \mid \text{Ker}f \cap \text{Im}s^n = 0 \} s^n.
 \]

Corollary 2.3 Let \(M, N \) be right \(R \)-modules. The following conditions are equivalent:

1. \(N \) is pseudo-\(M \)-p-injective;
2. For each \(s \in \text{End}(M) \),
 \[
 \{ f \in \text{Hom}(M, N) \mid \text{Ker}f = \text{Kers} \} \subseteq \text{Hom}(M, N)s;
 \]
3. For each \(s \in \text{End}(M) \),
 \[
 \{ f \in \text{Hom}(M, N) \mid \text{Ker}f = \text{Kers} \} = \{ f \in \text{Hom}(M, N) \mid \text{Ker}f \cap \text{Im}s = 0 \} s.
 \]

Proposition 2.4 Let \(N \) be pseudo-\(M \)-p-injective. Then for any elements \(s, \alpha \in \text{End}(M) \), we have:

\[
\{ \beta \in \text{Hom}(M, N) \mid \text{Ker} \beta \cap \text{Im}s = \text{Ker} \alpha \cap \text{Im}s \} =
\{ \gamma \in \text{Hom}(M, N) \mid \text{Ker} \gamma \cap \text{Im}(\alpha s) = 0 \} \alpha + \{ \delta \in \text{Hom}(M, N) \mid \delta s = 0 \}.
\]
Proof. Let
\[\mathcal{A} = \{ \beta \in \text{Hom}(M, N) | \text{Ker} \beta \cap \text{Im}s = \text{Ker} \alpha \cap \text{Im}s \} \]
\[\mathcal{B} = \{ \gamma \in \text{Hom}(M, N) | \text{Ker} \gamma \cap \text{Im}(\alpha s) = 0 \} \]
\[\mathcal{C} = \{ \delta \in \text{Hom}(M, N) | \delta s = 0 \} \]

It is easy to see that \(\mathcal{B} \alpha + \mathcal{C} \subseteq \mathcal{A} \). Conversely, let \(\beta \in \text{Hom}(M, N) \) such that \(\text{Ker} \beta \cap \text{Im}s = \text{Ker} \alpha \cap \text{Im}s \) (\(\beta \in \mathcal{A} \)). It follows that \(\text{Ker}(\alpha s) = \text{Ker}(\beta s) \). By Corollary 2.3, there exists \(\gamma \in \mathcal{B} \) such that \(\beta s = \gamma \alpha s \) or \((\beta - \gamma \alpha)s = 0 \). It means \(\beta - \gamma \alpha \in \mathcal{C} \), which implies that \(\beta \in \mathcal{B} \alpha + \mathcal{C} \). □

Proposition 2.5 If \(M = M_1 \oplus M_2 \) is quasi-pseudo-\(p \)-injective, then \(M_1 \) is \(M_2 \)-\(p \)-injective.

Proof. Let \(M = M_1 \oplus M_2 \) be quasi-pseudo-\(p \)-injective and \(s \in \text{End}(M_2) \). Let \(f : s(M_2) \to M_1 \) be a homomorphism. Consider homomorphism \(g : s(M_2) \to M \) defined by \(g(a) = f(a) + a \) for all \(a \in s(M_2) \). Then \(g \) is a monomorphism. By [16, Proposition 1.3], \(M \) is pseudo-\(M_2 \)-\(p \)-injective, whence \(g \) extends to a homomorphism \(\bar{g} : M_2 \to M \). Let \(\pi : M \to M_1 \) be the canonical projection. Then \(\pi \bar{g} : M_2 \to M \) extends \(f \). Thus \(M_1 \) is \(M_2 \)-\(p \)-injective, as required. □

Corollary 2.6 For any integer \(n \geq 2 \), if \(M^n \) is quasi-pseudo-\(p \)-injective, then \(M \) is quasi-\(p \)-injective.

Proposition 2.7 Let \(M \) and \(N \) be modules and \(X = M \oplus N \). The following conditions are equivalent:

(1) \(N \) is pseudo-\(M \)-\(p \)-injective.

(2) For each \(M \)-cyclic submodule \(K \) of \(X \) with \(K \cap M = K \cap N = 0 \), there exists \(C \leq X \) such that \(K \leq C \) and \(N \oplus C = X \).

Proof. (1) \(\Rightarrow \) (2). Let \(K \) be a submodule of \(X \) which is \(M \)-cyclic with \(K \cap M = K \cap N = 0 \), and \(\pi_M : M \oplus N \to M \) and \(\pi_N : M \oplus N \to N \) be the canonical projections. We can check that \(N \oplus K = N \oplus \pi_M(K) \) and hence \(\pi_M(K) \simeq K \), proving that \(\pi_M(K) \) is a \(M \)-cyclic submodule of \(M \). Let \(\varphi : \pi_M(K) \to \pi_N(K) \) be a homomorphism defined as follows: for \(k = m + n \in K \) (with \(m \in M, n \in N \)), \(\varphi(m) = n \). It is easy to see that \(\varphi \) is a monomorphism. Since \(N \) is pseudo-\(M \)-\(p \)-injective, there is a homomorphism \(\bar{\varphi} : M \to N \) extending \(\varphi \). Let \(C = \{ m + \bar{\varphi}(m) | m \in M \} \). Then \(X = N \oplus C \) and \(K \leq C \).

(2) \(\Rightarrow \) (1). Let \(s \in \text{End}(M) \) and \(\varphi : s(M) \to N \) be a monomorphism. Put \(K = \{ s(m) - \varphi(s(m)) | m \in M \} \). Then \(K \cap M = 0 \) and \(N \oplus K = N \oplus \pi_M(K) = N \oplus s(M) \). It is easy to see that \(K \) is \(M \)-cyclic. By assumption, there exists a submodule \(C \) of \(X \) containing \(K \) with \(N \oplus C = X \). Let \(\pi : N \oplus C \to N \) be the natural projection. Then the restriction \(\pi|_M \) extends \(\varphi \), proving (1). □
3 On quasi-pseudo-gp-injective rings and modules

From Corollary 2.3, we have some characterizations of quasi-pseudo-p-injective modules.

Theorem 3.1 The following conditions are equivalent for module M with $S = \text{End}(M)$:

1. M is quasi-pseudo-p-injective;
2. If $\text{Ker} f = \text{Ker} g$ with $f, g \in S = \text{End}(M)$, then $Sf = Sg$;
3. If $f \in S = \text{End}(M)$ and $\alpha, \beta : f(M) \to M$ is monomorphisms, then $\alpha = s\beta$ for some $s \in S$.

Proof. (1) \Rightarrow (2). By Corollary 2.3.

(2) \Rightarrow (3). Assume that $0 \neq f \in S$ satisfies (2). Let $\alpha, \beta : f(M) \to M$ be monomorphisms. Then $\text{Ker}(\alpha f) = \text{Ker}(\beta f)$. By our assumption, there exists $s \in S$ such that $\alpha f = s\beta f$, which implies that $\alpha = s\beta$.

(3) \Rightarrow (1). Let $s \in S$ and $\varphi : s(M) \to M$ be a monomorphism. Let $\iota : s(M) \to M$ be the inclusion. By (3), there exists $\bar{\varphi} \in S$ such that $\varphi = \bar{\varphi}\iota$ showing that $\bar{\varphi}$ extends φ. Thus M is quasi-pseudo p-injective. \square

Corollary 3.2 The following conditions are equivalent for ring R:

1. R is right pseudo P-injective;
2. If $r(x) = r(y)$ with $x, y \in R$, then $Rx = Ry$.

We have the following relations:

quasi-p-injective \Rightarrow quasi-pseudo-p-injective \Rightarrow quasi-pseudo-gp-injective.

Example 3.3 i) Let F be an algebraically closed field and x, y be indeterminates. Let $R = F(y)[x]$ such that $xf - fx = df/dy$, $f \in F(y)$ (see [20, Example]). Then the R-module $M = R/(x(x + y)(x + y - 1/y))R$ is quasi-pseudo-p-injective but not quasi-p-injective by [20, Example].

ii) Let $K = F(y_1, y_2, ...)$ and $L = F(y_2, y_3, ...)$ with F a field, and $\rho : K \to L$ be an isomorphism via $\rho(y_i) = y_{i+1}$ and $\rho(c) = c$ for all $c \in F$ (see [4, Example 1]. Let $K[x_1, x_2; \rho]$ be the ring of twisted left polynomials over K where $x_i k = \rho(k)x_i$ for all $k \in K$ and for $i = 1, 2$. Set $R = K[x_1, x_2; \rho]/(x_1^2, x_2^2)$. Then R_R is quasi-pseudo-gp-injective which is not quasi-pseudo-p-injective.

Next we study some properties of quasi-pseudo-gp-injective, self-generator modules and their endomorphism rings.
Theorem 3.4 Let M be a right R-module with $S = \text{End}(M)$. Then

1. If S is a right pseudo GP-injective ring, then M is quasi-pseudo-gp-injective.

2. If M is quasi-pseudo-gp-injective and self-generator, then S is a right pseudo GP-injective ring.

Proof. (1). Let $f \in S$. Since S is right pseudo GP-injective, there exists $n \in \mathbb{N}$ such that $f^n \neq 0$ and if $r_S(f^n) = r_S(g)$ for some $g \in S$, then $g \in Sf^n$ by Corollary 2.2. Assume that $Ker f^n = Ker g$ with $g \in S$. Then $r_S(f^n) = r_S(g)$ and hence $g \in Sf^n$. Thus M is quasi-pseudo-gp-injective by Corollary 2.2.

(2). Let $0 \neq f \in S$. Since M is quasi-pseudo-gp-injective, there exists $n \in \mathbb{N}$ such that $f^n \neq 0$ and if $Ker(f^n) = Ker(g)$ with $g \in S$, then $g \in Sf^n$. Let $g \in S$ with $r_S(f^n) = r_S(g)$. Since M is a self-generator, we get $Ker f^n = Ker g$. By our assumption, $g \in Sf^n$ and so S is right pseudo GP-injective.

Corollary 3.5 Let M be a right R-module with $S = \text{End}(M)$. Then

1. If S is a right pseudo P-injective ring, then M is quasi-pseudo-p-injective.

2. If M is a quasi-pseudo-p-injective module which is a self-generator, then S is a right pseudo P-injective ring.

For a right R-module M, $S = \text{End}(M)$ we denote:

$$W(S) = \{ s \in S | \text{Ker}(s) \text{ is essential in } M \}.$$

Lemma 3.6 Let M_R be a quasi-pseudo-gp-injective module which is a self-generator, $S = \text{End}(M)$. If $a \notin W(S)$, then Ker$(a) < \text{Ker}(a - ata)$ for some $t \in S$.

Proof. If $a \notin W(S)$, then Ker(a) is not an essential submodule of M. Hence there exists $0 \neq m \in M$ such that $mR \cap \text{Ker}(a) = 0$. Since M is a self-generator, there exists $\lambda \in S$ such that $0 \neq \lambda(M) \leq mR$. Hence Ker$(a) \cap \lambda(M) = 0$. It follows that $a\lambda \neq 0$. Since M is quasi-pseudo-gp-injective, there exists $n \in \mathbb{N}$ such that $(a\lambda)^n \neq 0$ and if Ker$(a\lambda)^n = Ker(g)$ with $g \in S = \text{End}(M)$, then $g \in S(a\lambda)^n$. From Ker$(a) \cap \lambda(M) = 0$ we also have Ker$((a\lambda)^n) = \text{Ker}(\lambda(a\lambda)^{n-1})$. Hence $\lambda(a\lambda)^{n-1} \in S(a\lambda)^n$. Therefore $\lambda(a\lambda)^{n-1} = s(a\lambda)^n$ for some $s \in S$, which implies that Im$(\lambda(a\lambda)^{n-1}) \leq \text{Ker}(a - asa)$. It follows that Ker$(a) < \text{Ker}(a - asa)$, since Im$(\lambda(a\lambda)^{n-1}) \neq \text{Ker}(a)$ and $(a\lambda)^n \neq 0$.

Lemma 3.7 Assume that M is quasi-pseudo-gp-injective module which is a self-generator. Then $J(S) = W(S)$.
Proof. Let $a \in J(S)$. If $a \notin W(S)$, then by the proof of Lemma 3.6, there exist a positive integer n and $\lambda, t \in S$ such that $(a\lambda)^n \neq 0$ and $(1 - at)(a\lambda)^n = 0$. Note that $1 - at$ is left invertible, so $(a\lambda)^n = 0$, a contradiction. Conversely, let $a \in W(S)$. Then, for each $t \in S$, $ta \in W(S)$ and hence $1 - ta \neq 0$. Since M is a quasi-pseudo-p-injective module, there exists $n \in \mathbb{N}$ such that $(1 - ta)^n \neq 0$ and if $Ker((1 - ta)^n)$ is left invertible, proving our lemma.

□

Corollary 3.8 If R is right pseudo GP-injective, then $J(R) = Z(R_R)$.

Recall that a module M is said to satisfy the generalized C2-condition (or GC2) (see [25]) if for any $N \cong M$ with $N \leq M$, N is a direct summand of M.

Theorem 3.9 If M is quasi-pseudo-gp-injective, then M satisfies GC2.

Proof. Let $S = \text{End}(M)$. Assume that $Kers = 0$ with $s \in S$. We need to prove that $S = Ss$. Since M is quasi-pseudo-gp-injective, there exists $n \in \mathbb{N}$ such that $s^n \neq 0$ and $Kers^n = Ker\ g$ with $g \in S$, which would imply that $g \in Ss^n$. Note that $Kers = 0 = Ker1_S$. It follows that $1_S \in Ss^n \leq Ss$, whence $S = Ss$. Thus M is GC2 by [25, Theorem 3].

□

Corollary 3.10 If R is right pseudo GP-injective, then R is right GC2.

Proposition 3.11 Let M be a quasi-pseudo-p-injective module which is a self-generator and $S = \text{End}(M)$. If every complement submodule of M is M-cyclic, then $S/J(S)$ is von Neumann regular.

Proof. We have $J(S) = W(S)$ by Lemma 3.7. For all $\lambda \in S$, let L be a complement of $\text{Ker}\lambda$. We consider the map $\phi : \lambda(L) \twoheadrightarrow M$ defined by $\phi(\lambda(x)) = x$ for all $x \in L$. Then ϕ is a monomorphism and $\lambda(L) \cong L$ which implies $\lambda(L)$ is a M-cyclic submodule of M. Since M is quasi-pseudo-p-injective, there exists $\theta \in S$, which is an extension of ϕ. Then $\text{Ker}\lambda + L \leq \text{Ker}(\lambda\theta\lambda - \lambda)$, and we see that $\text{Ker}\lambda \oplus L \leq M$. Consequently $\lambda\theta\lambda - \lambda \in W(S) = J(S)$.

□

Theorem 3.12 Let M be a quasi-pseudo-gp-injective module which is a self-generator and $S = \text{End}(M)$. Then the following conditions are equivalent:

1. S is right perfect;
2. For any infinite sequence $s_1, s_2, \cdots \in S$, the chain
\[
\text{Ker}(s_1) \leq \text{Ker}(s_2s_1) \leq \cdots
\]
is stationary.
\textbf{Proof.} (1) \Rightarrow (2). Let $s_i \in S$, $i = 1, 2, \ldots$. Since S is right perfect, S satisfies DCC on finitely generated left ideals. So the chain $Ss_1 \geq Ss_2 s_1 \geq \ldots$ terminates. Thus there exists $n > 0$ such that $Ss_n s_{n-1} \cdots s_1 = Ss_k s_{k-1} \cdots s_1$ for all $k > n$. It follows that $\text{Ker}(s_n s_{n-1} \cdots s_1) = \text{Ker}(s_k s_{k-1} \cdots s_1)$ for all $k > n$.

(2) \Rightarrow (1). We first prove that $S/W(S)$ is a von Neumann regular ring. Let $a_1 \notin W(S)$. Then by Lemma 3.6, there is $c_1 \in S$ such that $\text{Ker}(a_1) < \text{Ker}(a_1 - a_1 c_1 a_1)$. Put $a_2 = a_1 - a_1 c_1 a_1$. If $a_2 \in W(S)$, then we have $\bar{a}_1 = \bar{a}_1 c_1 \bar{a}_1$, i.e., \bar{a}_1 is a regular element of $S/W(S)$. If $a_2 \notin W(S)$, there exists $a_3 \in S$ such that $\text{Ker}(a_2) < \text{Ker}(a_3)$ with $a_3 = a_2 - a_2 c_2 a_2$ for some $c_2 \in S$ by the preceding proof. Repeating the above-mentioned process, we get a strictly ascending chain

\[\text{Ker}(a_1) < \text{Ker}(a_2) < \ldots, \]

where $a_{i+1} = a_i - a_i c_i a_i$ for some $c_i \in S$, $i = 1, 2, \ldots$. Let

\[b_1 = a_1, b_2 = 1 - a_1 c_1, \ldots, b_{i+1} = 1 - a_i c_i, \ldots, \]

then

\[a_1 = b_1, a_2 = b_2 b_1, \ldots, a_{i+1} = b_{i+1} b_i \ldots b_2 b_1, \ldots. \]

and we have the following strictly ascending chain

\[\text{Ker}(b_1) < \text{Ker}(b_2 b_1) < \ldots, \]

which contradicts the hypothesis. Hence there exists a positive integer m such that $a_{m+1} \in W(S)$, i.e., $a_m - a_m c_m a_m \in W(S)$. This shows that \bar{a}_m is a regular element of $S/W(S)$, and hence $\bar{a}_{m-1}, \bar{a}_{m-2}, \ldots, \bar{a}_1$ are regular elements of $S/W(S)$, i.e., $S/W(S)$ is von Neumann regular. We have $J(S) = W(S)$ by Lemma 3.7, proving that $S/J(S)$ is von Neumann regular. Thus S is right perfect by [5, Lemma 1.9].

\[\square \]

\textbf{Lemma 3.13} Let M be a right R-module and $S = \text{End}(M)$. Then

(1) $l_S(A(M)) = l_S(A)$ for all $A \subseteq S$ with $A(M) = \sum_{s \in A} s(M)$.

(2) $l_S(r_M(l_S(A))) = l_S(A)$ for all $A \subseteq S$.

\textbf{Proof.} (1). Let $a \in l_S(A)$, $a \cdot A = 0$. Therefore $a \cdot s = 0$ or $a(s(M)) = 0$ for all $s \in A$. This implies that $a \in l_S(A(M))$. Hence $l_S(A) \leq l_S(A(M))$. Conversely, for every $a \in l_S(A(M))$, we have $a.s(M) = 0$ for all $s \in A$. This implies that $a \in l_S(A)$.

(2). It is clear that $l_S(r_M(l_S(A))) \geq l_S(A)$. Conversely, for all $s \in l_S(A)$, $s.A(M) = 0$. This implies that $A(M) \leq r_M(l_S(A))$. Thus
\[l_S(A(M)) \geq l_S(r_M(l_S(A))). \]

By (1) we get the result. \qed

Let \(\emptyset \neq A \subset S = \text{End}(M) \). Put

\[\text{Ker} A = \bigcap_{f \in A} \text{Ker} f = \{ m \in M | f(m) = 0 \ \forall f \in A \}. \]

If \(X \leq M \) and \(X = \text{Ker} A \) for some \(\emptyset \neq A \subset S \), \(X \) is called an \(M \)-annihilator.

Proposition 3.14 Let \(M_R \) be a quasi-pseudo-gp-injective, self-generator module and \(S = \text{End}(M_R) \). If \(M_R \) satisfies ACC on \(M \)-annihilators, then \(S \) is semiprimary.

Proof. Now we will claim that \(S \) satisfies ACC on right annihilators or DCC on left annihilators. Indeed, we consider the descending chain

\[l_S(A_1) \geq l_S(A_2) \geq \ldots \text{ where } A_i \subseteq S, \]

then

\[r_M(l_S(A_1)) \leq r_M(l_S(A_2)) \leq \ldots. \]

By our assumption, there exists \(n \in \mathbb{N} \) such that \(r_M(l_S(A_n)) = r_M(l_S(A_k)) \) for all \(k > n \), and so \(l_S r_M(l_S(A_n)) = l_S r_M(l_S(A_k)) \). By Lemma 3.13, \(l_S(A_n) = l_S(A_k) \) for all \(k > n \). This shows that \(S \) satisfies DCC on left annihilators or ACC on right annihilators. Therefore \(J(S) \) is nilpotent by [14, Lemma 3.29] and Lemma 3.7. It follows that \(S \) is semiprimary by Theorem 3.12. \qed

Corollary 3.15 If \(R \) is right pseudo GP-injective and satisfies ACC on right annihilators, then \(R \) is semiprimary.

For quasi-pseudo-p-injective modules, we have

Theorem 3.16 Let \(M_R \) be a quasi-pseudo-p-injective module and \(S = \text{End}(M_R) \). If \(M \) satisfies ACC on \(M \)-annihilators, then \(S \) is semiprimary.

Proof. Consider the chain \(S f_1 \geq S f_2 \geq \cdots \) of cyclic left ideals of \(S \). Then we have \(\text{Ker} f_1 \leq \text{Ker} f_2 \leq \cdots \). By hypothesis, there exists \(n \in \mathbb{N} \) such that \(\text{Ker} f_n = \text{Ker} f_{n+k}, \ \forall k \in \mathbb{N} \). It follows that \(S f_n = S f_{n+k} \ \forall k \in \mathbb{N} \). Thus \(R \) is right perfect.

Consider the ascending chain \(r_M(J(S)) \leq r_M(J(S)^2) \leq \cdots \). By assumption, there is \(n \in \mathbb{N} \) such that \(r_M(J(S)^n) = r_M(J(S)^{n+k}) \) for all \(k \in \mathbb{N} \). Let \(B = J(S)^n \).
Then we get \(r_M(B) = r_M(B^2) \). Assume \(J(S) \) is not nilpotent. Then \(B^2 \neq 0 \) and the non-empty set

\[
\{ \text{Ker} g \mid g \in B \text{ and } Bg \neq 0 \}
\]

has a maximal element \(\text{Ker} g_0, g_0 \in B \). The relation \(BBg_0 = 0 \) would imply that \(\text{Im} g_0 \leq r_M(B^2) = r_M(B) \) and hence \(Bg_0 = 0 \), contradicting to the choice of \(g_0 \). Therefore we can find an \(h \in B \) with \(Bhg_0 \neq 0 \). However, since \(\text{Ker} g_0 \leq \text{Ker}(hg_0) \), the maximality of \(\text{Ker} g_0 \) implies that \(\text{Ker} g_0 = \text{Ker} hg_0 \). Since \(M \) is quasi-pseudo-p-injective, this implies that \(Sg_0 = Shg_0 \), i.e. \(g_0 = shg_0 \) for some \(s \in S \) or \(g_0(1 - sh) = 0 \). Since \(sh \in B \leq J(S) \), this gives \(g_0 = 0 \), a contradiction. Thus \(J(S) \) must be nilpotent. □

Following [14], a ring \(R \) is called directly finite if \(ab = 1 \) in \(R \) implies that \(ba = 1 \).

Proposition 3.17 A right pseudo \(P \)-injective ring \(R \) is directly finite if and only if all monomorphisms \(R_R \to R_R \) are isomorphisms.

Proof. Assume that \(\varphi : R_R \to R_R \) is a monomorphism. Let \(a = \varphi(1) \). Then \(r(a) = 0 = r(1) \) and so \(Ra = R \) by Corollary 2.2. Hence \(ba = 1 \) for some \(b \in R \), so \(ab = 1 \) by hypothesis, and so \(\varphi \) is onto. Conversely, let \(ab = 1 \) in \(R \). Therefore the homomorphism \(\alpha : R \to R, \alpha(r) = br, \forall r \in R \) is monomorphism. By hypothesis \(\alpha \) is an epimorphism. There exists \(c \in R \) such that \(1 = \alpha(c) = bc \). It follows that \(a = c \) and \(ba = 1 \). □

The series of higher left socles \(\{S^l_\alpha\} \) of the ring \(R \) are defined inductively as follows: \(S^l_1 = \text{Soc}(R_R) \), and \(S^l_{\alpha+1}/S^l_\alpha = \text{Soc}(R/S^l_\alpha) \) for each ordinal \(\alpha \geq 1 \).

Motivated by [3, Lemma 9 (ii)], we have the following proposition.

Proposition 3.18 If \(R \) is a right pseudo GP-injective ring and satisfies ACC on essential left ideals, then

1. \(r(J) \leq^e R_R \),
2. \(J \) is nilpotent,
3. \(J = lr(J) \).

Proof. (1) Since \(R \) has ACC on essential left ideals, \(R/S_l \) is a left Noetherian ring. Then, there exists \(k > 0 \) such that \(S^l_k = S^l_{k+1} = \cdots \) and \(R/S^l_k \) is a right Noetherian ring. Now we will claim that \(S^l_k \leq^e R_R \). In fact, assume that \(xR \cap S^l_k = 0 \) for some \(0 \neq x \in R \). Let \(\bar{R} = R/S^l_k \) and \(l_{\bar{R}}(\bar{a}) \) be maximal in the set \(\{ l_{\bar{R}}(\bar{y}) \mid 0 \neq y \in xR \} \). Since \(S^l_k = S^l_{k+1} \), we get \(\text{Soc}(l_{\bar{R}}) = 0 \), and so \(\bar{R} \) is not simple as left \(\bar{R} \)-module. Thus there exists \(t \in R \) such that \(0 \neq \bar{R}t \bar{a} < \bar{R} \).
If $\bar{a}\bar{a} = 0$, then $ata \in aR \cap S_k^1 = 0$, and so $ata = 0$. From this fact and pseudo GP-injectivity of R, we see that if $r(ta) = r(b)$, $b \in R$ then $Rta = Rb$ by Corollary 2.2. If $r(a) = r(ta)$, then $R = Rta$, a contradiction. Thus $r(a) < r(ta)$. Then there exists $b \in R$ such that $ab \neq 0$ and $tab = 0$. That means $0 \neq ab \in xR$ and $l_R(\bar{a}) < l_R(ab)$. This contradicts to the maximality of $l_R(\bar{a}_0)$.

If $\bar{a}\bar{a} \neq 0$, then $0 \neq \bar{R}a\bar{a} < \bar{R}a$. Since R is right pseudo GP-injective, there exists $m \in \mathbb{N}$ such that $(ata)^m \neq 0$ and if $r((ata)^m) = r(b)$, $b \in R$ then $b \in R((ata)^m)$. It follows that $r(a) < r((ata)^m)$. Let $c \in r((ata)^m) \setminus r(a)$. Then $0 \neq ac \in xR$, $(\bar{a}\bar{a})^{m-1}a\bar{c} \in l_R(\bar{a})$, a contradiction.

Thus $S_k^1 \leq ^e R_R$ and hence $r(J) \leq ^e R_R$ (since $S_k^1 \leq r(J)$).

(2). By [3, Lemma 9 (ii)],
(3). Since $r(J) \leq ^e R_R$, $r(J) \leq Z_v = J$. □

A module M_R is called **extending (or CS)** if every submodule of M is essential in a direct summand of M. A ring R is called right CS if R_R is CS (see [7]). Following [10], a module M is called NCS if there are no nonzero complement submodules which is small in M. A ring R is right NCS if R_R is NCS. Clearly every CS module is NCS, but the converse is not true, as we can see that the Z-module $Z_2 \oplus Z_3$ is NCS but not CS. On the other hand, let K be a division ring and V be a left K-vector space of infinite dimension. Let $S = \text{End}_K(V)$. Take $R = \begin{pmatrix} S & S \\ S & S \end{pmatrix}$, then R is right NCS but not right CS.

Proposition 3.19 If R is a left Noetherian, right pseudo P-injective and right NCS ring, then R is left Artinian.

Proof. First, we prove that $R = R/J$ is a regular ring. Assume that $a \notin J$. Since $J = lr(J) = Z_v$, there exists a nonzero complement right ideal I of R such that $r(a) \cap I = 0$ by Lemma 3.18. We claim that there exists $b \in I$ such that $ab \notin J$. Suppose on the contrary that $aI \leq J$. Then $aIr(J) = 0$. Since $r(a) \cap I = 0$, $Ir(J) \leq I \cap r(a) = 0$. Thus $I \leq lr(J) = J$. It follows that I is small in R_R, a contradiction. Hence we have $b \in I$ such that $r(a) \cap bR = 0$ and $ab \notin J$. It follows that $r(b) = r(ab)$. Hence $Rb = Rab$ and so $b = cab$ for some $c \in R$. This implies that $\bar{b} \in r_R(\bar{a} - \bar{a}c\bar{a})$, where $\bar{r} = r + J \in R/J$ for any $r \in R$. Since $\bar{ab} \neq 0$, we see that $r_R(\bar{a}) < r_R(\bar{a} - \bar{a}c\bar{a})$. If $a - ac \in J$, then a is a regular element of R. If $a - ac \notin J$, let $a_1 = a - ac$. Then $r(a_1) = 0$ is not essential in R_R. By the same way, we get $a_2 = a_1 - a_1c_1a_1$ for some $c_1 \in R$ and $r_R(\bar{a}_1) < r_R(\bar{a}_2)$. If $a_2 \notin J$, then a_1 is a regular element of R. It follows that a is a regular element of R. If $a_2 \notin J$, we have $a_3 = a_2 - a_2c_2a_2$ for some $c_2 \in R$ and $r_R(\bar{a}_2) < r_R(\bar{a}_3)$. Continuing this process, we get $a_k \in R, k = 1, 2, \ldots$. Since R is left noetherian and $Jac(R) = 0$, R is a semiprime and left Goldie ring. By [9, Lemma 5.8], R satisfies ACC on right
annihilators. Hence there exists some positive integer \(m \) such that \(a_m \in J \), and thus \(a \) is also a regular element of \(R \). Since \(\bar{a} \) is an arbitrary nonzero element of \(\bar{R} \), we see that \(\bar{R} \) is a regular ring. Then \(\bar{R} \) is semisimple because \(R \) is left noetherian. Moreover, by Lemma 3.18, \(J \) is nilpotent and so \(R \) is semiprimary. Thus \(R \) is left artinian. \(\square \)

4 On maximal ideals

In this section, we study the endomorphism ring of quasi-pseudo-gp-injective modules.

Let \(S = \text{End}_R(M) \) be the endomorphism ring of a right \(R \)-module \(M \). Following [19], an element \(u \in S \) is called a right uniform element of \(S \) if \(u \neq 0 \) and \(u(M) \) is a uniform submodule of \(M \). An element \(u \in R \) is called right uniform if \(uR \) is a uniform right ideal (see [14]). In this section, we generalize some results of Sanh and Shum for quasi-p-injective modules; Nicholson and Yousif for p-injective rings to quasi-pseudo-gp-injective modules.

First, we need the following lemma:

Lemma 4.1 Let \(M \) be a quasi-pseudo-gp-injective module and \(S = \text{End}(M) \). Then for any right uniform element \(u \) of \(S \), the set

\[
A_u = \{ s \in S | \text{Ker} s \cap \text{Im} u \neq 0 \}
\]

is the unique maximal left ideal of \(S \) containing \(\text{ls} \text{(Im} u) \).

Proof. Clearly, \(A_u \) is a left ideal of \(S \). It is easy to see that \(\text{ls} \text{(Im} u) \leq A_u \) and \(A_u \neq S \) (because \(1 \notin A_u \)). We now claim that \(A_u \) is maximal. In fact, for any \(s \in S \setminus A_u \), we have \(\text{Im} u \cap \text{Ker} s = 0 \), whence \(su \neq 0 \). There exists \(m \in \mathbb{N} \) such that \((su)^m \neq 0 \) and if \(\text{Ker} (su)^m = \text{Ker} g \), \(g \in S \) then \(g \in S(su)^m \). Since \(\text{Ker} ((su)^m) = \text{Ker} u \), we get \(S(su)^m = Su \). Then there exists \(t \in S \) such that \((1 - t(su)^{m-1})u = 0 \). It follows from \(S = \text{ls}(u) + Ss \), that \(A_u \) is maximal in \(S \). It remains to show that \(A_u \) is unique. In fact, assume that there is another maximal left ideal \(L \) of \(S \) containing \(\text{ls}(\text{Im} u) \) and \(L \neq A_u \). Repeating above process we also have \(S = L \), a contradiction. \(\square \)

Corollary 4.2 ([19, Lemma 1]) Let \(M \) be a quasi-p-injective module and \(S = \text{End}(M) \). Then for any right uniform element \(u \) of \(S \), the set

\[
A_u = \{ s \in S | \text{Ker} s \cap \text{Im} u \neq 0 \}
\]

is the unique maximal left ideal of \(S \) containing \(\text{ls}(\text{Im} u) \).
Lemma 4.4 Let M be a quasi-pseudo-p-injective, self-generator module with finite Goldie dimension and $S = \text{End}(M_R)$. Then M_u is the unique maximal left ideal which contains $l(u)$.

The following lemma is a generalization of Lemma 3 in [19].

Lemma 4.4 Let M be a quasi-pseudo-p-injective module, $S = \text{End}(M_R)$ and $W = \bigoplus_{i=1}^n u_i(M)$ a direct sum of uniform submodule $u_i(M)$ of M. If $A \leq S$ is a maximal left ideal which is not of the form A_u for some right uniform element u of S, then there is $\psi \in A$ such that $\text{Ker}(1 - \psi) \cap W$ is essential in W.

Proof. Since $A \neq A_{u_1}$, we can take $k \in A \setminus A_{u_1}$. Then $\text{Im} u_1 \cap \text{Ker} k = 0$, whence $ku_1 \neq 0$. There exists $m \in \mathbb{N}$ such that $(ku_1)^m \neq 0$ and if $\text{Ker}(ku_1)^m = \text{Ker}(g)$, $g \in S$ then $g \in S(ku_1)^m$. It is easy to see that $\text{Ker}(ku_1)^m = \text{Ker}(u_1)$ and hence $S(ku_1)^m = Su_1$. Consequently we have $u_1 = \alpha_1(ku_1)^m$ for some $\alpha_1 \in S$. Let $\varphi_1 = \alpha_1(ku_1)^m - 1 k \in SA \subset A$. Then $(1 - \varphi_1)u_1 = 0$. This shows that $\text{Ker}(1 - \varphi_1) \cap u_1(M) = u_1(M) \neq 0$. If $\text{Ker}(1 - \varphi_1) \cap u_2(M) \neq 0$ for all $i \geq 2$, then we are done and in this case $\bigoplus_{i=1}^n (\text{Ker}(1 - \varphi_1) \cap u_i(M)) \leq W$. Without loss of generality, we now assume that $\text{Ker}(1 - \varphi_1) \cap u_2(M) = 0$. It follows that $(1 - \varphi_1)(u_2(M)) \cong u_2(M)$ is uniform. Since $A \neq A_{(1 - \varphi_1)u_2}$, we can take any $h \in A \setminus A_{(1 - \varphi_1)u_2}$. By using the above argument, there exists $\alpha_2 \in S$ such that $(1 - \varphi_1)u_2 = \alpha_2 h(1 - \varphi_1)u_2$. It follows that

$$(1 - (\alpha_2 h + \varphi_1 - \alpha_2 h \varphi_1))u_2 = 0.$$

Let $\varphi_2 = \alpha_2 h + \varphi_1 - \alpha_2 h \varphi_1$. Then $(1 - \varphi_2)u_i = 0$ for $i = 1, 2$. Continuing this way, we eventually obtain a $\psi \in A$ such that $\text{Ker}(1 - \psi) \cap u_i(M) \neq 0$ for all $i = 1, \ldots, n$. In other words, we have shown that $\text{Ker}(1 - \psi) \cap W$ is essential in W as required.

The following theorem describes the properties of the endomorphism ring $S = \text{End}(M_R)$ of a quasi pseudo p-injective module M_R.

Theorem 4.5 Let M be a quasi-pseudo-gp-injective, self-generator module with finite Goldie dimension and $S = \text{End}(M_R)$.

1. If $I \subset S$ is a maximal left ideal, then $I = A_u$ for some right uniform element $u \in S$.

2. S is semilocal.
Proof. Since M is a self-generator which has finite Goldie dimension, there exist elements u_1, u_2, \ldots, u_n of S such that $W = u_1(M) \oplus u_2(M) \oplus \cdots \oplus u_n(M)$ is essential in M, where each $u_i(M)$ is uniform. Moreover, M is a quasi-p-injective module, we have $J(S) = W(S) = \{s \in S \mid \text{Ker}(s) \text{ is essential in } M\}$ by Lemma 3.7.

(1). Suppose on the contrary that I is not of the form A_u for some right uniform element of $u \in S$. Then by Lemma 4.4, there exists a $\varphi \in I$ such that $\text{Ker}(1-\varphi) \cap W$ is essential in W. It follows that $1-\varphi \in J(S) \subset I$, a contradiction. Hence $I = A_u$ for some right uniform element $u \in S$.

(2). If $\varphi \in A_{u_1} \cap A_{u_2} \cap \cdots \cap A_{u_n}$, then $\text{Ker}(\varphi) \cap u_i(M) \neq 0$ for each i. Hence $\text{Ker}(\varphi)$ is essential in M. Therefore $\varphi \in J(S)$, i.e., $A_{u_1} \cap \cdots \cap A_{u_n} = J(S)$. This shows that $S/J(S)$ is semisimple. \hfill \Box

As a consequence, we immediately get the following result for the right pseudo GP-injective rings.

Corollary 4.6 Let R be a right pseudo GP-injective ring which has right finite Goldie dimension. Then

(1) If $I \subset R$ is a maximal left ideal, then $I = A_u$ for some right uniform element $u \in R$.

(2) R is semilocal.

Acknowledgment

The author Nguyen van Sanh is grateful to the Center of Excellence in Mathematics, The Commission on Higher Education, Thailand, Grant No. RG-1-53-13-1. The authors would like to thank the referees for giving useful suggestions for the improvement of this paper.

References

