Locally maximal regular subsemibands of \mathcal{SOP}_n

Ping Zhao1,2

1 School of mathematics and computer science, GuiZhou normal University, Guiyang, GuiZhou Province 550001, China
2 Mathematics Teaching & Research Section, Guiyang Medical College, GuiZhou Province 550004, P.R. China

Abstract

In this paper we describe locally maximal regular subsemibands of finite singular orientation-preserving transformation semigroups and completely obtain their classification.

2000 Mathematics Subject Classification: 20M20

Keywords: transformation, order-preserving, orientation-preserving.

1 Introduction

Let $[n] = \{1, 2, \ldots, n\}$ ordered in the standard way. We denote by T_n the semigroup of all full transformations of $[n]$, and by Sing_n its subsemigroup of all singular transformations of $[n]$. We say that a transformation α in Sing_n is order-preserving if, for all $x, y \in [n]$, $x \leq y$ implies $x\alpha \leq y\alpha$.

We denote by O_n the subsemigroup of Sing_n of all order-preserving singular transformations. Let

$$O^k_n = \{a^{-k}fa^k : f \in O_n\}, \ k \in [n],$$

where $a = (123\cdots n)$ is the fixed generator of the cyclic group \mathbb{Z}_n. Catarino and Higgins [1] proved that O^k_n and O_n are isomorphic subsemigroups of T_n.

Let $\alpha \in T_n$, we say that α is orientation-preserving if the sequence $(1\alpha, 2\alpha, \ldots, n\alpha)$ is cyclic, that is, there exists no more than one subscript i such that $i\alpha > (i + 1)\alpha$. The notion of an orientation-preserving transformation was introduced by McAlister in [15] and, independently, by Catarino and Higgins in [1]. We denote by \mathcal{OP}_n the subsemigroup of T_n of all orientation-preserving full transformations of $[n]$, and by \mathcal{SOP}_n the subsemigroup of Sing_n of all orientation-preserving singular transformations of $[n]$.

A semigroup S is called idempotent-generated or semiband if it is generated by its idempotents. The latter term was introduced by F. Pastijn [16].

Let S be a semigroup. The set of all subsemigroups or subsemigroups with particular properties of S is partially ordered with respect to inclusions, and the maximal elements of this set are called maximal subsemigroups or maximal subsemigroups with particular properties of S. The history of the problem to classify (or describe) all maximal subsemigroups or maximal subsemigroups with
particular properties of a given semigroup go back at least to [9]. Various special subsemigroups of T_n have been studied by many authors (see for example [1-3, 5-8, 10, 12, 17-33]). In recent years the problem was studied for several classes of transformation semigroups in [2-5, 8-9, 11, 13-14, 17-33]. In particular, Zhao, Bo and Mei [28] classified completely locally maximal subsemibands of SOP_n. Recently, Zhao [29] characterized completely maximal subsemibands of SOP_n. Further, Zhao [30] completely described maximal regular subsemibands of SOP_n. In this paper, we aim to give more insight into the subsemigroup structure of the semigroup SOP_n by characterizing the locally maximal regular subsemibands of SOP_n.

Remark 1 In the paper it will always be clear from context when additions are modular.

For convenience, we introduce the following notation. From Catarino and Higgins [1], Green’s equivalences in SOP_n can be characterized as:

$$\alpha \mathcal{L} \beta \Leftrightarrow im(\alpha) = im(\beta),$$
$$\alpha \mathcal{R} \beta \Leftrightarrow ker(\alpha) = ker(\beta),$$
$$\alpha \mathcal{J} \beta \Leftrightarrow |im(\alpha)| = |im(\beta)|.$$

Thus SOP_n has $n-1$ \mathcal{J}-classes: $J_1, J_2, \ldots, J_{n-1}$, where

$$J_r = \{ \alpha \in SOP_n : |im(\alpha)| = r \}.$$

Obviously, we have $SOP_n = \bigcup_{r=1}^{n-1} J_r$. Let

$$K(n, r) = \{ \alpha \in SOP_n : |im(\alpha)| \leq r \} = J_0 \cup J_1 \cdots \cup J_r,$$

where $1 \leq r \leq n-1$. The sets $K(n, r)$ are the two-sided ideals of SOP_n. We want to focus on the class J_{n-1} at the top of the semigroup SOP_n. As in [29], we use the notation

$$L_k = \{ \alpha \in SOP_n : im(\alpha) = [n] \setminus \{k\} \},$$

$$R_{(i,i+1)} = \{ \alpha \in SOP_n : the\ unique\ non-singleton\ class\ of\ ker(\alpha)\ is\ \{i, i+1\} \}$$

for \mathcal{L}-classes and \mathcal{R}-classes in J_{n-1}. Hence J_{n-1} has n \mathcal{L}-classes L_1, L_2, \ldots, L_n and n \mathcal{R}-classes $R(1, 2), R(2, 3), \ldots, R(n-1, n), R(n, 1)$.

Gomes and Howie [10] used the notation $[i \to i - 1]$ for the decreasing idempotent e defined by $ie = i - 1$, $xe = x$ $(x \neq i)$. They also used the notation $[i \to i + 1]$ for the increasing idempotent f defined by $if = i + 1$, $xf = x$ $(x \neq i)$.

As usual, we denote by $E(S)$ the set of all idempotents of a subset S of SOP_n. Employing above notation the set $E(J_{n-1})$ consists of n decreasing idempotents $[i \to i - 1]$ $(i \in [n])$ and n increasing idempotents $[i \to i + 1]$ $(i \in [n])$. Let $E_{n-1}^+ = \{ [i \to i + 1] : i \in [n] \}$ and $E_{n-1}^- = \{ [i \to i - 1] : i \in [n] \}$ be the increasing and decreasing idempotent sets, respectively. Then $E(J_{n-1}) = E_{n-1}^+ \cup E_{n-1}^-$. Note that $[0 \to 1] = [n \to 1]$, $[1 \to 0] = [1 \to n]$, $[n \to n + 1] = [n \to 1]$, $[n + 1 \to n] = [1 \to n]$, etc., by Remark 1.

With above notation, we have the following simple observations:
Lemma 1.1 Let \(n \geq 3 \). Then
\[
E(R_{(k,k+1)}) = \{ [k \to k+1], [k+1 \to k] \}, \ k \in [n],
\]
\[
E(L_k) = \{ [k \to k-1], [k \to k+1] \}, \ k \in [n].
\]

Lemma 1.2 Let \(n \geq 3 \). Then
\[
E(O_k^{\infty} \cap J_{n-1}) = E(J_{n-1}) \setminus \{ [k \to k+1], [k+1 \to k] \}, \ k \in [n].
\]

2 Locally maximal regular subsemibands of \(SOP_n \)

Let \(I \) be a subset of \(E(J_{n-1}) \). A subsemiband \(\langle I \rangle \) of \(SOP_n \) is called **locally maximal regular subsemiband** if \(\langle I \rangle \) is a regular, and any regular subsemiband \(\langle J \rangle \) \((J \subseteq E(J_{n-1})) \ of \ SOP_n \) properly containing \(\langle I \rangle \) must be \(SOP_n \). In this section, we obtain a classification of locally maximal regular subsemibands of \(SOP_n \).

Our main result is

Theorem 2.1 Let \(n \geq 3 \). Then each one of the following types \((A), (B)\) is a locally maximal regular subsemiband of \(SOP_n \):

\((A)\) \(S_i = O_i, \ i \in [n] \).
\((B)\) \(T_i = \{ \alpha \in SOP_n : i\alpha = i \}, \ i \in [n] \).

Conversely, every locally maximal regular subsemiband of \(SOP_n \) is of one of types \((A), (B)\).

\(SOP_n \) has \(2n \) locally maximal regular subsemibands.

To prove Theorem 2.1 we need the following series of lemmas. First, we need the following notation.

As in [1], let \(k \in \{ 0, 1, 2, \ldots, n-1 \} \), define a total order \(\leq_k \) on \([n]\) by
\[
k + 1 \leq_k k + 2 \leq_k \cdots \leq_k n \leq_k 1 \leq_k \cdots \leq_k k.
\]
We write \(i \leq_k j \) if \(i < k \) \(j \) and \(i \neq j \). Note that \(i \leq_k j \) if and only if \(i - k \leq j - k \). We say that \(A = (a_1, a_2, \ldots, a_t) \) is cyclic with respect to \(\leq_k \) if there exist no more than one subscript \(i \) such that \(a_{i+1} <_k a_i \). Clearly \(A = (a_1, a_2, \ldots, a_t) \) is cyclic with respect to \(\leq_k \) if and only if there exists \(j \in \{ 0, \ldots, t-1 \} \) such that
\[
a_{j+1} \leq_k \cdots \leq_k a_t \leq_k a_1 \leq_k \cdots \leq_k a_j.
\]

The following lemma was proved by Catarino and Higgins [1, Lemma 1.4].

Lemma 2.2 Let \(A = (a_1, a_2, \ldots, a_t) \) be any sequence of elements from \([n]\). Then the following are equivalent:
\((a)\) \(A \) is cyclic with respect to \(\leq_0 = \leq \).
\((b)\) \(A \) is cyclic with respect to \(\leq_k \) for some \(k \).
\((c)\) \(A \) is cyclic with respect to \(\leq_k \) for all \(k \).
Lemma 2.4
Let
\[M_{i,j} = \langle E(J_{n-1}) \setminus \{[i \rightarrow i + 1], [j \rightarrow j - 1]\} \rangle, i, j \in [n], \]
\[S_j^k = \{ \alpha \in \mathcal{O}_n^k : (\forall x \in [n]) \ j \leq_k x \implies j \leq_k x \alpha \}, j \neq k + 1 \ (mod(n)), \]
\[T_j^k = \{ \alpha \in \mathcal{O}_n^k : (\forall x \in [n]) x \leq_k j \implies x \alpha \leq_k j \}, j \neq k \ (mod(n)). \]

Proof. See [29, Lemma 3.5]. □

The following lemma is the main result (Theorem 3.5) of [28].

Lemma 2.5
Let \(M_{i,j}, S_j^i \) and \(T_j^{i-1} \) be defined as (2.1), (2.2) and (2.3), respectively. Then
\[M_{i,j} \cap J_{n-1} = (S_j^i \cup T_j^{i-1}) \cap J_{n-1}, \ j \neq i + 1 \ (mod(n)). \]

Proof. See [28, Theorem 3.5]. □

We can use Lemmas 1.2, 2.2 and 2.4 to obtain the following.

Lemma 2.3
Let \(M_{i,j}, S_j^i \) and \(T_j^{i-1} \) be defined as (2.1), (2.2) and (2.3), respectively. Then
\[M_{i,j} \cap J_{n-1} = (S_j^i \cup T_j^{i-1}) \cap J_{n-1}, \ j \neq i + 1 \ (mod(n)). \]

Proof. See [29, Lemma 3.5]. □

Let \(M_{i,i} \) be defined as (2.1). Then
\[M_{i,i} = \{ \alpha \in \mathcal{SOP}_n : i \alpha = i \}. \]

Proof. Let \(D_i = \{ \alpha \in \mathcal{SOP}_n : i \alpha = i \} \) and \(F = E(J_{n-1}) \setminus \{[i \rightarrow i + 1], [i \rightarrow i - 1]\} \). Then
\[M_{i,i} = \langle F \rangle. \] It is easy to verify that \(D_i \) is a subsemigroup of \(\mathcal{SOP}_n \). Note that \(F \subseteq D_i \). Thus
\[M_{i,i} = \langle F \rangle \subseteq D_i. \]

For the reverse containment, let \(T_i^{i-1} \) be defined as (2.3). By Lemmas 1.2 and 2.4, we have
\[T_i^{i-1} = \langle E(J_{n-1}) \setminus \{[i - 1 \rightarrow i], [i \rightarrow i - 1], [i \rightarrow i + 1]\} \rangle. \]

It follows easily that
\[M_{i,i} = \langle F \rangle = \langle T_i^{i-1} \cup \{[i - 1 \rightarrow i]\} \rangle. \]

By the definition of \(T_i^{i-1} \), we easily deduce that
\[T_i^{i-1} = \{ \alpha \in \mathcal{O}_n^{i-1} : i \alpha = i \}. \]

We now prove that \(D_i \subseteq M_{i,i} \). Let \(\alpha \in D_i \). We partition into two cases.

Case 1. \(|im(\alpha)| = 1\). Clearly, \(\alpha = \binom{n}{i} \) (since \(\alpha \in D_i \), we have \(i \alpha = i \)). Then, by (2.4) and (2.5),
\[\alpha = \binom{n}{i} \in \{ \alpha \in \mathcal{O}_n^{i-1} : i \alpha = i \} = T_i^{i-1} \subseteq M_{i,i}. \]
Case 2. $|\text{im}(\alpha)| = r \geq 2$. From Theorem 3.3 in [1], we know that α can be expressed as

$$
\alpha = \begin{pmatrix}
A_1 & A_2 & \cdots & A_r \\
b_1 & b_2 & \cdots & b_r
\end{pmatrix},
$$

where $A_s = \{a_s, a_s + 1, \ldots, a_s + 1 \} = s = 1, 2, \ldots, r$, the subset $\{a_1, a_2, \ldots, a_r\}$ is an initial points set of kernel classes A_1, A_2, \ldots, A_r, $A_1 < a_2 < \cdots < a_r$ and (b_1, b_2, \ldots, b_r) is cyclic. Since $\alpha \in D_i$, we have $\alpha = i$. Then there exist $k \in \{1, 2, \ldots, r\}$ such that $b_k = i$ and $i \in A_k$. Note that $A_k = \{a_k, a_k + 1, \ldots, a_k + 1 \}$. We may now partition into two cases according to $a_k = i$ or $a_k \neq i$.

Case 2.1. $a_k = i$. Note that $b_k = i$ and (b_1, b_2, \ldots, b_r) is a cyclic. From Lemma 2.2, we easily deduce that

$$
i = b_k \leq i - 1 \leq i - 1 b_r \leq i - 1 \leq \frac{a - b_k - 1}{b_k - 1}.
$$

(2.6)

Note that $A_k = \{i, i + 1, \ldots, a_k + 1 \}$ and $A_k = \{a_k + 1, a_k + 1, \ldots, i - 1 \}$ (since $a_k = i - 1$).
Then, by (2.5), (2.6) and the definition of O_{i-1}^n, $\alpha = \begin{pmatrix} A_k \ A_k+1 \ \cdots \ A_r \ A_1 \ \cdots \ A_k-1 \\
b_k \ b_{k+1} \ \cdots \ b_r \ b_1 \ \cdots \ b_{k-1}\end{pmatrix} \in T_i^{i-1}$.

Thus, by (2.4), $\alpha \in T^{i-1}_i \subseteq M_{i,j}$.

Case 2.2. $a_k \neq i$. Since $i \in A_k$ and $A_k = \{a_k, a_k + 1, \ldots, a_k + 1 \}$, we have $i - 1 \in A_k$. Let $A_k = \{a_k, a_k + 1, \ldots, i - 1 \}$ and $A_k^* = \{i, i + 1, \ldots, a_k + 1 \}$. Then $A_k = A_k^* \cup A_k^*$. Note that $b_k = i$ and $A_s = \{a_s, a_s + 1, \ldots, a_s + 1 \}$, $s = 1, 2, \ldots, r$. Let

$$
\beta = \begin{pmatrix}
A_k^{*} & A_k & \cdots & A_r & A_1 & \cdots & A_k \\
i & a_k+1 & \cdots & a_r & a_1 & \cdots & a_k-1 & i - 1
\end{pmatrix},
$$

$$
\gamma = \begin{pmatrix}
A_k^{*} & A_k & \cdots & A_r & A_1 & \cdots & A_k & A_k^* \\
b_k & b_{k+1} & \cdots & b_r & b_1 & \cdots & b_{k-1} & b_{k-1}
\end{pmatrix}.
$$

Then clearly $\alpha = \beta[i - 1 \to i] \gamma$. Note that $[i - 1 \to i] \in M_{i,j}$ (by (2.4)). To prove that $\alpha \in M_{i,j}$, it suffices to prove that $\beta, \gamma \in M_{i,j}$. By (2.5), (2.6) and the definition of O_{i-1}^n, we have $\gamma \in T_i^{i-1}$.

Thus, by (2.4), $\gamma \in T_i^{i-1} \subseteq M_{i,j}$. Since $i - 1, i \in A_k$, we have $a_k \leq i - 1 < i \leq a_k + 1 < a_k + 1$.

Note that $a_1 < a_2 < \cdots < a_r$. It easily follows from Lemma 2.2 that

$$
i \leq a_k \leq a_k + 1 \leq \cdots \leq a_k + 1 \leq a_{k-1} \leq \cdots \leq a_k < a_i \leq a_{i-1} \leq i - 1.
$$

Then, by (2.5) and the definition of O_{i-1}^n, $\beta \in T_i^{i-1}$. Thus, by (2.4), $\beta \in T_i^{i-1} \subseteq M_{i,j}$. \boxdot

Recall that Catarino and Higgins [1] had already proved that SOP_n is a subsemiband of \mathcal{T}_n.
We have proved in [28, Theorem 2.1] the following result.

Lemma 2.6 For $n \geq 3$, let $A \subseteq E(\text{SOP}_n)$. Then

$$
\langle A \rangle = \text{SOP}_n \text{ if and only if } E_n^+ \subseteq A \text{ or } E_n^- \subseteq A.
$$

The following lemma was proved by the author in [28, Lemma 2.3].
Lemma 2.7 Let \(i \in [n] \), \(e = [i+1 \to i] \), \(f \in E(J_{n-1}) \) and \(ef \notin \{e, f\} \). Then

\[
ef \in J_{n-1} \text{ if and only if } f = [i+2 \to i+1].
\]

Let \(I \) be a subset of \(E(J_{n-1}) \). It is obvious that \(I \subseteq E((I) \cap J_{n-1}) \). In general, \(E((I) \cap J_{n-1}) \subseteq I \) is false. For example, let \(I = E_{n-1}^+ \), then, by Lemma 2.6, \((I) = SOP_n \) and so \(E((I) \cap J_{n-1}) = E(J_{n-1}) = E_{n-1}^+ \cup E_{n-1}^- \). Then clearly \(E((I) \cap J_{n-1}) \nsubseteq I \). However, we have the following.

Lemma 2.8 Let \(I \) be a subset of \(E(J_{n-1}) \). If \(\langle I \rangle \subset SOP_n \). Then

\[
E((I) \cap J_{n-1}) = I.
\]

Proof. Clearly, \(I \subseteq E((I) \cap J_{n-1}) \). Now, we need to prove that \(E((I) \cap J_{n-1}) \subseteq I \). Note that \(I \subseteq E(J_{n-1}) \) and \(E(J_{n-1}) = E_{n-1}^+ \cup E_{n-1}^- \). Let \(I_1 = \langle I \rangle \cap E_{n-1}^+ \) and \(I_2 = \langle I \rangle \cap E_{n-1}^- \), then \(E((I) \cap J_{n-1}) = I_1 \cup I_2 \). Let \(G_i = I_i \setminus I, i = 1, 2 \). To prove that \(E((I) \cap J_{n-1}) \subseteq I \), we only need to prove that \(G_i \subseteq \emptyset \), \(i = 1, 2 \). Note that \(G_1 \subseteq I_1 \subseteq E_{n-1}^+ \) and \(G_2 \subseteq I_2 \subseteq E_{n-1}^- \). Now, we assume that \(G_1 \neq \emptyset \) and so there is some idempotent element \(e = [k \to k+1] \in I_i \setminus I \). Note that \(I \subseteq I \) and \(I \subseteq E(J_{n-1}) \). Obviously, we may suppose that

\[
e = e_1 e_2 \cdots e_r, \text{ where } e_i \in I, i = 1, 2, \ldots, r, \ r > 1,
\]

and

\[
e_i e_{i+1} \cdots e_j \neq e_i, e_j, \ 1 \leq i < j \leq r.
\]

Since \(e \in J_{n-1} \) and \(e \notin I \) it follows that \(eRe_1, eLe_r \). By Lemma 1.1, we have \(e_i = [k+1 \to k] \) and \(e_r = [k \to k-1] \). By repeated use of Lemma 2.7, we have \(e_i = [k+i \to k+i-1] (i = 1, 2, \ldots, r) \). Then \(e_r = [k+r \to k+r-1] = [k \to k-1] \) and so \(r \equiv 0 \ (mod \ n) \). It follows immediately that \(E_{n-1}^- = \{[k+i \to k+i-1] : i \in [n] \} = \{e_1, e_2, \ldots, e_r \} \subseteq I \). Thus, by Lemma 2.6, \((I) = SOP_n \), contradicting the assumption that \(\langle I \rangle \subset SOP_n \). Similarly, we can prove that \(G_2 = \emptyset \). \(\Box \)

Let \(I \) and \(J \) be nonempty subsets of \(E(J_{n-1}) \). It is obvious that \(I \subseteq J \Rightarrow \langle I \rangle \subseteq \langle J \rangle \Rightarrow K(n, n-2) \cup \langle I \rangle \subseteq K(n, n-2) \cup \langle J \rangle \). In general, \(I \subseteq J \Rightarrow \langle I \rangle \subseteq \langle J \rangle \subseteq K(n, n-2) \cup \langle J \rangle \) are false. For example, let \(I = E_{n-1}^+ \) and \(J = E_{n-1}^- \), then, by Lemma 2.6, \((I) = SOP_n \) and so \(K(n, n-2) \cup (I) = K(n, n-2) \cup (J) = SOP_n \). Clearly \(I \cap J = \emptyset \). However, we can use Lemma 2.8 to obtain the following.

Lemma 2.9 Let \(I \) and \(J \) be nonempty subsets of \(E(J_{n-1}) \). If \(\langle J \rangle \subset SOP_n \). Then

(i) \(I \subseteq J \Leftrightarrow \langle I \rangle \subseteq \langle J \rangle \Leftrightarrow K(n, n-2) \cup (I) \subseteq K(n, n-2) \cup (J) \).

(ii) \(I \subseteq J \Leftrightarrow \langle I \rangle \subseteq \langle J \rangle \Leftrightarrow K(n, n-2) \cup (I) \subseteq K(n, n-2) \cup (J) \).

Proof. (i) Clearly,

\[
I \subseteq J \Rightarrow \langle I \rangle \subseteq \langle J \rangle \Rightarrow K(n, n-2) \cup (I) \subseteq K(n, n-2) \cup (J).
\]

To prove that

\[
I \subseteq J \Leftrightarrow \langle I \rangle \subseteq \langle J \rangle \Leftrightarrow K(n, n-2) \cup (I) \subseteq K(n, n-2) \cup (J).
\]
Lemma 2.10

Let \(K(n, n - 2) \cup \langle I \rangle \subseteq K(n, n - 2) \cup \langle J \rangle \Rightarrow I \subseteq J. \)

Suppose that \(K(n, n - 2) \cup \langle I \rangle \subseteq K(n, n - 2) \cup \langle J \rangle. \) Then \(\langle I \rangle \cap J_{n-1} = (K(n, n - 2) \cup \langle I \rangle) \cap J_{n-1} \subseteq (K(n, n - 2) \cup \langle J \rangle) \cap J_{n-1} = (J) \cap J_{n-1}. \) Thus, by Lemma 2.8,

\[
I \subseteq E(\langle I \rangle \cap J_{n-1}) \subseteq E((J) \cap J_{n-1}) = J.
\]

(ii) By (i), we easily deduce that

\[
I = J \iff \langle I \rangle = \langle J \rangle \iff K(n, n - 2) \cup \langle I \rangle = K(n, n - 2) \cup \langle J \rangle.
\]

It follows immediately that

\[
I \subset J \iff \langle I \rangle \subset \langle J \rangle \iff K(n, n - 2) \cup \langle I \rangle \subset K(n, n - 2) \cup \langle J \rangle.
\]

\(\square \)

We can use Lemmas 2.5 and 2.9 to obtain the following.

Lemma 2.10 Let \(i \in \{n\}, \) \(T_i = \{ \alpha \in \text{SOP}_n : i\alpha = i \}. \) Then \(T_i \) is a locally maximal regular subsemiband of \(\text{SOP}_n. \)

Proof. Let \(M_{i,i} \) be as defined in (2.1). By Lemma 2.5, we have

\[
T_i = \{ \alpha \in \text{SOP}_n : i\alpha = i \} = M_{i,i} = \langle E(J_{n-1}) \setminus \{[i \to i + 1], [i \to i - 1]\} \rangle. \tag{2.7}
\]

Then \(T_i \) is a subsemiband of \(\text{SOP}_n. \) Let \(\alpha \in T_i. \) If \(|\text{im}(\alpha)| = 1, \) then clearly \(\alpha \) is an idempotent, and so \(\alpha \) is regular. If \(|\text{im}(\alpha)| \geq 2, \) from Theorem 3.3 in [1], we know that \(\alpha \) can be expressed as

\[
\alpha = \begin{pmatrix}
A_1 & A_2 & \cdots & A_r \\
b_1 & b_2 & \cdots & b_r
\end{pmatrix},
\]

where \(A_s = \{a_s, a_s + 1, \ldots, a_s + 1\}, s = 1, 2, \ldots, r, \) the subset \(\{a_1, a_2, \ldots, a_r\} \) is an initial points set of kernel classes \(A_1, A_2, \ldots, A_r, a_1 < a_2 < \cdots < a_r \) and \((b_1, b_2, \ldots, b_r) \) is cyclic. Since \(\alpha \in T_i, \) we have \(i\alpha = i. \) Then there exist \(k \in \{1, 2, \ldots, r\} \) such that \(b_k = i \) and \(i \in A_k. \) Let \(C_j = \{b_j, b_j + 1, \ldots, b_j + 1\}, j = 1, 2, \ldots, r, \) and let

\[
\beta = \begin{pmatrix}
C_k & C_{k+1} & \cdots & C_r \\
i & a_{k+1} & \cdots & a_r \\
& a_1 & \cdots & a_{k-1}
\end{pmatrix},
\]

then \(\alpha = \alpha\beta\alpha \) (since \(i \in A_k \)) and \(i\beta = i \) (since \(i = b_k \in C_k \)). Since \(i \in A_k, \) we have \(a_k \leq i \leq a_{k+1} - 1 < a_{k+1}. \) Note that \(a_1 < a_2 < \cdots < a_r. \) It easily follows from Lemma 2.2 that

\[
i \leq i - 1 \leq a_{k+1} \leq i - 1 \leq \cdots \leq i - 1 \leq a_r \leq \cdots \leq i - 1 \leq a_{k-1} \leq i - 1 \leq i - 1.
\]

Then, by (2.5) and the definition of \(\text{SOP}_n, \) \(\beta \in T_i^{-1}. \) Thus, by (2.4) and (2.7), \(\beta \in T_i^{-1} \subseteq M_{i,i} = T_i \) and so \(\alpha \) is regular (note that \(\alpha = \alpha\beta\alpha \)). Hence \(T_i \) is a locally regular subsemiband of \(\text{SOP}_n. \)
Let \(\langle J \rangle \) \((J \subseteq E(J_{n-1}))\) be a locally regular subsemiband of \(SOP_n\) properly containing \(T^8\). Then, by Lemma 2.9 \((ii)\) and \((2.7)\),

\[
E(J_{n-1}) \setminus \{[i \rightarrow i + 1], [i \rightarrow i - 1]\} \subseteq J,
\]

and so

\[
E(J_{n-1}) \setminus \{[i \rightarrow i + 1]\} \subseteq J \text{ or } E(J_{n-1}) \setminus \{[i \rightarrow i - 1]\} \subseteq J.
\]

Note \(E(J_{n-1}) = E_{n-1}^+ \cup E_{n-1}^-\). It follows that

\[
E_{n-1}^- \subseteq J \text{ or } E_{n-1}^+ \subseteq J.
\]

Thus, by Lemma 2.6, \(\langle J \rangle = SOP_n\). \(\Box\)

A proper subsemigroup \(S\) of \(SOP_n\) is called \textit{maximal regular subsemiband} of \(SOP_n\) if \(S\) is a regular subsemiband, and any regular subsemiband of \(SOP_n\) properly containing \(S\) must be \(SOP_n\). The following lemma is the main result of [30].

\textbf{Lemma 2.11} Let \(n \geq 3\). Then each maximal regular subsemiband of \(SOP_n\) must be of one of the following forms:

\((C)\) \(K(n, n - 2) \cup O_i^n, i \in [n]\).

\((D)\) \(K(n, n - 2) \cup \{\alpha \in O_i^{n-1} \cup O_i^n : i \alpha = i\}, i \in [n]\).

\textbf{Proof.} See [30, Theorem 4]. \(\Box\)

The following lemma gives a necessary condition for a locally regular subsemiband of \(SOP_n\) to be maximal.

\textbf{Lemma 2.12} Let \(I\) be a nonempty subset of \(J_{n-1}\). If \(\langle I \rangle\) is a locally maximal regular subsemiband of \(SOP_n\) then \(T = K(n, n - 2) \cup \langle I \rangle\) is a maximal regular subsemiband of \(SOP_n\).

\textbf{Proof.} From Lemma 13 of [30] we know that if \(S\) is a regular semigroup and \(I\) is an ideal of \(S\), then \(I\) is also a regular semigroup. Note that \(SOP_n\) is a regular semigroup (see [1, Theorem 3.1]) and \(K(n, n - 2)\) is an ideal of \(SOP_n\). Then \(K(n, n - 2)\) is regular and so \(T = K(n, n - 2) \cup \langle I \rangle\) is regular (since \(\langle I \rangle\) is regular). From Theorem 2.1 of [29] we know that \(K(n, n - 2) = \langle E(J_{n-2}) \rangle\). Then

\[
T = K(n, n - 2) \cup \langle I \rangle = \langle E(J_{n-2}) \rangle \cup I.
\]

Thus \(T = K(n, n - 2) \cup \langle I \rangle\) is a regular subsemiband of \(SOP_n\).

Let \(S\) be a regular subsemiband of \(SOP_n\) properly containing \(T\). Clearly \(S = \langle E(S) \rangle\) and \(K(n, n - 2) \subseteq T \subset S\). We easily deduce that \(S = K(n, n - 2) \cup S = K(n, n - 2) \cup \langle E(S \cap J_{n-1}) \rangle\) and so

\[
K(n, n - 2) \cup \langle I \rangle = T \subset S = K(n, n - 2) \cup \langle E(S \cap J_{n-1}) \rangle.
\]

Note that \(E(S \cap J_{n-1}) \subseteq E(J_{n-1})\). Then, by Lemma 2.9 \((ii)\), \(\langle I \rangle \subseteq \langle E(S \cap J_{n-1}) \rangle\) and so, by the locally maximality of \(\langle I \rangle\), \(\langle E(S \cap J_{n-1}) \rangle = SOP_n\). Thus \(S = SOP_n\) and so \(T = K(n, n - 2) \cup \langle I \rangle\) is a maximal regular subsemiband of \(SOP_n\). \(\Box\)
Lemma 2.13 Let $n \geq 3$. Then
\[O^k_n = (E(O^k_n \cap J_{n-1})). \]

Proof. See [28, Lemma 2.2]. □

Now, we can prove Theorem 2.1.

Proof Theorem 2.1 From Lemma 2.10 we know that T_i is a locally maximal regular subsemiband of SOP_n. By Lemmas 1.2 and 2.13, we have
\[O^i_n = (E(J_{n-1}) \setminus \{[i \to i + 1], [i + 1 \to i]\}). \]

It is well known that O_n is regular. From Lemma 4.1 in [1], we know that the mapping $\varphi_i : f \to a^{-i}fa^i$ is an isomorphism between O_n and O^i_n, where $a = (123 \cdots n)$ is the fixed generator of the cyclic group Z_n. Then O^i_n is regular and so, by (2.8), $S_i = O^i_n$ is a locally regular subsemiband of SOP_n. Let $\langle J \rangle (J \subseteq E(J_{n-1}))$ be a locally regular subsemiband of SOP_n properly containing $S_i = O^i_n$. Then, by Lemma 2.9 (ii) and (2.8),
\[E(J_{n-1}) \setminus \{[i \to i + 1], [i + 1 \to i]\} \subseteq J, \]
and so
\[E(J_{n-1}) \setminus \{[i \to i + 1]\} \subseteq J \text{ or } E(J_{n-1}) \setminus \{[i + 1 \to i]\} \subseteq J. \]

Note that $E(J_{n-1}) = E^+_{n-1} \cup E^-_{n-1}$. It follows that
\[E^-_{n-1} \subseteq J \text{ or } E^+_{n-1} \subseteq J. \]
Thus, by Lemma 2.6, $\langle J \rangle = SOP_n$. Hence S_i is a locally maximal regular subsemiband of SOP_n.

Conversely, we shall prove that each locally maximal regular subsemiband of SOP_n must be of the form S_i or T_i. Let $C_i = K(n, n - 2) \cup O^i_n$ and $D_i = K(n, n - 2) \cup \{\alpha \in O^i_{n-1} \cup O^i_n : \alpha \alpha = i\}$. By (2.8), we have
\[C_i = K(n, n - 2) \cup O^i_n = K(n, n - 2) \cup (E(J_{n-1}) \setminus \{[i \to i + 1], [i + 1 \to i]\}). \]

Let M_i, S_i^t and T_i^{t-1} be defined as (2.1), (2.2) and (2.3), respectively. By the definition of S_i^t, T_i^{t-1}, we easily deduce that $S_i^t = \{\alpha \in O^i_n : \alpha \alpha = i\}$ and $T_i^{t-1} = \{\alpha \in O^i_{n-1} : \alpha \alpha = i\}$. Then, by Lemma 2.3,
\[D_i = K(n, n - 2) \cup \{\alpha \in O^i_{n-1} \cup O^i_n : \alpha \alpha = i\} = K(n, n - 2) \cup S_i^t \cup T_i^{t-1} \]
\[= K(n, n - 2) \cup ((S_i^t \cup T_i^{t-1}) \cap J_{n-1}) = K(n, n - 2) \cup (M_i \cap J_{n-1}) \]
\[= K(n, n - 2) \cup M_{i,i} = K(n, n - 2) \cup (E(J_{n-1}) \setminus \{[i \to i + 1], [i \to i - 1]\}). \]

Suppose that $\langle I \rangle (I \subseteq E(J_{n-1}))$ is a locally maximal regular subsemiband of SOP_n. Then, by Lemma 2.12, $T = K(n, n - 2) \cup I$ is a maximal regular subsemiband of SOP_n. Thus, by Lemma 2.11, (2.9) and (2.10), there exist $s \in [n]$ such that $T = C_s = K(n, n - 2) \cup (E(J_{n-1}) \setminus \{[s \to s + 1], [s +
1 \to s\}) or there exist \(t \in [n]\) such that \(T = D_t = K(n,n-2) \cup \langle E(J_{n-1}) \setminus \{[t \to t+1], [t \to t-1]\}\rangle\).

It follows easily from Lemma 2.9 (i) that

\[
\langle I \rangle = \langle E(J_{n-1}) \setminus \{[s \to s+1], [s+1 \to s]\} \rangle \text{ or } \langle I \rangle = \langle E(J_{n-1}) \setminus \{[t \to t+1], [t \to t-1]\} \rangle.
\]

Thus, by (2.8) and Lemma 2.5,

\[
\langle I \rangle = \langle E(J_{n-1}) \setminus \{[s \to s+1], [s+1 \to s]\} \rangle = O_n^s = S_s
\]
or

\[
\langle I \rangle = \langle E(J_{n-1}) \setminus \{[t \to t+1], [t \to t-1]\} \rangle = M_{t,t} = \{\alpha \in SOP_n : t\alpha = t\} = T_t.
\]

It now is obvious that \(SOP_n\) has \(n\) locally maximal regular subsemibands of type (A), and \(n\) locally maximal regular subsemibands of type (B). Hence \(SOP_n\) has \(2n\) locally maximal regular subsemibands. This completes the proof of Theorem 2.1.

Remark 2 By Lemma 2.5 and (2.10), we have

\[
K(n,n-2) \cup \{\alpha \in O_n^{i-1} \cup O_n^i : i\alpha = i\} = K(n,n-2) \cup M_{t,i} = K(n,n-2) \cup \{\alpha \in SOP_n : i\alpha = i\}.
\]

From this fact and Lemma 2.11 (the main result of [30]), we immediately obtain the following result, which is a clearer than the main result of [30] (see [30, Theorem 4]).

Theorem 2.14 Let \(n \geq 3\). Then each maximal regular subsemiband of \(SOP_n\) must be of one of the following forms:

(C) \(K(n,n-2) \cup O_n^i, i \in [n]\).

(D) \(K(n,n-2) \cup \{\alpha \in SOP_n : i\alpha = i\}, i \in [n]\).

3 Some related problems

In [21], You described the maximal regular subsemigroup of the ideals of \(T_n\). In turn, the maximal subsemigroup of the ideals of \(T_n\) was given by Yang and Yang [20]. In [22], You and Yang classified the maximal subsemibands of \(Sing_n\). Yang and Yang [27] obtained the classification of maximal regular subsemibands of \(Sing_n\). For the semigroup \(T_n\), it is then natural to ask for the problem concerning the description of (locally) maximal subsemibands or (locally) maximal regular subsemibands of the ideals of \(T_n\) which are open questions.

On the other hand, as the notions of order-preserving transformation and orientation-preserving transformation have been widely considered for several classes of transformation semigroups, it is also natural to consider the semigroups \(O_n\) and \(OP_n\). We also may ask for the problem concerning the description of (locally) maximal subsemigroups or (locally) maximal regular subsemigroups of the ideals of the two semigroup. Dimitrova and Koppitz [2] determined all the maximal subsemigroups of the ideals of \(O_n\). The same authors [3] classified completely maximal regular subsemigroups of the ideals of \(O_n\). Recently, Zhao [31] classified completely maximal regular subsemibands of the ideals of \(O_n\). Further, Dimitrova, Fernandes and Koppitz [5] described all the maximal subsemibands of the ideals of \(OP_n\). All the other cases remain as open problems.
Acknowledgments

The author would like to express his appreciation to the referees for the valuable comments and suggestions which improved the presentation of this paper. Especially, the author is also grateful to the anonymous referee who puts forward an advising suggestion to seek in the future research a general approach to the study of maximal subsemigroups of finite semigroups.

References

