APPROXIMATELY MIDCONVEX SET-VALUED FUNCTIONS

ALIREZA KAMEL MIRMOSTAFAEE AND MOSTAFA MAHDAVI

Abstract. We will show that if F is a set-valued mapping which satisfies

$$F(x) + F(y) \subseteq 2F\left(\frac{x + y}{2}\right) + K$$

for some convex compact set K, then under some restrictions, there are maximal superadditive and midconvex mappings which are K-subclose to F.

1. Introduction

The notion of stability of functional equations has its origins with S. M. Ulam [25], who posed the fundamental problem in 1940 and with D. H. Hyers [6], who gave the first significant partial solution in 1941. A generalized version of Hyers theorem for approximately linear mappings was given by Th. M. Rassias [19]. Since then, the stability problems of various functional equations have been extensively investigated by a number of authors (e. g. [1, 7, 8, 9, 12, 10, 11, 18, 22, 26]).

Functional inclusion is a tool for defining many notions of set-valued analysis, e. g., linear, affine, convex, midconvex, concave, superadditive and subadditive maps.

In set-valued analysis, a functional inclusion is called stable if any function which satisfies this inclusion approximately is near to a true solution of the functional inclusion. The Hyers-Ulam stability is discussed for set-valued functional equations and inclusions by some mathematicians [3, 15, 16, 17, 24].

Let X and Y be semigroups and $F : X \rightarrow 2^Y$. If F satisfies

\begin{equation}
F(x) + F(y) \subseteq F(x + y) \quad (x \in X),
\end{equation}

then F is called superadditive. A function $F : X \rightarrow 2^Y$ is called midconvex if

\begin{equation}
F(x) + F(y) \subseteq 2F\left(\frac{x + y}{2}\right) \quad (x, y \in X).
\end{equation}

2000 Mathematics Subject Classification. 39B62, 39B52, 39B82, 26B51.

Key words and phrases. Set-valued mappings, superadditive map, midconvex map.

This research was supported by a grant from Ferdowsi University of Mashhad No. MP91280MIM.
Note that these notions are different. For example, if $F, G : [0, \infty) \to 2^\mathbb{R}$ are defined by $F(x) = [0, \sqrt{x}]$ and $G(x) = [0, x^2]$ for each $x \in [0, \infty)$, then F is midconvex but it is not superadditive, while the converse holds for G.

Some authors studied different properties of midconvex and additive set-valued functions (e.g. [2, 5, 14, 23]). In this paper, we will show that, under certain circumstances, every approximately midconvex function F from an abelian semigroup to compact convex subsets of a topological vector space can be approximated by a set-valued additive mapping. We also prove that there exists a maximal midconvex set-valued mapping which approximates F.

2. Results

Throughout the paper, unless otherwise stated, we will assume that X is an abelian semigroup divisible by two and Y is a topological vector space. If $A, B \subset Y$ and $\lambda \in \mathbb{R}$, we define

$$A + B = \{a + b : a \in A, b \in B\}, \quad \lambda A = \{\lambda a : a \in A\}.$$

One can easily see that for each $A, B \subset Y$ and $\lambda, \mu \geq 0$,

$$\lambda (A + B) = \lambda A + \lambda B, \quad (\lambda + \mu) A \subseteq \lambda A + \mu A.$$

Moreover, if A is convex, then $(\lambda + \mu) A = \lambda A + \mu A$. We denote by $C(Y)$ and $CC(Y)$ the collection of all non-empty compact subsets and all non-empty compact convex subsets of Y respectively.

Definition 2.1. If K is a subset of Y and $F : X \to 2^Y$, we say that F is K-midconvex if

$$(2.1) \quad F(x) + F(y) \subseteq 2F\left(\frac{x + y}{2}\right) + K \quad (x, y \in X).$$

The above definition is known in the case where K is a convex cone. Many properties of such set-valued functions can be found, for instance in [13].

We need some auxiliary results. The first one is due to Rådström [20].

Lemma 2.2. Let A, B and C be nonempty subsets of a topological vector space Y. Suppose that B is closed and convex and C is bounded. If $A + C \subseteq B + C$, then $A \subseteq B$. If moreover, A is closed and convex and $A + C = B + C$, then $A = B$.

The following result may be found in [4, Lemma 29. 2].
Lemma 2.3. Assume that \(\{ A_n \} \) and \(\{ B_n \} \) are decreasing sequences of closed subsets of topological vector space and \(A_1 \) is compact. Then

\[
\bigcap_{n=1}^{\infty} (A_n + B_n) = \bigcap_{n=1}^{\infty} A_n + \bigcap_{n=1}^{\infty} B_n.
\]

Definition 2.4. Let \(F, G : X \to C(Y) \) be two set valued functions, for subset \(K \) of \(Y \) we say that \(F \) is \(K \)-subclose to \(G \) if \(F(x) \subseteq G(x) + K \) \(\ (x \in X) \).

Theorem 2.5. Let \(F : X \to CC(Y) \) be a \(K \)-midconvex set-valued function, \(K \in CC(Y) \) and \(0 \in F(0) \). Then there exists a superadditive set-valued function \(A : X \to CC(Y) \) which is maximal \(K \)-subclose to \(F \) and \(A(2x) = 2A(x) \) for each \(x \in X \).

Proof. We divide the proof into three steps.

Step 1. There is a superadditive function \(A : X \to CC(Y) \) such that \(A(x) \subseteq F(x) + K \) for each \(x \in X \).

Put \(y = 0 \) in (2.1) to obtain

\[
F(x) + F(0) \subseteq 2F\left(\frac{x}{2}\right) + K \ (x \in X).
\]

Since \(0 \in F(0) \), we have

\[
F(x) \subseteq 2F\left(\frac{x}{2}\right) + K \ (x \in X).
\]

Replacing \(x \) by \(2^n x \) in (2.3), we see that

\[
F(2^n x) \subseteq 2F(2^{n-1} x) + K \ (x \in X, n \in \mathbb{N}).
\]

By multiplying both sides of (2.4) by \(2^{-n} \), we get

\[
2^{-n}F(2^n x) \subseteq 2^{-(n-1)} F(2^{n-1} x) + \frac{K}{2^n} \ (x \in X, n \in \mathbb{N}).
\]

It follows from (2.5) that

\[
2^{-n}F(2^n x) + \frac{K}{2^n} \subseteq 2^{-(n-1)} F(2^{n-1} x) + \frac{K}{2^{n-1}} \ (x \in X, n \in \mathbb{N}).
\]

Let \(A_n(x) = 2^{-n}F(2^n x) + \frac{K}{2^n} \ (x \in X, n \in \mathbb{N}) \). It follows from (2.6) that \(\{ A_n(x) \} \) is a non-increasing sequence of compact sets in \(Y \) for each \(x \in X \). Hence

\[
A(x) = \bigcap_{n=0}^{\infty} A_n(x) \ (x \in X).
\]
defines a non-empty compact convex valued function on X. In view of (2.6), $A_n(x) = A_0(x) = F(x) + K$ for each $n \in \mathbb{N}$ and $x \in X$. Therefore $A(x) \subset F(x) + K$ for each $x \in X$. Moreover,

$$A(x) + A(y) = \bigcap_{n=0}^{\infty} A_n(x) + \bigcap_{n=0}^{\infty} A_n(y)$$

$$\subseteq \bigcap_{n=0}^{\infty} \left(A_n(x) + A_n(y) \right)$$

$$\subseteq \bigcap_{n=1}^{\infty} \left(2^{-n}F(2^n x) + \frac{K}{2^n} + 2^{-n}F(2^n y) + \frac{K}{2^n} \right)$$

$$\subseteq \bigcap_{n=1}^{\infty} \left(2^{-n} \left(2F(2^{n-1} x + 2^{n-1} y) + K \right) + \frac{K}{2^{n-1}} \right)$$

$$\subseteq \bigcap_{n=1}^{\infty} \left(2^{-(n-1)} F(2^{n-1} x + 2^{n-1} y) + \frac{K}{2^{n-1}} + \frac{K}{2^n} \right)$$

$$= \bigcap_{n=1}^{\infty} \left(2^{-(n-1)} F(2^{n-1} x + 2^{n-1} y) + \frac{K}{2^{n-1}} \right) + \bigcap_{n=1}^{\infty} \frac{K}{2^n} \quad \text{by Lemma 2.3}$$

$$= \bigcap_{n=1}^{\infty} A_{n-1}(x + y) = A(x + y)$$

for each $x, y \in X$. Hence a is superadditive. □

Step 2. $A(2x) = 2A(x)$.

For each $x \in X$, we have

$$A(2x) = \bigcap_{n=0}^{\infty} A_n(2x) = \bigcap_{n=0}^{\infty} \left[2^{-n}F(2^{n+1} x) + \frac{K}{2^n} \right] = \bigcap_{n=0}^{\infty} \left[2^{-n} F(2^{n+1} x) + \frac{2K}{2^{n+1}} \right]$$

$$= 2 \bigcap_{n=0}^{\infty} \left[2^{-(n+1)} F(2^{n+1} x) + \frac{K}{2^{n+1}} \right] = 2 \bigcap_{n=0}^{\infty} A_{n+1}(x) = 2 \bigcap_{n=0}^{\infty} A_n(x) = 2A(x). \Box$$

Step 3. A is maximal superadditive K-subclose to F.

Let $B : X \to CC(Y)$ be a superadditive K-subclose to F. Then for each $n \in \mathbb{N}$ and $x \in X$

$$2^n B(x) \subseteq B(2^n x) \subseteq F(2^n x) + K.$$

It follows that

$$B(x) \subseteq A_n(x) \quad (x \in X, n \in \mathbb{N}).$$
Therefore \(B(x) \subseteq A(x) \) for each \(x \in X \).

Definition 2.6. By a selection \(f \) of a mapping \(F : X \to 2^Y \) we mean a single-valued mapping \(f : X \to Y \) such that \(f(x) \in F(x) \) for each \(x \in X \).

Corollary 2.7. Let \((X,+)\) be an additive group divisible by two and \(F : X \to C(Y) \) be a midconvex function such that \(0 \in F(0) \). Then \(F \) admits an additive selection.

Proof. By Theorem 2.5, there is a superadditive function \(A : X \to C(Y) \) such that \(A(x) \subseteq F(x) \) for each \(x \in X \) and \(A(2x) = 2A(x) \) for each \(x \in X \). Therefore \(A(0) + A(0) \subseteq A(0) + \{0\} \). On account of Lemma 2.2, \(A(0) = \{0\} \). It follows that for each \(x \in X \), \(A(x) + A(-x) \subseteq A(x - x) = \{0\} \). Hence \(A \) is single-valued. Let \(A(x) = \{f(x)\} \) for each \(x \in X \). Then \(f \) is a selection of \(F \). Moreover for each \(x, y \in X \),

\[
f(x) + f(y) \in A(x) + A(y) \subseteq A(x + y) = \{f(x + y)\}.
\]

This proves additivity of \(f \). \qed

We need the following well-known result (see e.g. [21, Theorem 1.13(b)]).

Lemma 2.8. Let \(X \) be a topological vector space and \(A, B \subseteq X \), then \(\overline{A + B} \subseteq \overline{A} + \overline{B} \).

Theorem 2.9. Let \(F : X \to C(Y) \) be an \(K \)-midconvex set-valued function, \(K \in CC(Y) \) and \(0 \in F(0) \). Then there exists a maximal midconvex set-valued function \(M : X \to C(Y) \) which is \(K \)-subclose to \(F \).

Proof. Let

\[
\mathcal{P} = \{G : X \to C(Y) : G \text{ is midconvex and } G(x) \subseteq F(x) + K \text{ for each } x \in X\}.
\]

The proof of Theorem 2.5 ensures that \(\mathcal{P} \neq \emptyset \). Define a binary relation "\(\preceq \)" on \(\mathcal{P} \) as follows.

\[
G_1 \preceq G_2 \text{ if and only if } G_1(x) \subseteq G_2(x) \text{ for each } x \in X.
\]

Then \((\mathcal{P}, \preceq) \) is a partially ordered set. Let \(\mathcal{P}_0 \) be a chain in \(\mathcal{P} \), define

\[
H(x) = \bigcup_{G \in \mathcal{P}_0} G(x) \quad (x \in X).
\]

Since for each \(x \in X \) and \(G \in \mathcal{P}_0 \), \(G(x) \subseteq F(x) + K \) and \(F(x) + K \) is compact, \(H \) is compact-valued. We will show that for each \(x, y \in X \),

\[
\bigcup_{G \in \mathcal{P}_0} G(x) + \bigcup_{G \in \mathcal{P}_0} G(y) \subseteq 2H\left(\frac{x+y}{2}\right).
\]
To prove (2.7), take some $x, y \in X$, $z_1 \in \bigcup_{G \in \mathcal{P}_0} G(x)$ and $z_2 \in \bigcup_{G \in \mathcal{P}_0} G(y)$. Then for some $G_1, G_2 \in \mathcal{P}_0$, $z_1 \in G_1(x)$ and $z_2 \in G_2(y)$. Let $G_1 \preceq G_2$, then
\[
z_1 + z_2 \in G_1(x) + G_2(y) \subseteq G_2(x) + G_2(y) \subseteq 2G_2\left(\frac{x + y}{2}\right) \subseteq 2H\left(\frac{x + y}{2}\right).
\]
This proves (2.7). It follows from (2.7) and Lemma 2.8 that
\[
H(x) + H(y) = \bigcup_{G \in \mathcal{P}_0} G(x) + \bigcup_{G \in \mathcal{P}_0} G(y) \subseteq \bigcup_{G \in \mathcal{P}_0} G(x) + \bigcup_{G \in \mathcal{P}_0} G(y) \subseteq 2H\left(\frac{x + y}{2}\right).
\]
Therefore H is midconvex. By Zorn’s Lemma, \mathcal{P} has a maximal element M. This completes our proof. □

Example 2.10. Let $X = [0, \infty)$, $Y = \mathbb{R}$ and $F : X \to CC(Y)$ be defined by
\[
F(x) = \begin{cases}
[0, \sqrt{x}] & 0 \leq x < 1 \\
[0, 2\sqrt{x}] & x \geq 1
\end{cases}
\]
Since $g(t) = \sqrt{t}$ is concave, $F|_{[0, 1)}$ and $F|_{[1, \infty)}$ satisfy (2.1). Since $F(0) + F(1) = [0, 2]$ is not subset of $2F(\frac{0+1}{2}) = [0, \sqrt{2}]$, F is not midconvex. However,
\[
F(x) + F(y) \subseteq [0, 1] + [0, 2\sqrt{y}] \subseteq 2F\left(\frac{x + y}{2}\right) + [0, 1],
\]
whenever $0 \leq x < 1$ and $y \geq 0$. Hence for $K = [0, 1]$, F satisfies (2.1). According to Theorem 2.9, there is a maximal midconvex set-valued map $M : [0, \infty) \to C(Y)$ such that $M(x) \subseteq F(x) + [0, 1]$.

Acknowledgement. We would like to thank the referees very much for their valuable comments and suggestions.

References

Center of Excellence in Analysis on Algebraic Structures
Department of Pure Mathematics
School of Mathematical Sciences
Ferdowsi University of Mashhad
Mashhad 91775
Iran

E-mail address: mirmostafaei@ferdowsi.um.ac.ir