ON A CLASS OF δ-SUPPLEMENTED MODULES

BURCU UNGOR, SAIT HALICIOGLU, AND ABDULLAH HARMANCI

Abstract. Let R be an arbitrary ring with identity and M a right R-module. In this paper, we introduce a class of modules which is an analogous to δ-supplemented modules and principally \oplus-supplemented modules. The module M is called principally $\oplus\delta$-supplemented if for any $m \in M$ there exists a direct summand A of M such that $M = mR + A$ and $mR \cap A$ is δ-small in A. We prove that some results of principally \oplus-supplemented modules can be extended to principally $\oplus\delta$-supplemented modules for this general settings. Several properties of these modules are given and it is shown that the class of principally $\oplus\delta$-supplemented modules lies strictly between classes of principally \oplus-supplemented modules and principally δ-supplemented modules. We investigate conditions which ensure that any factor modules, direct summands and direct sums of principally $\oplus\delta$-supplemented modules are also principally $\oplus\delta$-supplemented. We give a characterization of principally $\oplus\delta$-supplemented modules over a semisimple ring and a new characterization of principally δ-semiperfect rings is obtained by using principally $\oplus\delta$-supplemented modules.

2010 Mathematics Subject Classification: 13C10, 16D10, 16E50

Key words: principally δ-lifting modules, principally δ-supplemented modules, principally \oplus-supplemented modules, principally $\oplus\delta$-supplemented modules, principally semisimple modules, right δ-V-rings.

1. Introduction

Throughout this paper all rings have an identity and all modules are unitary right modules. $N \leq M$ will mean N is a submodule of M. A submodule N of a module M is called small in M if for every $K \leq M$ the equality $M = N + K$ implies $M = K$. Let N and P be submodules of M. We call P a supplement of N in M if $M = P + N$ and $P \cap N$ is small in P. A module M is called supplemented if every submodule of M has a supplement in M ([10]). In [18], Zhou introduced the concept of δ-small submodules as a generalization of small submodules. A submodule N of M is said to be δ-small in M if whenever $M = N + K$ and M/K is singular, we have $M = K$. Let N be a submodule of M. A submodule L of M is called a δ-supplement of N in M if $M = N + L$ and $N \cap L$ is δ-small in L (therefore in M), and M is called δ-supplemented in case every submodule of M has a δ-supplement.
in M (see [8] in detail). Note that every supplemented module is δ-supplemented. Following [10], the module M is called \oplus-supplemented if for any submodule N of M, there exists a direct summand K of M with $M = N + K$ and $N \cap K$ small in K, i.e., every submodule of M has a direct summand supplement in M, while in [14] M is called principally \oplus-supplemented if every cyclic submodule of M has a direct summand supplement in M. Let M be a module, K and L submodules of M. K is called a $\oplus\delta$-supplement of N in M if $M = K + N$, K is a direct summand of M and $K \cap N$ is δ-small in K. Also M is called $\oplus\delta$-supplemented if every submodule of M has a $\oplus\delta$-supplement in M. Clearly, $\oplus\delta$-supplemented modules are δ-supplemented and \oplus-supplemented modules are $\oplus\delta$-supplemented.

In what follows, by \mathbb{Z}, \mathbb{Q}, \mathbb{Z}_n, and $\mathbb{Z}/n\mathbb{Z}$ we denote, respectively, integers, rational numbers, the ring of integers and the \mathbb{Z}-module of integers modulo n. $M_n(R)$ stands for the ring of all $n \times n$ matrices over R. For unexplained concepts and notations, we refer the reader to [1] and [10].

2. δ-Small Submodules and δ-Supplement Submodules

We collect basic properties of δ-small submodules in the following lemma which is contained in [18].

Lemma 2.1. Let M be a module. Then we have the following.

1. If N is δ-small in M and $M = X + N$, then $M = X \oplus Y$ for a projective semisimple submodule Y with $Y \subseteq N$.
2. If K is δ-small in M and $f : M \to N$ is a homomorphism, then $f(K)$ is δ-small in N. In particular, if K is δ-small in $M \subseteq N$, then K is δ-small in N.
3. Let $K_1 \subseteq M_1 \subseteq M$, $K_2 \subseteq M_2 \subseteq M$ and $M = M_1 \oplus M_2$. Then $K_1 \oplus K_2$ is δ-small in $M_1 \oplus M_2$ if and only if K_1 is δ-small in M_1 and K_2 is δ-small in M_2.
4. Let N, K be submodules of M with K δ-small in M and $N \leq K$. Then N is also δ-small in M.

The next lemma is clear from definitions.

Lemma 2.2. Let M be a module and $m \in M$. Then the following are equivalent.

1. mR is not δ-small in M.
2. There is a maximal submodule N of M such that $m \notin N$ and M/N is singular.
Lemma 2.3. Let M be a module and K, L, H submodules of M. If L is a δ-supplement of K in M and K is a δ-supplement of H in M, then K is a δ-supplement of L in M.

Proof. By assumption $M = K + L = K + H$, $K \cap L$ is δ-small in L and $K \cap H$ is δ-small in K. We prove $K \cap L$ is δ-small in K. Let X be a submodule of M such that $(K \cap L) + X = K$ and K/X is singular. Then $M = (K \cap L) + X + H$. Since $K \cap L$ is δ-small in M, by Lemma 2.1(1), there exists a projective semisimple submodule Y in $K \cap L$ such that $M = Y \oplus (X + H)$. Hence $K = (Y \oplus X) + (K \cap H)$. Since $K/(X+Y)$ is singular as a homomorphic image of K/X and $K \cap H$ is δ-small in K, $K = X \oplus Y$. Thus $Y = 0$ as K/X is singular and Y is projective semisimple. □

Lemma 2.4. Let M be a module and K, N, T submodules of M. If K is a \oplus-δ-supplement of N in M and T is δ-small in M, then K is a \oplus-δ-supplement of $N + T$ in M.

Proof. Let K be a \oplus-δ-supplement of N in M. Then K is a direct summand of M such that $M = N + K$ and $N \cap K$ is δ-small in K. We prove $(N + T) \cap K$ is δ-small in K. For if $[(N + T) \cap K] + L = K$ and K/L is singular for some $L \leq K$, then $M = L + N + T$ and $M/(L + N) = (K + N)/(L + N) \cong K/(K + (L \cap N))$ is singular as a homomorphic image of K/L. Since T is δ-small in M, $M = L + N$. Hence $K = L + (K \cap N)$. Since $K \cap N$ is δ-small in K and K/L is singular, we have $K = L$. □

3. Principally \oplus-δ-Supplemented Modules

In this section we define principally \oplus-δ-supplemented modules. We study properties, characterizations and decompositions of principally \oplus-δ-supplemented modules. We investigate the conditions under which any factor modules, direct summands and direct sums of a principally \oplus-δ-supplemented module are principally \oplus-δ-supplemented. For modules over a semisimple ring R we obtain that every R-module is principally \oplus-δ-supplemented if and only if every R-module is principally δ-semiperfect. Principally \oplus-supplemented modules are investigated in [14] and principally δ-lifting modules are studied in [6]. Recently, principally δ-supplemented modules are done in [7]. In this vein we introduce principally \oplus-δ-supplemented modules generalizing principally \oplus-supplemented modules, principally δ-lifting modules and strengthening principally δ-supplemented modules.

Now we define principally \oplus-δ-supplemented modules with the next lemma.

Lemma 3.1. Let M be a module, $m \in M$ and L a direct summand of M. Then the following are equivalent.
(1) $M = mR + L$ and $mR \cap L$ is δ-small in L.

(2) $M = mR + L$ and for any proper submodule K of L with L/K singular, $M \not= mR + K$.

Proof. (1) \Rightarrow (2) Let $K \leq L$ and $M = mR + K$ where L/K is singular. Then $L = (L \cap mR) + K$. Since $L \cap mR$ is δ-small in L, we have $L = K$.

(2) \Rightarrow (1) Let $M = mR + L$ and $K \leq L$ and L/K singular with $L = (mR \cap L) + K$. Then $M = mR + L = mR + K$. By (2), $K = L$. So $mR \cap L$ is δ-small in L. □

Let M be a module and $m \in M$. A submodule L is called a \textit{principally \oplus-δ-supplement} of mR in M if mR and L satisfy Lemma 3.1 and the module M is called \textit{principally \oplus-δ-supplemented} if every cyclic submodule of M has a principally \oplus-δ-supplement in M, that is, for each $m \in M$ there exists a submodule A of M such that $M = mR + A = B \oplus A$ for some $B \leq M$ with $mR \cap A$ δ-small in A, therefore in M. In [6], a module M is called \textit{principally δ-lifting} if for each $m \in M$, M has a decomposition $M = A \oplus B$ with $A \leq mR$ and $mR \cap B$ δ-small in B (equivalently, in M). Every principally δ-lifting module is a principally \oplus-δ-supplemented module. Principally \oplus-supplemented modules are introduced and investigated in [14]. The module M is called \textit{principally \oplus-supplemented} if every cyclic submodule has a supplement which is a direct summand of M. Hence every principally \oplus-supplemented module is also principally \oplus-δ-supplemented. In [7], M is said to be a \textit{principally δ-supplemented module} if for every cyclic submodule of M has a δ-supplement in M. Note that, every principally \oplus-δ-supplemented module is principally δ-supplemented. We show that the class of principally \oplus-δ-supplemented modules lies strictly between classes of principally \oplus-supplemented modules (principally δ-lifting modules) and principally δ-supplemented modules.

In the same direction as preceding paragraph one may define principally δ-\oplus-supplemented modules. A module M is called \textit{principally δ-\oplus-supplemented} if for every cyclic submodule mR of M, M has a direct summand which is a δ-supplement of mR in M, that is, for any $m \in M$ there exists a direct summand A of M such that $M = mR + A$ and $mR \cap A$ is δ-small in A. So a principally δ-\oplus-supplemented module is the same as a principally \oplus-δ-supplemented module.

\textbf{Examples 3.2.} (1) Let R be an incomplete rank one discrete valuation ring, with quotient field K. By [10, Lemma A.5], the module $M = K \oplus K$ is principally \oplus-δ-supplemented but not lifting.

(2) Consider the \mathbb{Z}-module $M = \mathbb{Q} \oplus (\mathbb{Z}/2\mathbb{Z})$. We prove M is a principally \oplus-δ-supplemented module but neither supplemented nor lifting. It is routine to show that $M = (1, \overline{1}) \mathbb{Z} + (\mathbb{Q} \oplus \overline{0})$. Let $(u, \overline{v}) \in M$. Assume that $\overline{v} = \overline{1}$ and $u \not= 1$. In this case we prove $M = (u, \overline{v}) \mathbb{Z} + (\mathbb{Q} \oplus \overline{0})$. Let $(x, \overline{y}) \in M$. We have two possibilities.
(i) \(\overline{y} = \overline{1} \). Then \((x, \overline{y}) = (x, \overline{1}) = (u, \overline{1}) + (x - u, \overline{0}) \in (u, \overline{1})Z + (Q \oplus (\overline{0})) \).

(ii) \(\overline{y} = \overline{0} \). Then \((x, \overline{y}) = (x, \overline{0}) = (u, \overline{1})0 + (x, \overline{0}) \in (u, \overline{1})Z + (Q \oplus (\overline{0})) \). Hence \(M = (u, \overline{1})Z + (Q \oplus (\overline{0})) \). Since \((u, \overline{1})Z \cap (Q \oplus (\overline{0}))\), it is either zero or isomorphic to \(Z \oplus (\overline{0})\) which is small in \(Q \oplus (\overline{0})\), \(M\) is principally \(\oplus\)-\(\delta\)-supplemented \(Z\)-module. If \(M\) were supplemented \(Z\)-module, its direct summand \(Q\) would be supplemented \(Z\)-module. A contradiction. So \(M\) is neither supplemented nor lifting.

Recall that a submodule \(N\) of a module of \(M\) is called fully invariant if \(f(N) \leq N\) for all endomorphisms \(f\) of \(M\), and \(M\) is said to be a duo module (or weak-duo) if every submodule (or direct summand) of \(M\) is fully invariant (see for detail [12]). The module \(M\) is called distributive if for all submodules \(K\), \(L\) and \(N\) of \(M\), \(N \cap (K + L) = (N \cap K) + (N \cap L)\) or \(N + (K \cap L) = (N + K) \cap (N + L)\). Lemma 3.3 is well known and it is obvious from definitions.

Lemma 3.3. Let \(M = M_1 \oplus M_2 = K + N\) and \(K \leq M_1\). If \(M\) is distributive and \(K \cap N\) is \(\delta\)-small in \(N\), then \(K \cap N\) is \(\delta\)-small in \(M_1 \cap N\).

Recall the definitions for some of the terms to be used in the sequel. An \(R\)-module \(M\) is said to be \(\pi\)-projective if for every two submodules \(U\), \(V\) of \(M\) with \(U + V = M\) there exists \(f \in \text{End}_R(M)\) with \(\text{Im}(f) \leq U\) and \(\text{Im}(1 - f) \leq V\) and \(M\) is called refinable if for any submodules \(U\) and \(V\) of \(M\) with \(M = U + V\) there is a direct summand \(U'\) of \(M\) such that \(U' \subseteq U\) and \(M = U' + V\) (see, namely [16]). The module \(M\) has the summand intersection property if the intersection of two direct summands of \(M\) is again a direct summand of \(M\).

Theorem 3.4. Every principally \(\delta\)-lifting module is principally \(\oplus\)-\(\delta\)-supplemented. The converse holds if \(M\) satisfies any of the following conditions.

1. \(M\) is a distributive module.
2. \(M\) is a \(\pi\)-projective module.
3. \(M\) is a duo module.
4. \(M\) is a refinable module with the summand intersection property.
5. \(M\) is an indecomposable module.

Proof. Let \(M\) be a principally \(\delta\)-lifting module and \(m \in M\). Then \(M\) has a decomposition \(M = A \oplus B\) such that \(B \leq mR\) and \(mR \cap A\) is \(\delta\)-small in \(A\). Since \(M = mR + A\), \(M\) is principally \(\oplus\)-\(\delta\)-supplemented. Conversely,

1. Let \(M\) be a distributive principally \(\oplus\)-\(\delta\)-supplemented module and \(m \in M\). There exists a direct summand \(A\) of \(M\) such that \(M = mR + A\) with \(mR \cap A\) \(\delta\)-small in \(A\). Let \(M = A \oplus B\) for some submodule \(B\) of \(M\). Then by distributivity of \(M\), we have \(mR = (mR \cap A) \oplus (mR \cap B)\). Hence \(M = (mR \cap B) \oplus A\). Thus \(B = mR \cap B \leq mR\). Therefore \(M\) is principally \(\delta\)-lifting.
(2) Let M be a π-projective principally \oplus-δ-supplemented module and $m \in M$. Then we have $M = mR + A$ and $mR \cap A$ is δ-small in A for some direct summand A of M. Since M is π-projective, by [15, 41.14], there exists $N \leq mR$ with $M = A \oplus N$. Therefore M is principally δ-lifting.

(3) Similar to the case (1).

(4) Let M be a refinable principally \oplus-δ-supplemented module with the summand intersection property and $m \in M$. Then there exists a direct summand A of M such that $M = mR + A$ and $mR \cap A$ is δ-small in A. Since M is refinable, there exists a direct summand U of M such that U is contained in mR and $M = U + A$. By the summand intersection property of M, $U \cap A$ is a direct summand of M. Let $M = (U \cap A) \oplus K$ for some submodule K of M. Then $A = (U \cap A) \oplus (K \cap A)$, and so $M = U \oplus (K \cap A)$. On the other hand, $mR \cap (K \cap A)$ is δ-small in A. Since $K \cap A$ is a direct summand of A, $mR \cap (K \cap A)$ is also δ-small in $K \cap A$. This completes the proof.

(5) Let M be an indecomposable module and $m \in M$. Since M is principally \oplus-δ-supplemented, there exist submodules A and B of M such that $mR \cap A$ is δ-small in A and $M = A \oplus B = mR + A$. By hypothesis, $A = M$ and $B = 0$. So that $mR \cap A = mR$ is δ-small in M. Note that in this case, every cyclic submodule of M is δ-small in M.

Next example shows that there exists a principally \oplus-δ-supplemented module which is not principally δ-lifting.

Example 3.5. Consider the \mathbb{Z}-module $M = (\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/8\mathbb{Z})$. Then $N_1 = (1, 0)\mathbb{Z}$, $N_2 = (0, 1)\mathbb{Z}$, $N_3 = (0, 0)\mathbb{Z}$, $N_4 = (0, 0)\mathbb{Z}$, $N_5 = (1, 1)\mathbb{Z}$, $N_6 = \mathbb{Z}/2\mathbb{Z}$ and $N_7 = \mathbb{Z}/8\mathbb{Z}$ are nonzero cyclic submodules of M. Hence $M = N_6 \oplus N_7 = N_2 \oplus N_5$ and N_3, N_4 are small submodules of M. Thus M is a principally \oplus-supplemented module and so principally \oplus-δ-supplemented. On the other hand, M is not principally δ-lifting, by [6].

Every principally \oplus-δ-supplemented module need not be principally \oplus-supplemented, as Example 3.43 shows. But in some cases these modules coincide.

Proposition 3.6. Let M be a singular module. Then M is principally \oplus-supplemented if and only if it is principally \oplus-δ-supplemented.

Proof. The necessity is clear. For the sufficiency, let $m \in M$. Then there exists a direct summand A of M with $M = mR + A$ and $mR \cap A$ δ-small in A. Assume that $A = (mR \cap A) + K$ for some submodule K of A. Since M is singular, A/K is also singular. Hence we have $A = K$. Thus $mR \cap A$ is small in A. Therefore M is principally \oplus-supplemented. \qed
Proposition 3.7. Let M be a principally $⊕$-$δ$-supplemented module. If every cyclic submodule of M has a uniform principally $⊕$-$δ$-supplement, then M is principally $⊕$-supplemented.

Proof. Let $m \in M$. By hypothesis, there exists a uniform direct summand A of M with $M = mR + A$ and $mR \cap A$ $δ$-small in A. Assume that $(mR \cap A) + K = A$ for some submodule K of A. If $K = 0$, then there is nothing to do. Let $K \neq 0$. Since K is essential in A, A/K is singular. Then we have $K = A$. Hence $mR \cap A$ is small in A. Thus M is principally $⊕$-supplemented. □

Proposition 3.8. Every principally $⊕$-$δ$-supplemented module is principally $δ$-supplemented. The converse is true for refinable modules.

Proof. The first assertion is clear. Let M be a principally $δ$-supplemented module and $m \in M$. Let A be a submodule of M with $M = mR + A$ and $mR \cap A$ $δ$-small in A. Since M is refinable, there is a direct summand U of M such that $U \subseteq A$ and $M = U + mR$. Also U is a direct summand of A. This implies that $mR \cap U$ is $δ$-small in A. Hence $mR \cap U$ is $δ$-small in U. □

Next example shows that there exists a principally $δ$-supplemented module which is not principally $⊕$-$δ$-supplemented.

Example 3.9. Let F be a field and x and y commuting indeterminates over F. Consider the polynomial ring $R = F[x, y]$, the ideals $I_1 = (x^2)$ and $I_2 = (y^2)$ of R, and the ring $S = R/(x^2, y^2)$. Let $M = πS + \pi S$. Then M is an indecomposable S-module, principally supplemented but not principally $⊕$-supplemented. Hence M is principally $δ$-supplemented. On the other hand, since M is singular, it is not principally $⊕$-$δ$-supplemented by Proposition 3.6.

Because of the following example it can be said that any submodule of a principally $⊕$-$δ$-supplemented module may not be principally $⊕$-$δ$-supplemented.

Example 3.10. Consider Q as a Z-module. Since every cyclic submodule of Q is small and so $δ$-small in Q, Q is principally $⊕$-$δ$-supplemented. But the submodule Z of Q is not principally $⊕$-$δ$-supplemented as a Z-module since $2Z$ does not have any principally $⊕$-$δ$-supplement in Z.

Now we investigate conditions which ensure that a homomorphic image and so a direct summand of a principally $⊕$-$δ$-supplemented module is principally $⊕$-$δ$-supplemented.

Theorem 3.11. Let M be a distributive principally $⊕$-$δ$-supplemented module. Then every homomorphic image of M is principally $⊕$-$δ$-supplemented.
Proof. Let L be a submodule of M and $(mR + L)/L$ a cyclic submodule of M/L. Then there exists a direct summand A of M such that $M = A ⊕ B = mR + A$ for some $B \leq M$ and $mR \cap A$ is $δ$-small in A. Now $M/L = (mR + L)/L + (A + L)/L$ and, since M is distributive, $(mR + L)/(A + L) = L + (mR \cap A)/L$. So $((mR + L)/(A + L))\cap ((A + L)/L) = (L + (mR \cap A))/L$ is $δ$-small in $(A + L)/L$ as a homomorphic image of $δ$-small $mR \cap A$ in A under the natural map $π$ from A onto $(A + L)/L$ by Lemma 2.1(2). Again by distributivity of M and $A \cap B = 0$, we have $(A + L)\cap (B + L) = L$. Hence $(A + L)/L$ is a direct summand of M/L. □

Proposition 3.13. Let M be a module and N a submodule of M. If every cyclic submodule of M has a principally $⊕$-$δ$-supplement which contains N, then M/N is principally $⊕$-$δ$-supplemented.

Proof. Let $m \in M$ and consider the submodule $\overline{m}R$ of M/N. By hypothesis, there exists a direct summand L of M such that $N \leq L$, $M = mR + L$ and $mR \cap L$ is $δ$-small in L. Let $M = K \oplus L$ for some submodule K of M and $π$ denote the natural epimorphism from M onto M/N. Then we have $M/N = (K + N)/(N \oplus (L/N) = \overline{m}R + (L/N)$. On the other hand, $π(mR \cap L) = π(mR) \cap π(L) = \overline{m}R \cap (L/N)$ is $δ$-small in $π(L) = L/N$. Hence the proof is completed. □

Lemma 3.14. Let M be a module and N a fully invariant submodule of M. If $M = M_1 \oplus M_2$ for some submodules M_1 and M_2 of M, then $M/N = (M_1 + N)/N \oplus (M_2 + N)/N$.

Proof. Clearly, $M/N = (M_1 + N)/N + (M_2 + N)/N$. If $m_1 + N = m_2 + N$ with $m_i \in M_i$ ($i = 1, 2$), then $m_1 - m_2 \in N$. As N is a fully invariant submodule of M, we see that $m_1, m_2 \in N$. Hence $(M_1 + N)/N \cap (M_2 + N)/N = 0$, as required. □

Proposition 3.15. Let M be a principally $⊕$-$δ$-supplemented module. Then M/N is principally $⊕$-$δ$-supplemented for every fully invariant submodule N of M.

Proof. Let N be a fully invariant submodule of M and $\overline{m}R$ a submodule of M/N, where $m \in M$. Since M is principally $⊕$-$δ$-supplemented, there exists a direct summand A of M such that $M = mR + A$ and $mR \cap A$ is $δ$-small in A. Let $M = A \oplus B$ for some submodule B of M. By Lemma 3.14, we have $M/N = (A + N)/N \oplus (B + N)/N$. Also $M/N = (A + N)/N + \overline{m}R$. It is clear that $(A + N)/N \cap \overline{m}R$ is $δ$-small in $(A + N)/N$. This completes the proof. □

As an immediate consequence of Proposition 3.15, we deduce that if M is principally $⊕$-$δ$-supplemented, then so are $M/Rad(M)$ and $M/Soc(M)$.

BÜRÇU UNGOR, SAIT HALICIĞLU, AND ABDULLAH HARMANCI
Corollary 3.16. Let M be a weak-duo and principally \oplus-\(\delta\)-supplemented module. Then every direct summand of M is principally \oplus-\(\delta\)-supplemented.

Recall that a module M has D_3 if whenever M_1 and M_2 are direct summands of M with $M = M_1 + M_2$, $M_1 \cap M_2$ is also a direct summand of M ([10]).

Proposition 3.17. Let M be a principally \oplus-\(\delta\)-supplemented module. If M has D_3, then every direct summand of M is also principally \oplus-\(\delta\)-supplemented.

Proof. Let N be a direct summand of M and $n \in N$. Since M is principally \oplus-\(\delta\)-supplemented, there exists a direct summand A of M with $M = A + nR$ and $A \cap nR$ δ-small in A. Hence $M = A + N$ and $N = (A \cap N) + nR$. Due to D_3, $A \cap N$ is a direct summand of M, N and A. By Lemma 2.1(3), $(A \cap N) \cap nR$ is δ-small in $A \cap N$ because $A \cap N$ is a direct summand of A. Thus N is principally \oplus-\(\delta\)-supplemented. \(\Box\)

Due to Proposition 3.17 and [5, Lemma 2.4] we obtain the following result.

Corollary 3.18. Let M be a principally \oplus-\(\delta\)-supplemented and UC extending module. Then every direct summand of M is principally \oplus-\(\delta\)-supplemented.

It is obvious that every module with the summand intersection property has D_3. Then the following result is an immediate consequence of Proposition 3.17 and [4, Theorem 4.6].

Corollary 3.19. Let R be a right semihereditary ring and F a principally \oplus-\(\delta\)-supplemented finitely generated free R-module. Then R is principally \oplus-\(\delta\)-supplemented as an R-module.

Next example shows that for a module M and a submodule N, if M/N is principally \oplus-\(\delta\)-supplemented, then M need not be principally \oplus-\(\delta\)-supplemented.

Example 3.20. Consider the \mathbb{Z}-module $\mathbb{Z}/p^n\mathbb{Z}$, where p is a prime number and n is a positive integer. Then $\mathbb{Z}/p^n\mathbb{Z}$ is principally δ-lifting and so principally \oplus-δ-supplemented, but \mathbb{Z} is not principally \oplus-δ-supplemented.

Proposition 3.21. Let $M = M_1 \oplus M_2$ be a distributive module. Then M is principally \oplus-δ-supplemented if and only if M_1 and M_2 are principally \oplus-δ-supplemented.

Proof. Let M be a principally \oplus-δ-supplemented module. Due to Corollary 3.12, M_1 and M_2 are principally \oplus-δ-supplemented. Assume that M_1 and M_2 are principally \oplus-δ-supplemented modules and $m \in M$. By distributivity of M, we have $mR = (mR \cap M_1) \oplus (mR \cap M_2)$. Since $mR \cap M_1$ and $mR \cap M_2$ are cyclic submodules of M_1 and M_2 respectively, there exist direct summands A of M_1 and B of M_2 such
that $M_1 = (mR \cap M_1) + A = A' \oplus A$ and $A \cap (mR \cap M_1) = A \cap mR$ is δ-small in A, and $M_2 = (mR \cap M_2) + B = B' \oplus B$ and $B \cap (mR \cap M_2) = B \cap mR$ is δ-small in B. Then $M = mR + A + B = (A' \oplus B') \oplus (A \oplus B)$. Again by distributivity, $mR \cap (A + B) = (mR \cap A) + (mR \cap B)$ is δ-small in $A + B$ by Lemma 2.1(3). This completes the proof. \qed

Proposition 3.22. Let $M = M_1 \oplus M_2$ be a duo module. Then M is principally \oplus-δ-supplemented if and only if M_1 and M_2 are principally \oplus-δ-supplemented.

Proof. Necessity is clear from Proposition 3.17 because duo modules satisfy the summand intersection property. Sufficiency is resemble to the proof of Proposition 3.21. \qed

Corollary 3.23. Let M be a principally \oplus-δ-supplemented module and every finite direct sum of M a distributive (or duo) module. Then every finitely M-generated module is principally \oplus-δ-supplemented.

Recall that a module M is called regular (in the sense of Zelmanowitz) [17] if for any $m \in M$ there exists a map $\alpha \in \text{Hom}_R(M, R)$ such that $m = m\alpha(m)$ and it is known that every cyclic submodule of a regular module is a direct summand. Hence any regular module is principally \oplus-δ-supplemented. We give an example to show that principally \oplus-δ-supplemented modules need not be a regular module.

Example 3.24. Any cyclic submodule of \mathbb{Q} as a \mathbb{Z}-module is a small submodule of \mathbb{Q}. Therefore \mathbb{Q} is a principally \oplus-δ-supplemented \mathbb{Z}-module. On the other hand, \mathbb{Q} can not be a regular \mathbb{Z}-module since $\text{Hom}_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Z}) = 0$.

A module M is said to be principally semisimple if every cyclic submodule is a direct summand of M. Tuganbaev calls a principally semisimple module as a regular module in [13], and lifting modules are named as semiregular modules. Every semisimple module is principally semisimple. Every principally semisimple module is principally δ-lifting and so principally \oplus-δ-supplemented. A ring R is called principally semisimple if the right R-module R is principally semisimple. It is clear that every principally semisimple ring is von Neumann regular and vice versa. For a module M, we write $\text{Rad}_\delta(M) = \sum \{L \mid L \text{ is a } \delta\text{-small submodule of } M\}$. Since every small submodule of M is δ-small, $\text{Rad}(M) \leq \text{Rad}_\delta(M)$. In the ring case, we shall denote $\text{Rad}_\delta(M)$ by $J_\delta(R)$ and usually $\text{Rad}(M)$ by $J(R)$ for a ring R. It is shown that $J_\delta(R)$ is an ideal of R, and there are cases for a ring R such that $J_\delta(R)$ strictly contains $J(R)$ (see namely [18]). Also note that for any module M, $\text{Rad}_\delta(M)$ is a δ-small submodule of M provided every proper submodule of M is contained in a maximal submodule of M, therefore $J_\delta(R)$ is a δ-small right and δ-small left ideal of R.

Lemma 3.25. [10, Lemma 4.47] Let $M = S \oplus T = N + T$ where S is T-projective. Then $M = S' \oplus T$ where $S' \leq N$.

Lemma 3.26. Let M be a principally \oplus-δ-supplemented module. Then $M/\text{Rad}_\delta(M)$ is a principally semisimple module if M has one of the following conditions.

1. M is a distributive module.
2. M is a projective module.

Proof. (1) For any $m \in M$, there exists a direct summand A of M such that $M = mR + A$ and $mR \cap A$ is δ-small in A. So $mR \cap A$ is δ-small in M. By distributivity of M, we have $(mR + \text{Rad}_\delta(M)) \cap (A + \text{Rad}_\delta(M)) = \text{Rad}_\delta(M) + (mR \cap A) = \text{Rad}_\delta(M)$ since $mR \cap A$ is δ-small in M. Then

$$M/\text{Rad}_\delta(M) = [(mR + \text{Rad}_\delta(M))/\text{Rad}_\delta(M)] \oplus [(A + \text{Rad}_\delta(M))/\text{Rad}_\delta(M)].$$

(2) Let $m \in M$. There exists a direct summand A of M such that $M = mR + A$ and $mR \cap A$ is δ-small in A. So $mR \cap A$ is δ-small in M. By projectivity of M, there exists a direct summand N of M such that $M = N \oplus A$ with $N \leq mR$ by Lemma 3.25. Then $(mR + \text{Rad}_\delta(M))/\text{Rad}_\delta(M) = (N + \text{Rad}_\delta(M))/\text{Rad}_\delta(M)$ and $\text{Rad}_\delta(M) = \text{Rad}_\delta(N) \oplus \text{Rad}_\delta(A)$ imply

$$M/\text{Rad}_\delta(M) = [(mR + \text{Rad}_\delta(M))/\text{Rad}_\delta(M)] \oplus [(A + \text{Rad}_\delta(M))/\text{Rad}_\delta(M)].$$

Hence every principal submodule of $M/\text{Rad}_\delta(M)$ is a direct summand in either case. Therefore $M/\text{Rad}_\delta(M)$ is principally semisimple. □

Proposition 3.27. Let M be a principally \oplus-δ-supplemented module and N a submodule of M. If $N \cap \text{Rad}_\delta(M) = 0$, then N is principally semisimple.

Proof. Let $x \in N$. By hypothesis, there exists a direct summand A of M with $M = A + xR$ and $A \cap xR$ δ-small in A. Hence $N = (A \cap N) + xR$ and $A \cap xR \leq \text{Rad}_\delta(M)$. Since $(A \cap N) \cap xR \leq N \cap \text{Rad}_\delta(M) = 0$, we have $N = (A \cap N) \oplus xR$. Therefore N is principally semisimple. □

Theorem 3.28 may be proved easily by making use of Lemma 3.26 for distributive modules. But we prove it in another way.

Theorem 3.28. Let M be a principally \oplus-δ-supplemented module. Then M has a principally semisimple submodule M_1 such that M_1 has an essential socle and $\text{Rad}_\delta(M) \oplus M_1$ is essential in M.

Proof. By Zorn’s Lemma we may find a submodule M_1 of M such that $\text{Rad}_\delta(M) \oplus M_1$ is essential in M. By Proposition 3.27, M_1 is principally semisimple. Next we show that M_1 has an essential socle. For this we prove for any $m \in M_1$, mR has
a simple submodule. If \(mR \) is simple, we have done. Otherwise let \(m_1 \in mR \) such that \(m_1 R \neq mR \). By hypothesis there exists a direct summand \(C \) of \(M \) such that \(M = m_1 R + C \) with \(m_1 R \cap C \) \(\delta \)-small in \(C \). Then \(m_1 R \cap C \leq M_1 \cap \text{Rad}_\delta(M) = 0 \). So \(M = m_1 R \oplus C \) and then \(mR = m_1 R \oplus (mR \cap C) \). Clearly, \(mR \cap C = m'_1 R \) for some \(m'_1 \in mR \) and \(mR = m_1 R \oplus m'_1 R \). If \(m_1 R \) and \(m'_1 R \) are simple, then we stop. Otherwise let \(m_2 \in m_1 R \) such that \(m_2 R \neq m_1 R \). Similarly, there is \(m'_2 \in m_1 R \) such that \(m_1 R = m_2 R \oplus m'_2 R \). Hence \(mR = m_2 R \oplus m'_2 R \oplus m'_1 R \). If \(m_2 R \) is simple, then we stop. Otherwise we continue in this way. Since \(mR \) is cyclic, this process must terminate at a finite step, say \(n \). At this step all direct summands of \(mR \) should be simple. This completes the proof.

\[\square \]

Theorem 3.29. Let \(M \) be a principally \(\oplus-\delta \)-supplemented module. Assume that \(M \) satisfies ascending chain condition on direct summands. Then \(M \) has a decomposition \(M = M_1 \oplus M_2 \), where \(M_1 \) is a semisimple module and \(M_2 \) is a module with \(\text{Rad}_\delta(M_2) \) essential in \(M_2 \).

Proof. Let \(M_1 \) be a submodule of \(M \) such that \(\text{Rad}_\delta(M) \oplus M_1 \) is essential in \(M \) and \(m_1 \in M_1 \). By Proposition 3.27, \(M_1 \) is principally semisimple. Since \(M \) is principally \(\oplus-\delta \)-supplemented, there exists a direct summand \(A_1 \) of \(M \) such that \(M = m_1 R + A_1 \) and \(m_1 R \cap A_1 \) is \(\delta \)-small in both \(A_1 \) and \(M \). Hence \(m_1 R \cap A_1 = 0 \) and \(M = m_1 R \oplus A_1 \). Then \(M_1 = m_1 R \oplus (M_1 \cap A_1) \). If \(M_1 \cap A_1 \neq 0 \), let \(0 \neq m_2 \in M_1 \cap A_1 \). There exists a direct summand \(A_2 \) of \(M \) such that \(M = m_2 R \oplus A_2 \) and \(m_2 R \cap A_2 \) is \(\delta \)-small in both \(A_2 \) and \(M \). Hence \(m_2 R \cap A_2 = 0 \), \(M = m_2 R + A_2 = m_1 R \oplus m_2 R \oplus (A_1 \cap A_2) \). So \(M_1 \cap A_1 = m_2 R \oplus (M_1 \cap A_1 \cap A_2) \) and \(M_1 = m_2 R \oplus (M_1 \cap A_1) = m_1 R \oplus m_2 R \oplus (M_1 \cap A_1 \cap A_2) \). If \(M_1 \cap A_1 \cap A_2 \neq 0 \), let \(0 \neq m_3 \in M_1 \cap A_1 \cap A_2 \). There exists a direct summand \(A_3 \) of \(M \) such that \(M = m_3 R \oplus A_3 = m_1 R \oplus m_2 R \oplus m_3 R \oplus (A_1 \cap A_2 \cap A_3) \) and \(M_1 \cap A_1 \cap A_2 = m_3 R \oplus (M_1 \cap A_1 \cap A_2 \cap A_3) \) and \(M_1 = m_1 R \oplus m_2 R \oplus m_3 R \oplus (M_1 \cap A_1 \cap A_2 \cap A_3) \).

By hypothesis this procedure stops at a finite number of steps, say \(t \). At this stage we may have \(M = m_t R \oplus A_t = m_1 R \oplus m_2 R \oplus m_3 R \oplus \cdots \oplus m_t R \oplus (A_1 \cap A_2 \cap A_3 \cap \cdots \cap A_t) \) and \(M_1 = m_1 R \oplus m_2 R \oplus m_3 R \oplus \cdots \oplus m_t R \). Let \(M_2 = A_t \cap A_2 \cap A_3 \cap \cdots \cap A_t \). Then \(M = M_1 \oplus M_2 \) with \(\text{Rad}_\delta(M) = \text{Rad}_\delta(M_2) \). Since \(M_1 \oplus \text{Rad}_\delta(M) \) is essential in \(M \), it follows that \(\text{Rad}_\delta(M_2) \) is essential in \(M_2 \). Since \(M \) has the ascending chain condition on direct summands, without loss of generality, we may assume that all cyclic submodules \(m_1 R, m_2 R, m_3 R, \ldots, m_t R \) to be simple. This completes the proof.

\[\square \]

Theorem 3.30. Let \(M \) be a module with \(\text{Rad}_\delta(M) = 0 \). Then the following conditions are equivalent.

1. \(M \) is principally \(\oplus-\delta \)-supplemented.
(2) M is principally \oplus-supplemented
(3) M is principally semisimple.

Proof. We prove only (1) \Rightarrow (3) since (2) \Leftrightarrow (3) is proved in [14] and (3) \Rightarrow (1) is clear. Let M be a principally \oplus-δ-supplemented module and $m \in M$. There exists a direct summand A of M such that $M = mR + A$ and $mR \cap A$ is δ-small in A. Since $mR \cap A$ is also δ-small in M and $Rad_\delta(M) = 0$, mR is a direct summand of M. Therefore M is principally semisimple.

It is known that every von Neumann regular ring has zero Jacobson radical. But there are von Neumann regular rings R with $J_\delta(R) \neq 0$ as the following example shows.

Example 3.31. Let $Q = \prod_{i=1}^{\infty} F_i$, where each $F_i = \mathbb{Z}_2$. Let R be the subring of Q generated by $\bigoplus_{i=1}^{\infty} F_i$ and 1_Q. Then R is von Neumann regular and $\bigoplus_{i=1}^{\infty} F_i = Soc(R) = J_\delta(R)$.

Corollary 3.32. Let R be a ring. If R is a von Neumann regular ring, then R is a principally \oplus-δ-supplemented R-module. The converse holds if $J_\delta(R) = 0$.

Definition 3.33. Let M be a module. M is called a δ-hollow module (or a principally δ-hollow module) if every proper submodule (or cyclic submodule) is δ-small in M.

Note that each hollow module is δ-hollow, and each δ-hollow module is principally δ-hollow and so principally \oplus-δ-supplemented. Let M be a module. Clearly, if $M = xR$ for every $x \in M \setminus Rad_\delta(M)$, then M is principally δ-hollow.

Theorem 3.34. Let M be a projective module having $Rad_\delta(M)$ finite uniform dimension. Consider the following statements.

(1) M is a direct sum of principally \oplus-δ-supplemented modules.
(2) M has a decomposition $M = M_1 \oplus M_2$ where M_1 is a direct sum of principally semisimple modules and M_2 is a finite direct sum of principally δ-hollow modules.

Then (2) \Rightarrow (1). (1) \Rightarrow (2) in case M satisfies ascending chain condition on direct summands.

Proof. (2) \Rightarrow (1) Assume that M has a decomposition $M = M_1 \oplus M_2$ with submodules M_1 and M_2 satisfying stated conditions in (2). Both M_1 and M_2 are direct sums of principally \oplus-δ-supplemented modules as M_1 is a direct sum of principally semisimple modules, and M_2 is a direct sum of principally δ-hollow modules and
each principally δ-hollow module is principally \oplus-δ-supplemented.

(1) ⇒ (2) Assume that $M = \bigoplus_{i \in I} M_i$, where each M_i is a principally \oplus-δ-supplemented module and $\text{Rad}_\delta(M)$ has finite uniform dimension. Since $\text{Rad}_\delta(M) = \bigoplus_{i \in I} \text{Rad}_\delta(M_i)$, there is a finite subset J of I with $\text{Rad}_\delta(M_i) = 0$ for all $i \in I \setminus J$. Therefore, by Theorem 3.30, M_i is principally semisimple for all $i \in I \setminus J$. Hence $M = M_1 \oplus (\bigoplus_{j \in J} M_j)$, where M_1 is a direct sum of principally semisimple modules. Due to Theorem 3.29, without loss of generality, we may assume that $\text{Rad}_\delta(M_j)$ is essential in M_j, where $j \in J$. Then for $j \in J$, M_j has finite uniform dimension by [3, Proposition 3.20]. Now we prove each M_j is principally δ-hollow or a finite direct sum of principally δ-hollow modules, for $j \in J$. Let $j \in J$. Since M is projective, M_j is also projective. Then $\text{Rad}_\delta(M_j) \neq M_j$ by [18, Lemma 1.9]. We complete the proof by induction on the uniform dimension. Suppose that M_j has uniform dimension 1, and let $x \in M_j \setminus \text{Rad}_\delta(M_j)$. Since M_j is principally \oplus-δ-supplemented, there exists a direct summand K of M_j such that $M_j = xR + K$ and $xR \cap K$ is δ-small in K. Let $M_j = K \oplus K_1$ for some submodule K_1 of M_j. Since M_j has uniform dimension 1, we have $K = 0$ or $K_1 = 0$. If $K_1 = 0$, then xR is a submodule of $\text{Rad}_\delta(M_j)$. This is a contradiction. Hence $K = 0$ and so $M_j = xR$. It follows that M_j is principally δ-hollow. Now suppose that $n > 1$ be a positive integer and assume each M_j having uniform dimension $k(1 \leq k < n)$ is principally δ-hollow or a finite direct sum of principally δ-hollow submodules. Let $j \in J$ and assume M_j has uniform dimension n. Suppose M_j is not principally δ-hollow. Let $x \in M_j \setminus \text{Rad}_\delta(M_j)$ such that $M_j \neq xR$. Since M_j is principally \oplus-δ-supplemented, there exist submodules K, K_1 of M_j with $M_j = xR + K = K \oplus K_1$ and $xR \cap K$ δ-small in K. Note that $K_1 \neq 0$ and $K \neq 0$. Since projective modules have D_3 and then by Proposition 3.17, K and K_1 are principally \oplus-δ-supplemented modules by induction, K and K_1 are principally δ-hollow or a finite direct sum of principally δ-hollow submodules. So (1) ⇒ (2) holds and this completes the proof.

One may ask what happens to Theorem 3.30 in which the condition “$\text{Rad}_\delta(M) = 0$” changes to “$\text{Rad}_\delta(M)$ is δ-small in M”.

Theorem 3.35. Let M be a projective module with $\text{Rad}_\delta(M)$ δ-small in M and consider the following conditions.

1. M is principally \oplus-δ-supplemented.
2. $M/\text{Rad}_\delta(M)$ is principally semisimple.

Then (1) ⇒ (2). If M is a refinable module, then (2) ⇒ (1).

Proof. (1) ⇒ (2) Since M is a principally \oplus-δ-supplemented module, $M/\text{Rad}_\delta(M)$ is principally semisimple by Lemma 3.26.
(2) ⇒ (1) Let mR be any cyclic submodule of M. By (2), there exists a submodule U of M such that $M/\text{Rad}_\delta(M) = [(mR+\text{Rad}_\delta(M))/\text{Rad}_\delta(M)] \oplus [U/\text{Rad}_\delta(M)]$. Then $M = mR + U$ and $(mR+\text{Rad}_\delta(M)) \cap U = (mR \cap U) + \text{Rad}_\delta(M)$. Hence $mR \cap U \leq \text{Rad}_\delta(M)$ and it is δ-small in M. Since $M = mR + U$ and being M refinable, there exists a direct summand A of M such that $A \leq U$ and $M = mR + A$. Since $mR \cap A \leq mR \cap U$ is δ-small in M and A is a direct summand of M, by Lemma 2.1(3), $mR \cap A$ is δ-small in A. Hence A is a principally $\oplus -\delta$-supplement of mR in M. This completes the proof.

Recall that R is called a right V-ring if every simple right R-module is injective, equivalently, by [9, Theorem 3.75], for any right R-module M, $\text{Rad}(M) = 0$. In this note we shall call the ring R is a right δ-V-ring if for any right R-module M, $\text{Rad}_\delta(M) = 0$. Since every small submodule is δ-small, $\text{Rad}(M) \leq \text{Rad}_\delta(M)$ for any module M.

We adopt the definition of a small projective module in [15, 19.10(8)] and we say an R-module M δ-small projective if $\text{Hom}(M, -)$ is exact with respect to the exact sequences of right R-modules $0 \to K \xrightarrow{i} L \to N \to 0$ with $i(K)$ a δ-small submodule of L. If R is a δ-V-ring, then every module is δ-small projective. In a subsequent paper the present authors study δ-small projective modules in detail. As is usual, to study δ-V-rings it is convenient to deal with an injective notion. A module M is called δ-small injective if $\text{Hom}(-, M)$ is exact with respect to the exact sequences of right R-modules $0 \to K \xrightarrow{i} L \to N \to 0$ with $i(K)$ a δ-small submodule of L. Clearly for a R right δ-V-ring, every right R-module is both δ-small projective and δ-small injective.

Lemma 3.36. Let R be a ring and consider the following conditions.

1. R is a right δ-V-ring.
2. Every right R-module is δ-small projective.
3. Every right R-module is δ-small injective.

Then (1) ⇒ (2) ⇔ (3).

Proof. (1) ⇒ (2) Clear. (2) ⇒ (3) Let M be a right R-module and an exact sequence of right R-modules with $i(K)$ a δ-small submodule of L

$$0 \to K \xrightarrow{i} L \xrightarrow{f} N \to 0 \quad (*)$$

Applying $\text{Hom}(N, -)$ to that sequence, by (2) we have an exact sequence

$$0 \to \text{Hom}(N, K) \xrightarrow{i^*} \text{Hom}(N, L) \xrightarrow{f^*} \text{Hom}(N, N) \to 0$$
For the identity map $1 \in \text{Hom}(N,N)$ we have a map $g \in \text{Hom}(N,L)$ such that $1 = f^* g$. Hence the sequence (*) splits and so any map from K to M extends from L to M. $(3) \Rightarrow (2)$ Dual to $(2) \Rightarrow (3)$.

Theorem 3.37. Let R be a right V-ring. If every right R-module is δ-small projective, then every principally \oplus-δ-supplemented module is a direct sum of a projective semisimple module and a principally semisimple module.

Proof. Let R be a right V-ring and M any right R-module. We have $\text{Rad}(M) = 0$. By [2, Proposition 3.1] or [9, Theorem 3.75] every submodule of M is contained in a maximal submodule, and [18, Lemma 1.5(4)] implies $\text{Rad}_\delta(M)$ is δ-small in M. Since every right R-module is δ-small projective, we apply the functor $\text{Hom}(M/\text{Rad}_\delta(M), -)$ to the sequence $0 \rightarrow \text{Rad}_\delta(M) \rightarrow M \rightarrow M/\text{Rad}_\delta(M) \rightarrow 0$ we have $M = \text{Rad}_\delta(M) \oplus K$ for some submodule K of M. By Lemma 2.1(1), there exists a projective semisimple submodule Y of $\text{Rad}_\delta(M)$ such that $M = Y \oplus K$. Hence $Y = \text{Rad}_\delta(M)$. Due to Proposition 3.27, K is principally semisimple and this completes the proof. □

A ring R is called δ-semiregular if every cyclically presented R-module has a projective δ-cover. By combining Lemma 3.26, Theorem 3.30 and Theorem 3.37 we obtain the next result.

Theorem 3.38. Let R be a right δ-V-ring and consider the following conditions.

1. Every right R-module is principally \oplus-δ-supplemented.
2. Every right R-module is principally \oplus-supplemented.
3. Every right R-module is principally semisimple.
4. R is von Neumann regular.
5. Every projective R-module is principally \oplus-δ-supplemented.
6. R is δ-semiregular.

Then $(1) \iff (2) \iff (3) \Rightarrow (4) \iff (5) \iff (6)$.

Proof. $(4) \Rightarrow (5)$ Let M be a projective right R-module. By [13, Proposition 1.25], M is principally semisimple. This implies that M is principally \oplus-δ-supplemented.

$(5) \Rightarrow (4)$ Since R is projective as a right R-module, R is principally \oplus-δ-supplemented. Being $J_\delta(R) = 0$, R is principally semisimple by Theorem 3.30. Hence R is von Neumann regular.

$(4) \iff (6)$ Clear by [18, Theorem 3.5] since $J_\delta(R) = 0$.

Theorem 3.39. Let R be a ring with $J_\delta(R) = 0$. Then the following are equivalent.

1. Every projective R-module is principally \oplus-δ-supplemented.
2. Every free R-module is principally \oplus-δ-supplemented.
(3) Every projective R-module is principally semisimple.

(4) Every free R-module is principally semisimple.

Proof. (2) \Rightarrow (1) Let every free R-module be principally \oplus-δ-supplemented and P a projective module. Then there exists a free module F such that P is a direct summand of F. By (2), F is principally \oplus-δ-supplemented with $\text{Rad}_\delta(F) = 0$ since $J_\delta(R) = 0$. Lemma 3.26 implies F is principally semisimple and then P is principally semisimple, therefore P is principally \oplus-δ-supplemented. The rest is clear. \hfill \square

At the moment we have the following conjecture.

Conjecture. Every right V-ring is right δ-V-ring.

By [18], a projective module P is called a projective δ-cover of a module M if there exists an epimorphism $f : P \longrightarrow M$ with $\text{Ker}f$ δ-small in P, and a ring R is called δ-perfect (δ-semiperfect) if every R-module (simple R-module) has a projective δ-cover. Clearly, every δ-perfect ring is δ-semiperfect. A module M is said to be principally δ-semiperfect if every factor module of M by a cyclic submodule has a projective δ-cover. A ring R is called principally δ-semiperfect in case the right R-module R is principally δ-semiperfect. Every δ-semiperfect module is principally δ-semiperfect. Next we characterize projective principally \oplus-δ-supplemented modules.

Theorem 3.40. Let M be a projective module. Then the following are equivalent.

1. M is principally δ-semiperfect.
2. M is principally \oplus-δ-supplemented.

Proof. (1) \Rightarrow (2) Let $m \in M$ and $P \xrightarrow{f} M/mR$ be a projective δ-cover and $M \xrightarrow{\pi} M/mR$ the natural epimorphism.

Then there exists a map $M \xrightarrow{g} P$ such that $fg = \pi$. Hence $P = g(M) + \text{Ker}f$. Since $\text{Ker}f$ is δ-small, by Lemma 2.1(1), there exists a projective semisimple submodule Y of $\text{Ker}f$ such that $P = g(M) \oplus Y$. So $g(M)$ is projective. Thus $M = K \oplus \text{Ker}g$ for some submodule K of M. Let $x \in \text{Ker}g$. Then $fg = \pi$ implies $\pi(x) = 0$. Hence $\text{Ker}g \leq mR$. Next we show $g(K) \cap \text{Ker}f = g(K \cap mR)$. Let $x \in K \cap mR$. Then $0 = \pi(x) = fg(x)$. So $x \in g^{-1}(\text{Ker}f)$ and $K \cap mR \leq g^{-1}(\text{Ker}f)$ and $K \cap mR \leq g^{-1}(\text{Ker}f) \cap K$. Then $g(K \cap mR) \leq g(g^{-1}(\text{Ker}f) \cap K) = \text{Ker}f \cap g(K)$.
Let \(x \in \text{Ker} f \cap g(K) \). There is \(y \in K \) such that \(g(y) = x \) and \(f(x) = 0 \). Then \(\pi(y) = f(g(y)) = f(x) = 0 \). So \(y \in mR \) and \(x = g(y) \in g(K \cap mR) \). Hence \(g(K) \cap \text{Ker} f = g(K \cap mR) \) and it is \(\delta \)-small in \(P \) and therefore in \(g(K) \). Since \(g \) is an isomorphism between \(K \) and \(g(K) \cap \text{Ker} f \) is \(\delta \)-small in \(K \). Because \(K \cap mR \leq g^{-1}(g(K) \cap \text{Ker} f) \), \(K \cap mR \) is \(\delta \)-small in \(K \) by Lemma 2.1(4).

(2) \(\Rightarrow \) (1) Assume that \(M \) is a principally \(\oplus \)-\(\delta \)-supplemented module. Let \(m \in M \). There exists a direct summand \(A \) of \(M \) such that \(M = mR + A \) with \(mR \cap A \) \(\delta \)-small in \(A \). Consider the maps \(A \xrightarrow{\pi} A/(mR \cap A) \xrightarrow{h} M/mR \) where \(\pi \) is the natural epimorphism and \(h \) is the isomorphism \(A/(mR \cap A) \cong M/mR \). Since \(\text{Ker}(h \pi) = \text{Ker} \pi = mR \cap A \) is \(\delta \)-small in \(A \), \(A \) is a projective \(\delta \)-cover of \(M/mR \). So \(M \) is principally \(\delta \)-semiperfect.

Now we can give a characterization of principally \(\delta \)-semiperfect rings by using the notion of principally \(\oplus \)-\(\delta \)-supplemented.

Corollary 3.41. Let \(R \) be a ring. Then the following are equivalent.

1. \(R \) is principally \(\delta \)-semiperfect.
2. \(R \) is principally \(\oplus \)-\(\delta \)-supplemented.

Proof. Clear by Theorem 3.40. \(\square \)

It is known that a ring \(R \) is semisimple if and only if every \(R \)-module is projective. As a consequence of Theorem 3.40, we have the next result.

Corollary 3.42. Let \(R \) be a semisimple ring. Then every \(R \)-module is principally \(\oplus \)-\(\delta \)-supplemented if and only if every \(R \)-module is principally \(\delta \)-semiperfect.

We conclude this paper by giving the aforementioned example which shows that every principally \(\oplus \)-\(\delta \)-supplemented module need not be principally \(\oplus \)-supplemented.

Example 3.43. Let \(F \) be a field, \(I = \begin{bmatrix} F & F \\ 0 & F \end{bmatrix} \), and consider the ring \(R = \{(x_1, \ldots, x_n, x, x, \ldots) : n \in \mathbb{N}, x_i \in M_2(F), x \in I\} \) with component-wise operations. By [11, Example 2.15], \(J(R) = 0 \) and \(R \) is not a von Neumann regular ring. Then \(R \) is not principally \(\oplus \)-supplemented as an \(R \)-module due to [14, Theorem 3.30]. On the other hand, it is known that, from [18, Example 4.3], \(J_\delta(R) = \{(x_1, \ldots, x_n, x, x, \ldots) : n \in \mathbb{N}, x_i \in M_2(F), x \in K\} \), where \(K = \begin{bmatrix} 0 & F \\ 0 & 0 \end{bmatrix} \) and \(R \) is \(\delta \)-perfect. Hence \(R \) is principally \(\delta \)-semiperfect. By Corollary 3.41, \(R \) is principally \(\oplus \)-\(\delta \)-supplemented.
Acknowledgements. The authors would like to thank the referee(s) for valuable suggestions. The first author thanks The Scientific and Technological Research Council of Turkey (TUBITAK) for the financial support.

References

Burcu Ungor, Department of Mathematics, Ankara University, Ankara, Turkey
E-mail address: bungor@science.ankara.edu.tr

Sait Halicioglu, Department of Mathematics, Ankara University, Ankara, Turkey
E-mail address: halici@ankara.edu.tr

Abdullah Harmanci, Department of Maths, Hacettepe University, Ankara, Turkey
E-mail address: harmanci@hacettepe.edu.tr