Convolutions with Hypergeometric Functions

M. ANBU DURAI AND R. PARVATHAM
The Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai – 600 005, India

Abstract. In this paper we study the behaviour of \(I_{a,b,c}(f) (z) = z^F(a,b,c,z) \ast f(z) \) where \(F(a,b,c,z) \) is the Gaussian Hypergeometric function and the * is usual Hadamard product. In the main result, we find conditions on \(a,b,c,A,B \) and \(\beta \) so that \(I_{a,b,c}(f)(z) \) belong to \(S^*[A,B] \) whenever \(f(z) \in R(\beta), \beta < 1 \).

1. Introduction

Let \(A \) denote the family of functions \(f(z)=z+\sum_{n=2}^{\infty} a_n z^n \) that are analytic in the interior of unit disk \(\Delta = \{ z \in C : |z| < 1 \} \). Let \(g \) be analytic and univalent in \(\Delta \) and \(f \) be analytic in \(\Delta \), then \(f(z) \) is said to be subordinate to \(g(z) \), written \(f \prec g \) if \(f(0)=g(0) \) and \(f(\Delta) \subset g(\Delta) \).

For \(-1 \leq B < A \leq 1 \), let
\[
S^*[A,B] = \left\{ f \in A \mid \frac{zf'(z)}{f(z)} < \frac{1 + Az}{1 + Bz}, \ z \in \Delta \right\}
\]

For \(A=1, B=-1 \) we get the well known family \(S^* \) of starlike functions. We further get \(S[1-2\gamma,-1] = S^*(\gamma) \) and \(S^*(\gamma,0) = S^*_\gamma \). For \(\beta < 1 \), define
\[
R(\beta) = \{ f \in A \mid \exists \ \theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) / \text{Re} \left[e^{i\theta} (f'(z) - \beta) \right] > 0, \ z \in \Delta \}.
\]

Note that when \(\beta \geq 0 \), we have \(R(\beta) \subset S \), the class of univalent functions in \(A \). For each \(\beta < 0 \), \(R(\beta) \) contains also nonunivalent functions.
For any complex number \(a \) we define the ascending factorial notation \((a, n) = a(a+1)\cdots(a+n-1)\) for \(n \geq 1 \) and \((a, 0) = 1\) for \(a \neq 0 \). The triangle inequality for \((a, n)\) is \(|(a, n)| \leq (|a|, n)\). When \('a' \) is neither zero nor a negative integer, we can write \((a, n) = \Gamma(n+a)/\Gamma(a)\).

The Gaussian hypergeometric function is defined as

\[
F(a, b, c, z) = \sum_{n=0}^{\infty} \frac{(a, n)(b, n)}{c, (n)(1, n)} z^n, \quad a, b, c \in C
\]

where \(c \) is neither zero nor a negative integer. The following well known formula

\[
F(a, b, c, 1) = \frac{\Gamma(c-a-b)\Gamma(c)}{\Gamma(c-a)\Gamma(c-b)}, \quad \text{Re}(c-a-b) > 0
\]

will be used frequently. Univalence, starlikeness and convexity properties of \(zF(a, b, c, z) \) have been studied in [6] and [8].

For \(f \in A \), we consider the Hohlov convolution operator [2] \(I_{a, b, c}(f) \) given by

\[
[I_{a, b, c}(f)](z) = zF(a, b, c, z) \ast f(z)
\]

where \(\ast \) stands for the usual Hadamard product of power series. For \(\text{Re} c > \text{Re} b > 0 \), it is known that

\[
F(a, b, c, z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_0^1 t^{b-1}(1-t)^{c-b-1} \frac{dt}{(1-tz)^a}.
\]

We can write

\[
[I_{a, b, c}(f)](z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_0^1 t^{b-1}(1-t)^{c-b-1} \frac{f(tz)}{t} \frac{dt}{(1-tz)^a} \ast \frac{z}{(1-z)^a}.
\]

This operator reduces to Bernardi operator

\[
B_f(z) = (1+\gamma) \int_0^1 t^{\gamma-1} f(tz) dt
\]

for \(a = 1, b = 1 + \gamma \) and \(c = 2 + \gamma \) with \(\text{Re} \gamma > -1 \). For \(\gamma = 1 \) and 2, respectively we get Alexander transform and Libera transform. These three operators are all examples of the situation where \(c = a + b \) in \(I_{a, b, c}(f) \). Also we have
\[
\frac{z}{(1-z)^{n+1}} \ast f(z) = [I_{n+1, f}(f)](z), \quad n > -1
\]
which is known as Ruscheweyh differential, studied in [7]. It represents the case \(c < a + b \) with \(a = 1, \ b = n+1 \) and \(c = 1 \). Some more special cases of the operator \(I_{a,b,c} (f) \) can be found in [10].

P.T. Mocanu [3] obtained the range for \(\gamma \) so that the Bernardi operator \(B_f \in S^* \) whenever \(f \in R(0) \). As a natural extension, here we determine conditions on \(A, B, a, b, c \) and \(\beta \), the transform by the hypergeometric function \(F(a, b, c, z) \) on the class \(R(\beta) \) so that \(I_{a,b,c}(f) \in S^*[A,B] \).

2. Auxiliary lemmas

We shall state the following Lemmas [4] which may be used in proving the main theorems.

Lemma 2.1. Let \(a, b, c > 0 \). Then

(i) for \(c > a + b + 1 \),

\[
\sum_{n=0}^{\infty} \frac{(n+1) (a,n) (b,n)}{(c,n) (1,n)} = \frac{\Gamma(c-a-b) \Gamma(c)}{\Gamma(c-a) \Gamma(c-b)} \left[\frac{ab}{c-1-a-b} + 1 \right]
\]

(ii) for \(c > a + b + 2 \),

\[
\sum_{n=0}^{\infty} \frac{(n+1)^2 (a,n) (b,n)}{(c,n) (1,n)} = \frac{\Gamma(c-a-b) \Gamma(c)}{\Gamma(c-a) \Gamma(c-b)} \left[1 + \frac{(a,2) (b,2)}{(c-2-a-b,2)} + \frac{3ab}{c-1-a-b} \right].
\]

Lemma 2.2. Let \(a, b, c > 0 \) and for \(a \neq 1, b \neq 1, c \neq 1 \) with \(c > \max \{0, a+b-1\} \),

\[
\sum_{n=0}^{\infty} \frac{(a,n) (b,n)}{(c,n) (1,n+1)} = \frac{1}{(a-1) (b-1)} \left[\frac{\Gamma(c+1-a-b) \Gamma(c)}{\Gamma(c-a) \Gamma(c-b)} - (c-1) \right].
\]

Lemma 2.3. Let \(a, b, c > 0 \). For \(b \neq 1 \) and \(c > 1 + b \),

\[
\sum_{n=0}^{\infty} \frac{(b,n) 1}{(c,n) (n+1)} = \frac{c-1}{(b-1)} \left(\psi(c-1) - \psi(c-b) \right)
\]

where \(\psi(x) = \Gamma'(x) / \Gamma(x) \).
3. Main theorems

Now let us study the action of the hypergeometric function on the classes $R(\beta)$ and S.

Theorem 3.1. Let $a, b \in C \setminus \{0\}$, $|a| \neq 1$, $|b| \neq 1$, $c \neq 1$ and $c > |a| + |b|$. For $-1 \leq B < A \leq 1$, assume that

$$
\frac{\Gamma(c - |a| - |b|) \Gamma(c)}{\Gamma(c - |a|) \Gamma(c - |b|)} \left\{ (1 - B) - \frac{(1 - A) (c - |a| - |b|)}{(|a| - 1) (|b| - 1)} \right\}
\leq (A - B) \left\{ 1 + \frac{1}{2(1 - \beta)} \right\} - \frac{(1 - A) (c - 1)}{(|a| - 1) (|b| - 1)}
$$

Then the operator $I_{a,b,c}(f)$ maps $R(\beta)$ into $S^*[A,B]$.

Proof. Let $a, b \in C \setminus \{0\}$ and $c > |a| + |b|$, $|a| \neq 1$, $|b| \neq 1$ and $c \neq 1$. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be a function in $R(\beta)$. Then, it is well-known that $|a_n| \leq \frac{2(1 - \beta)}{n}$. Consider $zF(a,b,c,z)_* f(z) = z + \sum_{n=2}^{\infty} B_n z^n$ where $B_1 = 1$ and for $n \geq 1$,

$$
B_n = \frac{(a,n-1)(b,n-1)}{(c,n-1)(1,n-1)} a_n
$$

A special case of Theorem 3 in [1] gives a sufficient condition for $f \in S^*[A,B]$ is that

$$
\sum_{n=2}^{\infty} \{ n(1 - B) - (1 - A) \} |a_n| \leq A - B.
$$

Then we have to show that

$$
T = \sum_{n=2}^{\infty} \{ n(1 - B) - (1 - A) \} |B_n| \leq A - B.
$$

We have

$$
T \leq \sum_{n=2}^{\infty} \{ n(1 - B) - (1 - A) \} \frac{(|a|, n-1)(|b|, n-1)}{(c,n-1)(1,n-1)} \frac{2(1 - \beta)}{n}
= 2(1 - \beta) \left\{ (1 - B) \sum_{n=1}^{\infty} \frac{(|a|, n)(|b|, n)}{(c,n)(1,n)} - (1 - A) \sum_{n=1}^{\infty} \frac{(|a|, n)(|b|, n)}{(c,n)(1,n+1)} \right\} = T_1
$$
Using the formula (1.1) and Lemma 2.2, we observe that

\[
T_1 = 2(1 - \beta) \left\{ (1 - B) \frac{\Gamma(c - |a - b|)}{\Gamma(c - |a|)} \frac{\Gamma(c)}{\Gamma(c - |b|)} - (1 - B) \right. \\
- (1 - A) \frac{\Gamma(c - |a - b|)}{\Gamma(c - |a|)} \frac{\Gamma(c) (c - |a - b|)}{\Gamma(c - |b|)(|a| - 1)(|b| - 1)} + \frac{(1 - A)(c - 1)}{(|a| - 1)(|b| - 1)} + (1 - A) \left. \right\}
\]

\[
= 2(1 - \beta) \left\{ \frac{\Gamma(c - |a - b|)}{\Gamma(c - |a|)} \frac{\Gamma(c) (c - |a - b|)}{\Gamma(c - |b|)(|a| - 1)(|b| - 1)} \left[(1 - B) - \frac{(1 - A)(c - |a - b|)}{(|a| - 1)(|b| - 1)} \right] \\
+ \frac{(1 - A)(c - 1)}{(|a| - 1)(|b| - 1)} - (A - B) \right\}.
\]

Then under the hypothesis (3.1) of the theorem we get

\[
T \leq T_1 \leq 2 (1 - \beta) \frac{(A - B)}{2(1 - \beta)} = A - B,
\]

thereby showing that \(f \in S^* [A, B] \).

Note. For \(A = \lambda, B = 0 \) we get, as a special case, Theorem 2.1 of [4].

Theorem 3.2. Let \(b \in C \setminus \{0\}, c > 0, |b| \neq 1 \) and \(c > 1 + |b| \). For \(-1 \leq B < A \leq 1 \), assume that

\[
\frac{(1 - B)(c - 1)}{(c - |b| - 1)} - (1 - A) \left(\frac{c - 1}{b - 1} \right) (\psi(c - 1) - \psi(c - |b|)) \leq \frac{A - B}{2(1 - \beta)} + (A - B) \quad (3.3)
\]

where \(\psi(x) = \Gamma'(x)/\Gamma(x) \). Then the operator \(I_{1,b,c}(f) \) maps \(R(\beta) \) into \(S^* [A, B] \).

Proof. Putting \(a = 1 \) in (3.2) we get

\[
T_1 = 2(1 - \beta) \left\{ (1 - B) \sum_{n=1}^\infty \frac{|b|, n}{(c, n)} - (1 - A) \sum_{n=1}^\infty \frac{|b|, n}{(c, n)(n + 1)} \right\}.
\]

Using (1.1) and Lemma 2.3, we get

\[
T_1 = 2(1 - \beta) \left\{ \frac{(1 - B)(c - 1)}{(c - |b| - 1)} - (1 - A) \left(\frac{c - 1}{b - 1} \right) (\psi(c - 1) - \psi(c - |b|)) \right\} - (A - B) \right\}.
\]
Thus under the hypothesis (3.3) of the theorem we get \(T \leq T_1 \leq (A - B) \), there by showing that the operator \(I_{1,b,c}(f) \) maps \(R(\beta) \) into \(S^*[A,B] \).

Note. For \(A = \lambda, \ B = 0 \), we get as a special case, Theorem 2.2. of [4].

From the proof of Theorems 3.1 and 3.2, we observe that for \(A = 1, \ B = 0 \). We need not treat the case \(a = 1 \) separately neither we need the aestrictions \(b \neq 1 \) and \(c \neq 1 \). In this case, we have the following result.

Corollary 3.3. Let \(a,b \in \mathbb{C} \setminus \{0\} \) and \(c > |a| + |b| \). Assume that

\[
\frac{\Gamma(c-a) \left| -b \right| \Gamma(c)}{\Gamma(c-a) \left| -b \right|} \leq 1 + \frac{1}{2(1-\beta)}.
\]

Then the operator \(I_{a,b,c}(f) \) maps \(R(\beta) \) into \(S^*[1, 0] \).

Let \(\pi : [0, 1] \to \mathbb{R} \) be a nonnegative function normalized so that \(\int_0^1 \pi(t)dt = 1 \) and define

\[
[V_{\pi}(f)](z) = \int_0^1 \pi(t) \frac{f(tz)}{t} dt, \quad f \in A.
\]

Let \(\Pi(t) = \int_0^1 \pi(s) \frac{ds}{s} \) and assume that \(\Pi(t) \to 0 \) when \(t \to 0^+ \). It is shown in [9] that the class \(S^*[A,B] \), \(-1 \leq B < A \leq 1 \) can be characterized in terms of convolutions that

\[
f \in S^*[A,B] \Leftrightarrow \frac{f(z)}{z} * \frac{h_{(A,B)}(z)}{z} \neq 0
\]

where

\[
h_{(A,B)}(z) = \frac{z - \frac{A - x}{A - B}}{(1 - z)^2}; \quad |x| = 1.
\]

Choose \(G(t) = \frac{(A-B) - (1-A)t}{(A-B)(1+t)^2} \).

From \(tg'(t) + g(t) + 1 = 2G(t) \), we get

\[
g(t) = \frac{2(1-B) - (A-B)(1+t)}{(A-B)(1+t)} - \frac{2(1-A)}{(A-B)} \log(1+t) - \frac{t}{t}
\]

An application of Theorem 2.1 in [5] gives the following result.
Theorem 3.4. Let β be given by

$$\frac{\beta}{1-\beta} = -i \int_0^1 \pi(t) \left[\frac{2(1-B) - (A-B)(1+t)}{(A-B)(1+t)} - \frac{2(1-A)}{(A-B)} \log(1+t) \right] dt .$$

Then,

$$V_\pi(R(\beta)) \subset \mathcal{S}^*[A,B] \Leftrightarrow L_{\Pi}(e^{-i\theta} h_{(A,B)}(e^{i\theta} z)) \geq 0, \quad z \in \Delta$$

Where

$$L_{\Pi}(h) = \inf_{z \in \Delta} \int_0^1 \Pi(t) \left[\text{Re} \left(\frac{h(tz)}{iz} \right) - \frac{(A-B) + (A-1)t}{(A-B)(1+t)^2} \right] dt .$$

Note. The operator $I_{1,b,c}(f)$ corresponds to $V_\pi(f)$ with $\pi(t) = \pi_{b,c}(t)$

$$= \frac{\Gamma(c) \Gamma(b) \Gamma(c-b)}{\Gamma(c-b)} t^{b-1} (1-t)^{c-b-1} \text{ where } \int_0^1 \pi_{b,c}(t) dt = 1. \text{ The cases } A=\lambda, B=0 \text{ and } A=1-2\gamma, B=-1 \text{ were treated in [4] and [5] respectively.}$$

Next we determine the condition on a, b, c and A, B when $f(z)$ is in S instead of $f(z) \in R(\beta)$.

Theorem 3.5. Let $a, b, c \in C \setminus \{0\}, \ c > 2 + |a| + |b|$. Suppose that a, b and $-1 \leq B < A \leq 1$ satisfy the condition that

$$\frac{\Gamma(c-a-b) \Gamma(c)}{\Gamma(c-a) \Gamma(c-b)} \left[(1-B) \frac{a(a+1) b(b+1)}{(c-2-a-b)(c-1-a-b)} + (A+2-3B) \frac{|ab|}{c-1-a-b} + (A-B) \right] \leq 2 (A-B) \quad (3.4)$$

Then the operator $I_{a,b,c}(f)$ maps S into $S^*[A,B]$.

Proof. Let $a \in C \setminus \{0\}, \ c > 2 + |a| + |b| \text{ and } -1 \leq B < A \leq 1$. Let $f(z) = z + \sum_{n=2}^\infty a_n z^n \in S$. Then we have that $|a_n| \leq n$. Consider $zF(a,b,c,z) \ast f(z) = z + \sum_{n=2}^\infty B_n z^n$ where

$$B_n = \frac{(a,n-1)(b,n-1)}{(c,n-1)(1,n-1)} a_n .$$
It is enough to show that

$$T = \sum_{n=2}^{\infty} \{ n(1-B) - (1-A) \} \left| B_n \right| \leq A - B.$$

We have

$$T = \sum_{n=2}^{\infty} \{ n(1-B) - (1-A) \} \frac{(a,n-1)(b,n-1)}{(c,n-1)(1,n-1)} \left| a_n \right|$$

$$\leq \sum_{n=2}^{\infty} \{ (n+1)^2 (1-B) - (n+1)(1-A) \} \frac{(a,n)(b,n)}{(c,n)(1,n)}$$

$$= (1-B) \sum_{n=1}^{\infty} \frac{(n+1)^2 (a,n)(b,n)}{(c,n)(1,n)} - (1-A) \sum_{n=1}^{\infty} \frac{(n+1)(a,n)(b,n)}{(c,n)(1,n)} := T_2$$

From Lemma 2.1. we get

$$T_2 = \frac{\Gamma(c-a-b)\Gamma(c)}{\Gamma(c-a)\Gamma(c-b)} \left[(1-B) + \frac{(1-B)(a,2)(b,2)}{(c-2-a-b,2)} + \frac{3(1-B)}{c-1-a-b} \left| ab \right| \right.$$

$$- \frac{(1-A)}{c-1-a-b} - (1-A) \right] - (1-B) + (1-A)$$

$$= \frac{\Gamma(c-a-b)\Gamma(c)}{\Gamma(c-a)\Gamma(c-b)} \left[(1-B) \frac{a(a+1)b(b+1)}{(c-2-a-b)(c-1-a-b)} + \frac{A}{c-1-a-b} \right.$$

$$- \frac{ab}{c-1-a-b} \left| ab \right| + \frac{3(1-B)}{c-1-a-b} \left| ab \right| + (A-B) \right] - (A-B)$$

$$= \frac{\Gamma(c-a-b)\Gamma(c)}{\Gamma(c-a)\Gamma(c-b)} \left[(1-B) \frac{a(a+1)b(b+1)}{(c-2-a-b)(c-1-a-b)} + \frac{A}{c-1-a-b} \right.$$

$$+ \frac{(A+2-3B)}{c-1-a-b} \left| ab \right| + (A-B) \right] - (A-B) .$$

Then, under the hypothesis (3.4) of the theorem we get $T \leq T_2 \leq A - B$. Therefore the operator $I_{a,b,c}(f)$ maps S into $S^*[a,b]$.

Note. When $A = \lambda$, $B = 0$, this reduces to Theorem 2.6. in [4].
References

Keywords: hypergeometric functions, starlikeness, subordination, Hadamard product.

1991 Mathematics Subjects Classification: 30C45, 33C05.

* The work was carried out when the first author is under the Faculty Improvement programme of University Grants Commission of IX plan.