On Common Fixed Point Theorem of Four Mappings

SUSHIL SHARMA AND P.C. PATIDAR

1Department of Mathematics, Madhav Science College (Centre for Excellence), Vikram University, Ujjain, India
2Department of Mathematics, Government Arts and Science College, Ratlam, India

E-mail: sksharma2005@yahoo.com

Abstract. In this paper we shall prove common fixed point theorems for four mappings in complete metric space. Our theorems generalize results of Banach [1], Kannan [5], Fisher [4] and Chatterjee [2].

1. Definitions

Definition 1. A sequence \(\{x_n\} \) in a metric space \((X,d)\) is said to be convergent to a point \(x\) in \(X\) if

\[
\lim_{n \to \infty} d(x_n, x) = 0 \quad \text{for all } x \in X.
\]

Then \(x\) is called the limit of the sequence \(\{x_n\}\) in \(X\).

Definition 2. A sequence \(\{x_n\}\) in a metric space \((X,d)\) is said to be Cauchy sequence if

\[
\lim_{m,n \to \infty} d(x_m, x_n) = 0 \quad \text{for all } x \in X.
\]

Then \(x\) is called the limit of the sequence \(\{x_n\}\) in \(X\).

Definition 3. A metric space \((X,d)\) is said to be complete if every Cauchy sequence in \(X\) is convergent.

Definition 4. [3] Let \(A\) and \(S\) be mappings from a metric space \((X,d)\) into itself. Then \(A\) and \(S\) are said to be compatible of type (A) if

\[
\lim_{n \to \infty} d(ASx_n, SSx_n) = 0
\]
and

\[\lim_{n \to \infty} d(SA_n, AA_n) = 0 \]

whenever \(\{x_n\} \) is a sequence in \(X \) such that

\[\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Ax_n = z \quad \text{for some } z \in X. \]

The object of this paper is to prove following theorems:

Theorem 1. Let \(A, B, S \) and \(T \) be four mappings of complete metric space \(X \) into itself satisfying:

\[d(Ax, By) \leq \alpha_1 \left[\frac{d(Ty, By)d(Sx, Ty)}{d(Tx, Ax) + d(By, Tx)} \right] + \alpha_2 [d(Ax, Tx) + d(Sx, Bx)] \]

\[+ d(Ay, Sy) + \alpha_3 [d(Tx, Bx) + d(Sy, Tx) + d(By, Ty)] \]

\[+ \alpha_4 [d(Sx, Ty) + d(Tx, By)]. \]

(1.1)

the pairs \(A, S \) and \(B, T \) are compatible of type \((A) \), \n
(1.2)

one of \(A, B, S \) and \(T \), is continuous, \n
(1.3)

for all \(x, y \) in \(X \), where \(\alpha_i \geq 0 \) and \(\alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4 < 1. \) Then \(A, B, S \) and \(T \) have a unique common fixed point in \(X. \)

Proof. Let \(x_0 \) be an arbitrary point of \(X \). We define

\[Ax_{2n+1} = y_{2n+2}, \quad Tx_{2n} = y_{2n}, \]

\[Bx_{2n} = y_{2n+1}, \quad Sx_{2n+1} = y_{2n+1}, \quad n = 1, 2, \ldots \]

By putting \(x = x_{2n} \) and \(y = x_{2n+1} \) in (1.1), we write
On Common Fixed Point Theorem of Four Mappings

\[
d(Ax_{2n}, Bx_{2n+1}) \leq \alpha_1 \left[\frac{d(Tx_{2n}, Bx_{2n})}{d(Tx_{2n}, Ax_{2n}) + d(Bx_{2n}, Tx_{2n})} \right] + \alpha_2 \left[d(Ax_{2n}, Tx_{2n}) + d(Sx_{2n}, Tx_{2n}) + d(Ax_{2n}, Bx_{2n}) + d(Sx_{2n}, Bx_{2n}) \right] + \alpha_3 \left[d(Tx_{2n}, Bx_{2n}) + d(Sx_{2n}, Bx_{2n}) + d(Ax_{2n}, Bx_{2n}) + d(Sx_{2n}, Bx_{2n}) \right] + \alpha_4 \left[d(Sx_{2n}, Tx_{2n}) + d(Bx_{2n}, Tx_{2n}) \right]
\]

\[
= \alpha_1 \left[\frac{d(y_{2n+1}, y_{2n+2})}{d(y_{2n}, y_{2n+1}) + d(y_{2n+1}, y_{2n})} \right] + \alpha_2 \left[d(y_{2n+1}, y_{2n}) + d(y_{2n+2}, y_{2n+1}) + d(y_{2n+1}, y_{2n+2}) + d(y_{2n+2}, y_{2n+1}) \right] + \alpha_3 \left[d(y_{2n+1}, y_{2n}) + d(y_{2n+2}, y_{2n+1}) + d(y_{2n+1}, y_{2n+2}) + d(y_{2n+2}, y_{2n+1}) \right] + \alpha_4 \left[d(y_{2n+1}, y_{2n+2}) + d(y_{2n+2}, y_{2n+1}) \right]
\]

\[
d(y_{2n+1}, y_{2n+2}) \leq (\alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4) d(y_{2n}, y_{2n+1}) + (\alpha_2 + \alpha_3 + \alpha_4) d(y_{2n+1}, y_{2n+2})
\]

Putting \(h = \frac{(\alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4)}{(1-\alpha_2 - \alpha_3 - \alpha_4)} \), we find \(h < 1 \), since \(\alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4 < 1 \). Hence

\[
d(y_{2n+1}, y_{2n+2}) \leq h d(y_{2n}, y_{2n+1}).
\]

Similarly by putting \(x = x_{2n-1} \) and \(y = x_{2n} \) in (1.1), we have

\[
d(Ax_{2n-1}, Bx_{2n}) \leq \alpha_1 \left[\frac{d(Tx_{2n}, Bx_{2n})}{d(Tx_{2n}, Ax_{2n}) + d(Bx_{2n}, Tx_{2n})} \right] + \alpha_2 \left[d(Ax_{2n-1}, Tx_{2n}) + d(Sx_{2n-1}, Tx_{2n}) + d(Ax_{2n-1}, Bx_{2n}) + d(Sx_{2n-1}, Bx_{2n}) \right] + \alpha_3 \left[d(Tx_{2n}, Bx_{2n}) + d(Sx_{2n}, Bx_{2n}) + d(Ax_{2n}, Bx_{2n}) + d(Sx_{2n}, Bx_{2n}) \right] + \alpha_4 \left[d(Sx_{2n}, Tx_{2n}) + d(Bx_{2n}, Tx_{2n}) \right]
\]

\[
= \alpha_1 \left[\frac{d(y_{2n}, y_{2n+1})}{d(y_{2n-1}, y_{2n}) + d(y_{2n}, y_{2n-1})} \right] + \alpha_2 \left[d(y_{2n-1}, y_{2n}) + d(y_{2n+1}, y_{2n}) + d(y_{2n}, y_{2n+1}) + d(y_{2n+1}, y_{2n}) \right] + \alpha_3 \left[d(y_{2n-1}, y_{2n}) + d(y_{2n+1}, y_{2n}) + d(y_{2n}, y_{2n-1}) + d(y_{2n+1}, y_{2n}) \right] + \alpha_4 \left[d(y_{2n-1}, y_{2n}) + d(y_{2n-1}, y_{2n+1}) \right]
\]
\[d(y_{2n}, y_{2n+1}) \leq (\alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4) d(y_{2n-1}, y_{2n}) + (\alpha_2 + \alpha_3 + \alpha_4) d(y_{2n}, y_{2n+1}) \]
\[\leq \frac{(\alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4)}{(1-\alpha_2 - \alpha_3 - \alpha_4)} d(y_{2n-1}, y_{2n}) \]

\[d(y_{2n}, y_{2n+1}) \leq h \cdot d(y_{2n-1}, y_{2n}), \quad \text{as} \quad h = \frac{(\alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4)}{(1-\alpha_2 - \alpha_3 - \alpha_4)} \]

We find \(h < 1 \), since \((\alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4) < 1 \). Proceeding in this way, we have

\[d(y_{2n}, y_{2n+1}) \leq h^{2n} d(y_0, y_1) \]

By routine calculations the following inequaities hold for \(k > n \)

\[d(y_n, y_{n+k}) \leq \sum_{i=1}^{k} d(y_{n+i-1}, y_{n+i}) \leq \sum_{i=1}^{k} h^{n+i-1} d(y_0, y_1) \leq \frac{h^n}{1-h} d(y_0, y_1) \to 0 \quad \text{as} \quad n \to \infty \]

Here \(h < 1 \). Hence \(\{y_n\} \) is a Cauchy sequence and by completeness of \(X \) we see that \(\{y_n\} \) is converges to a point \(z \) in \(X \). Since \(\{y_n\} \) is a Cauchy sequence and taking \(n \to \infty \), we write

\[A x_{2n} = T x_{2n+1} \to z \quad \text{and} \quad B x_{2n+1} = S x_{2n+2} \to z \]

Now, suppose \(A \) is continuous. Since \(A \) and \(S \) are compatible mappings of type \((A) \), then

\[A A x_{2n} \quad \text{and} \quad S A x_{2n} \to A z \quad \text{as} \quad n \to \infty.\]

Now putting \(x = A x_{2n} \) and \(y = x_{2n+1} \) in (1.1), we write
\[d(AAx_{2n}, Bx_{2n+1}) \leq \alpha_1 \left[\frac{d(Tx_{2n+1}, Bx_{2n+1})}{d(TTx_{2n+1}, AAx_{2n}) + d(Bx_{2n+1}, TTx_{2n+1})} \right] + \alpha_2 \left[d(AAx_{2n}, TTx_{2n+1}) + d(SA_x_{2n}, BTTx_{2n+1}) \right] + \alpha_3 \left[d(Ax_{2n+1}, Sx_{2n+1}) + d(TTx_{2n+1}, BTTx_{2n+1}) \right] + \alpha_4 \left[d(SAx_{2n}, Tx_{2n+1}) + d(TTTx_{2n+1}, Bx_{2n+1}) \right] \]

Taking the limit \(n \to \infty \), we write

\[d(Az, z) \leq \alpha_2 d(Az, z) \]

giving a contradiction as \(\alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4 < 1 \).

Therefore \(Az = z \).

Similarly by putting \(x = Sx_{2n} \) and \(y = x_{2n+1} \) in (1.1), we write

\[d(Ax_{2n}, Bx_{2n+1}) \leq \alpha_1 \left[\frac{d(Tx_{2n+1}, Bx_{2n+1})}{d(Tx_{2n+1}, AAx_{2n}) + d(Bx_{2n+1}, TTx_{2n+1})} \right] + \alpha_2 \left[d(Ax_{2n}, TTx_{2n+1}) + d(SSx_{2n}, BBx_{2n+1}) \right] + \alpha_3 \left[d(Ax_{2n+1}, Sx_{2n+1}) + d(TT Tx_{2n+1}, BBx_{2n+1}) \right] + \alpha_4 \left[d(SSx_{2n}, Tx_{2n+1}) + d(BTx_{2n+1}, Bx_{2n+1}) \right] \]

Taking the limit \(n \to \infty \), we write

\[d(Sz, z) \leq (\alpha_2 + \alpha_4) d(Sz, z) \]

giving a contradiction as \(\alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4 < 1 \), therefore \(Sz = z \).

Similarly \(Bz = Tz = z \). Thus \(z \) is a common fixed point of \(A, B, S \) and \(T \).

For uniqueness let \(z \) and \(w = w(z) \neq w \) be two fixed points in \(X \) such that

\[Az = Bz = Sz = Tz = z \quad \text{and} \quad Aw = Bw = Sw = Tw = w, \]
then by (1.1), we have

\[
d(Az, Bw) \leq \alpha_1 \left(\frac{d(Tw, Bw) \cdot d(Sz, Tw)}{d(Tz, Az) + d(Bw, Tz)} \right) + \alpha_2 \left[d(Az, Tz) + d(Sz, Bz) + d(Aw, Sw) + d(Tz, Bz) + d(Tw, Sw) \right] + \alpha_4 \left[d(Sz, Tw) + d(Tz, Bw) \right]
\]

which is a contradiction, since \(\alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4 < 1 \). Hence \(z = w \).

This implies the uniqueness of common fixed point of \(A, B, S \) and \(T \).

Theorem 2. Let \(A, B, S \) and \(T \) be four mappings of complete metric space \(X \) into itself and satisfying (1.2), (1.3), (1.4) and

\[
d(Ax, By) \leq \alpha_1 \left[\frac{d(Tx, B^2y) \cdot d(Ty, Sx)}{d(Sx, A^2y)} \right] + \alpha_2 \left[d(Tx, Ax) + d(Ty, By) \right] + \alpha_3 \left[d(Tx, By) + d(Ty, Sx) + d(Ty, Bx) \right] + \alpha_4 \left[d(Tx, Ty) + d(Ty, Bx) \right].
\]

Theorem 2 can be proved in the similar manner as Theorem 1.

Acknowledgement. Authors extend thanks to Profesor Jeong Sheok Ume and Profesor Tae Hwa Kim for this paper.

References

Keywords: metric space, Cauchy sequence, common fixed point.

1990 AMS Subject Classification: 47H10, 54H25