On δD-Sets and Associated Weak Separation Axioms

M. CALDAS AND S. JAFARI

1Departamento de Matematica Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, s/n 24020-140, Niteroi, RJ Brasil
2Department of Mathematics and Physics, Roskilde University, Post box 260, 4000, Roskilde, Denmark
1e-mail: gmamces@vm.uff.br and 2e-mail: sjafari@ruc.dk

Abstract. Veličko [4] introduced the notions of δ-open sets and δ-closure. In this paper, we introduce some weak separation axioms by utilizing δ-open sets and the δ-closure operator.

1. Introduction

Throughout this paper, (X, τ) and (Y, σ) (or X and Y) denote topological spaces. A subset A of a topological space X is said to be regular open (resp. regular closed) if $A = \text{Int}(\text{Cl}(A))$ (resp. $A = \text{Cl}(\text{Int}(A))$), where $\text{Int}(A)$ and $\text{Cl}(A)$ the interior and the closure of a set A. A point $x \in X$ is called the δ-cluster point of A if $A \cap U \neq \emptyset$ for every regular open set U of X containing x. The set of all δ-cluster points of A is called the δ-closure of A, denoted by $\text{Cl}_\delta(A)$. A subset A is called δ-closed if $A = \text{Cl}_\delta(A)$. The complement of a δ-closed set is called δ-open. We denote the collection of all δ-open (resp. δ-closed) sets by $\delta O(X, \tau)$ (resp. $\delta C(X, \tau)$). A set U is a δ-neighborhood of a point x if U is δ-open such that $x \in U$.

Lemma 1.1. Intersection of arbitrary of δ-closed sets in (X, τ) is δ-closed.

In what follows, (X, τ) is a regular topological space.

Corollary 1.2. Let A be a subset of a topological space (X, τ), $\text{Cl}_\delta(A) = \cap \{F \in \delta C(X, \tau) | A \subset F\}$.

Corollary 1.3. $\text{Cl}_\delta(A)$ is δ-closed, that is $\text{Cl}_\delta(\text{Cl}_\delta(A)) = \text{Cl}_\delta(A)$.
Lemma 1.4. For subsets \(A \) and \(A_i (i \in I) \) of a space \((X, \tau)\), the following hold:

1. \(A \subset \text{Cl}_\delta(A) \).
2. If \(A \subset B \), then \(\text{Cl}_\delta(A) \subset \text{Cl}_\delta(B) \).
3. \(\text{Cl}_\delta(\cap\{A_i : i \in I\}) \subset \cap\{\text{Cl}_\delta(A_i) : i \in I\} \)
4. \(\text{Cl}_\delta(\cup\{A_i : i \in I\}) = \cup\{\text{Cl}_\delta(A_i) : i \in I\} \).

2. \(\delta D \)-sets and associated separation axioms

Definition 1. A subset \(A \) of a topological space \(X \) is called a \(\delta D \)-sets if there are two \(U, V \in \delta O(X, \tau) \) such that \(U \neq X \) and \(A = U - V \).

Clearly every \(\delta \)-open set \(U \) different from \(X \) is a \(\delta D \)-set if \(A = U \) and \(V = \emptyset \).

Definition 2. A topological space \((X, \tau)\) is called \(\delta D_0 \) if for any distinct pair of points \(x \) and \(y \) of \(X \) there exists a \(\delta D \)-set of \(X \) containing \(x \) but not \(y \) or a \(\delta D \)-set of \(X \) containing \(y \) but not \(x \).

Definition 3. A topological space \((X, \tau)\) is called \(\delta D_1 \) if for any distinct pair of points \(x \) and \(y \) of \(X \) there exists a \(\delta D \)-set of \(X \) containing \(x \) but not \(y \) and a \(\delta D \)-set of \(X \) containing \(y \) but not \(x \).

Definition 4. A topological space \((X, \tau)\) is called \(\delta D_2 \) if for any distinct pair of points \(x \) and \(y \) of \(X \) there exists disjoint \(\delta D \)-sets \(G \) and \(E \) of \(X \) containing \(x \) and \(y \), respectively.

Definition 5. A topological space \((X, \tau)\) is called \(\delta T_0 \) if for any distinct pair of points in \(X \), there is a \(\delta \)-open set containing one of the points but not the other.

Definition 6. A topological space \((X, \tau)\) is called \(\delta T_1 \) if for any distinct pair of points \(x \) and \(y \) in \(X \), there is a \(\delta \)-open \(U \) in \(X \) containing \(x \) but not \(y \) and a \(\delta \)-open set \(V \) in \(X \) containing \(y \) but not \(x \).

Definition 7. A topological space \((X, \tau)\) is called \(\delta T_2 \) if for any distinct pair of points \(x \) and \(y \) in \(X \), there exist \(\delta \)-open sets \(U \) and \(V \) in \(X \) containing \(x \) and \(y \), respectively, such that \(U \cap V = \emptyset \).

Remark 2.1. (i) If \((X, \tau)\) is \(\delta T_i \), then it is \(\delta T_{i-1}, i = 1, 2 \).
(ii) Obviously, if \((X, \tau)\) is \(\delta T_i \), then \((X, \tau)\) is \(\delta D_i, i = 0, 1, 2 \).
(iii) If \((X, \tau)\) is \(\delta D_i \), then it is \(\delta D_{i-1}, i = 1, 2 \).
Theorem 2.2. For a topological space \((X, \tau)\) the following statements are true:

1. \((X, \tau)\) is \(\delta-D_0\) if and only if it is \(\delta-T_0\).
2. \((X, \tau)\) is \(\delta-D_1\) if and only if it is \(\delta-D_2\).

Proof. (1) The sufficiency is stated in Remark 2.1(ii). To prove necessity, let \((X, \tau)\) be \(\delta-D_0\). Then for each distinct pair \(x, y \in X\), at least one of \(x, y\), say \(x\), belongs to a \(\delta-D\)-set \(G\) but \(y \notin G\). Let \(G = U_1 \setminus U_2\) where \(U_1 \neq X\) and \(U_1, U_2 \in \partial O(X, \tau)\). Then \(x \in U_1\), and for \(y \notin G\) we have two cases: (a) \(y \notin U_1\); (b) \(y \in U_1\) and \(y \in U_2\).

In case (a), \(x \in U_1\) but \(y \notin U_1\); In case (b), \(y \notin U_2\) but \(x \notin U_2\). Hence \(X\) is \(\delta-T_0\).

(2) Sufficiency. Remark 2.1(iii).

Necessity. Suppose \(X\) \(\delta-D_1\). Then for each distinct pair \(x, y \in X\), we have \(\delta-D\)-sets \(G_1, G_2\) such that \(x \in G_1\), \(y \notin G_1\), \(y \in G_2\), \(x \notin G_2\). Let \(G_1 = U_1 \setminus U_2, G_2 = U_3 \setminus U_4\). From \(x \notin G_2\), it follows that either \(x \notin U_3\) or \(x \in U_3\) and \(x \in U_4\). We discuss the two cases separately.

1. \(x \notin U_3\). By \(y \notin G_1\) we have two subcases:
 - (a) \(y \notin U_1\). From \(x \in U_1 \setminus U_2\), it follows that \(x \in U_1 \setminus (U_2 \cup U_3)\) and by \(y \in U_3 \setminus U_4\) we have \(y \in U_3 \setminus (U_1 \cup U_4)\). Therefore \((U_1 \setminus (U_2 \cup U_3)) \cap (U_3 \setminus (U_1 \cup U_4)) = \emptyset\).
 - (b) \(y \in U_1\) and \(y \in U_2\). We have \(x \in U_1 \setminus U_2, y \in U_2, (U_1 \setminus U_2) \cap U_2 = \emptyset\).

2. \(x \in U_3\) and \(x \in U_4\). We have \(y \in U_3 \setminus U_4, x \in U_4, (U_3 \setminus U_4) \cap U_4 = \emptyset\). Therefore \(X\) is \(\delta-D_2\).

Corollary 2.3. If \((X, \tau)\) is \(\delta-D_1\), then it is \(\delta-T_0\).

Theorem 2.4. A topological space \((X, \tau)\) is \(\delta-T_0\) if and only if for each pair of distinct points \(x, y\) of \(X\), \(\text{Cl}_\delta\{\{x\}\} \neq \text{Cl}_\delta\{\{y\}\}\).

Proof. Sufficiency: Suppose that \(x, y \in X\), \(x \neq y\) and \(\text{Cl}_\delta\{\{x\}\} \neq \text{Cl}_\delta\{\{y\}\}\). Let \(z\) be a point of \(X\) such that \(z \in \text{Cl}_\delta\{\{x\}\}\) but \(z \notin \text{Cl}_\delta\{\{y\}\}\). We claim that \(x \notin \text{Cl}_\delta\{\{y\}\}\). For, if \(x \in \text{Cl}_\delta\{\{y\}\}\) then \(\text{Cl}_\delta\{\{x\}\} \subset \text{Cl}_\delta\{\{y\}\}\). This contradicts the fact that \(z \notin \text{Cl}_\delta\{\{y\}\}\). Consequently \(x\) belongs to the \(\delta\)-open set \([\text{Cl}_\delta\{\{y\}\}]^c\) to which \(y\) does not belong.
Necessity: Let (X, τ) be a $\delta-T_0$ space and x, y be any two distinct points of X. There exists a δ-open set G containing x or y, say x but not y. Then G^c is a δ-closed set which does not contain x but contains y. Since $\text{Cl}_\delta(\{y\})$ is the smallest δ-closed set containing y (Corollary 1.2), $\text{Cl}_\delta(\{y\}) \subset G^c$, and therefore $x \notin \text{Cl}_\delta(\{y\})$. Consequently $\text{Cl}_\delta(\{x\}) \neq \text{Cl}_\delta(\{y\})$.

Theorem 2.5. A topological space (X, τ) is $\delta-T_1$ if and only if the singletons are δ-closed sets.

Proof. Let (X, τ) be $\delta-T_1$ and x any point of X. Suppose $y \in \{x\}^c$. Then $x \neq y$ and so there exists a δ-open set U_y such that $y \in U_y$ but $x \notin U_y$. Consequently $y \in U_y \subset \{x\}^c$ i.e., $\{x\}^c = \bigcup \{U_y / y \in \{x\}\}$ which is δ-open.

Conversely. Suppose $\{p\}$ is δ-closed for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in \{x\}^c$. Hence $\{x\}^c$ is a δ-open set containing y but not x. Similarly $\{y\}^c$ is a δ-open set containing x but not y. Accordingly X is a $\delta-T_1$ space.

Definition 8. A point $x \in X$ which has X as the unique δ-neighborhood is called δ-neat point.

Theorem 2.6. For a $\delta-T_0$ topological space (X, τ) the following are equivalent:

1. (X, τ) is $\delta-D_1$,
2. (X, τ) has no δ-neat point.

Proof. (1) \Rightarrow (2). Since (X, τ) is $\delta-D_1$, then each point x of X is contained in a $\delta-D$-set $O = U - V$ and thus in U. By definition $U \neq X$. This implies that x is not a δ-neat point.

(2) \Rightarrow (1). If X is $\delta-T_0$, then for each distinct pair of points $x, y \in X$, at least one of them, x (say) has a δ-neighborhood U containing x and not y. Thus U which is different from X is a $\delta-D$-set. If X has no δ-neat point, then y is not a δ-neat point. This means that there exists a δ-neighborhood V of y such that $V \neq X$. Thus $y \in (V - U)$ but not x and $V - U$ is a $\delta-D$-set. Hence X is $\delta-D_1$.

Remark 2.7. It is clear that a $\delta-T_0$ topological space (X, τ) is not $\delta-D_1$ if and only if there is a unique δ-neat point in X. It is unique because if x and y are both δ-neat point in X, then at least one of them say x has a δ-neighborhood U containing x but not y. But this is a contradiction since $U \neq X$.
Definition 9. A topological space \((X, \tau)\) is \(\delta\)-symmetric if for \(x\) and \(y\) in \(X\), \(x \in Cl_\delta(\{y\})\) implies \(y \in Cl_\delta(\{x\})\).

Definition 10. A subset \(A\) of a topological space \((X, \tau)\) is called a \((\delta, \delta)\)-generalized-closed set \([1]\) (briefly \((\delta, \delta)\)-g-closed) if \(Cl_\delta(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(\delta\)-open in \((X, \tau)\).

Lemma 2.8. Every \(\delta\)-closed set is \((\delta, \delta)\)-g-closed.

Theorem 2.9. A topological space \((X, \tau)\) is \(\delta\)-symmetric if and only if \(\{x\}\) is \((\delta, \delta)\)-g-closed for each \(x \in X\).

Proof. Assume that \(x \in Cl_\delta(\{y\})\) but \(y \notin Cl_\delta(\{x\})\). This means that \([Cl_\delta(\{y\})]^c\) contains \(y\). This implies that \(Cl_\delta(\{y\})\) is a subset of \([Cl_\delta(\{x\})]^c\). Now \([Cl_\delta(\{x\})]^c\) contains \(x\) which is a contradiction.

Conversely, suppose that \(\{x\} \subseteq E \in \delta(X, \tau)\) but \(Cl_\delta(\{x\})\) is not a subset of \(E\). This means that \(Cl_\delta(\{x\})\) and \(E^c\) are not disjoint. Let \(y\) belongs to their intersection. Now we have \(x \in Cl_\delta(\{y\})\) which is a subset of \(E^c\) and \(x \notin E\). But this is a contradiction.

Corollary 2.10. If a topological space \((X, \tau)\) is a \(\delta-T_1\) space, then it is \(\delta\)-symmetric.

Proof. In a \(\delta-T_1\) space, singleton sets are \(\delta\)-closed (Theorem 2.5) and therefore \((\delta, \delta)\)-g-closed (Lemma 2.8). By Theorem 2.9, the space is \(\delta\)-symmetric.

Corollary 2.11. For a topological space \((X, \tau)\) the following are equivalent:

1. \((X, \tau)\) is \(\delta\)-symmetric and \(\delta-T_0\);
2. \((X, \tau)\) is \(\delta-T_1\).

Proof. By Corollary 2.10 and Remark 2.1 it suffices to prove only \((1) \rightarrow (2)\). Let \(x \neq y\) and by \(\delta-T_0\), we may assume that \(x \in G_1 \subseteq \{y\}^c\) for some \(G_1 \in \mathcal{O}(X, \tau)\). Then \(x \notin Cl_\delta(\{y\})\) and hence \(y \notin Cl_\delta(\{x\})\). There exists a \(G_2 \in \mathcal{O}(X, \tau)\) such that \(y \in G_2 \subseteq \{x\}^c\) and \((X, \tau)\) is a \(\delta-T_1\) space.
Theorem 2.12. For a \(\delta \)-symmetric topological space \((X, \tau)\) the following are equivalent:

1. \((X, \tau)\) is \(\delta-T_0\);
2. \((X, \tau)\) is \(\delta-D_1\);
3. \((X, \tau)\) is \(\delta-T_1\).

Proof.
- \((1) \implies (3)\): Corollary 2.11.
- \((3) \implies (2) \implies (1)\): Remark 2.1.

Definition 11. A function \(f : (X, \tau) \to (Y, \sigma)\) is said to be \(\delta\)-continuous [3] if for each \(x \in X\) and each regular open set \(V\) containing \(f(x)\), there is a regular open set \(U\) in \(X\) containing \(x\) such that \(f(U) \subseteq V\).

Remark 2.13. In 1980, Noiri [3] proved that a function \(f : (X, \tau) \to (Y, \sigma)\) is \(\delta\)-continuous if and only if the inverse image of each \(\delta\)-open set is \(\delta\)-open.

Theorem 2.14. If \(f : (X, \tau) \to (Y, \sigma)\) is a \(\delta\)-continuous surjective function and \(E\) is a \(\delta\)-D-set in \(Y\), then the inverse image of \(E\) is a \(\delta\)-D-set in \(X\).

Proof. Let \(E\) be a \(\delta\)-D-set in \(Y\). Then there are \(\delta\)-open sets \(U_1\) and \(U_2\) in \(Y\) such that \(E = U_1 \setminus U_2\) and \(U_1 \neq Y\). By the \(\delta\)-continuity of \(f\), \(f^{-1}(U_1)\) and \(f^{-1}(U_2)\) are \(\delta\)-open in \(X\). Since \(U_1 \neq Y\), we have \(f^{-1}(U_1) \neq X\). Hence \(f^{-1}(E) = f^{-1}(U_1) \setminus f^{-1}(U_2)\) is a \(\delta\)-D-set.

Theorem 2.15. If \((Y, \sigma)\) is \(\delta-D_1\) and \(f : (X, \tau) \to (Y, \sigma)\) is \(\delta\)-continuous and bijective, then \((X, \tau)\) is \(\delta-D_1\).

Proof. Suppose that \(Y\) is a \(\delta-D_1\) space. Let \(x\) and \(y\) be any pair of distinct points in \(X\). Since \(f\) is injective and \(Y\) is \(\delta-D_1\), there exist \(\delta\)-D-sets \(G_x\) and \(G_y\) of \(Y\) containing \(f(x)\) and \(f(y)\) respectively, such that \(f(y) \notin G_x\) and \(f(x) \notin G_y\). By Theorem 2.14, \(f^{-1}(G_x)\) and \(f^{-1}(G_y)\) are \(\delta\)-D-sets in \(X\) containing \(x\) and \(y\), respectively. This implies that \(X\) is a \(\delta-D_1\) space.

Theorem 2.16. A topological space \((X, \tau)\) is \(\delta-D_1\) if and only if for each pair of distinct points \(x, y \in X\), there exists a \(\delta\)-continuous surjective function \(f : (X, \tau) \to (Y, \sigma)\), where \(Y\) is a \(\delta-D_1\) space such that \(f(x)\) and \(f(y)\) are distinct.
Proof. Necessity. For every pair of distinct points of X, it suffices to take the identity function on X.

Sufficiency. Let x and y be any pair of distinct points in X. By hypothesis, there exists a δ-continuous, surjective function f of a space X onto a δ-D_1 space Y such that $f(x) \neq f(y)$. Therefore, there exist disjoint δ-D-sets G_x and G_y in Y such that $f(x) \in G_x$ and $f(y) \in G_y$. Since f is δ-continuous and surjective, by Theorem 2.14, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are disjoint δ-D-sets in X containing x and y, respectively. Hence by Theorem 2.2, X is δ-D_1 space.

3. Sober δ-R_0 spaces

Definition 12. Let A be a subset of topological space X. The δ-kernel of A, denoted by $\text{Ker}_\delta(A)$, is defined to be the set $\{x \in X \mid \text{Cl}_\delta(\{x\}) \cap A \neq \emptyset\}$.

Lemma 3.1. Let (X, τ) be a topological space and $x \in X$. Then $\text{Ker}_\delta(A) = \{x \in X / \text{Cl}_\delta(\{x\}) \cap A \neq \emptyset\}$.

Proof. Let $x \in \text{Ker}_\delta(A)$ and suppose $\text{Cl}_\delta(\{x\}) \cap A = \emptyset$. Hence $x \notin \text{Cl}_\delta(\{x\})^c$ which is a δ-open set containing A. This is absurd, since $x \in \text{Ker}_\delta(A)$. Consequently, $\text{Cl}_\delta(\{x\}) \cap A \neq \emptyset$. Next, let $\text{Cl}_\delta(\{x\}) \cap A \neq \emptyset$ and suppose that $x \notin \text{Ker}_\delta(A)$. Then, there exists a δ-open set D containing A and $x \notin D$. Let $y \in \text{Cl}_\delta(\{x\}) \cap A$. Hence, D is a δ-neighborhood of y which $x \notin D$. By this contradiction $x \in \text{Ker}_\delta(A)$ and the claim.

Definition 13. A topological space (X, τ) is said to be sober δ-R_0 if $\cap_{x \in X} \text{Cl}_\delta(\{x\}) = \emptyset$.

Therefore 3.2. A topological space (X, τ) is sober δ-R_0 if and only if $\text{Ker}_\delta(\{x\}) \neq X$ for every $x \in X$.

Proof. Suppose that the space (X, τ) be sober δ-R_0. Assume that there is a point y in X such that $\text{Ker}_\delta(\{y\}) = X$. Then $y \notin O$ which O is some proper δ-open subset of X. This implies that $y \in \cap_{x \in X} \text{Cl}_\delta(\{x\})$. But this is a contradiction.

Now assume that $\text{Ker}_\delta(\{x\}) \neq X$ for every $x \in X$. If there exists a point y in X such that $y \in \cap_{x \in X} \text{Cl}_\delta(\{x\})$, then every δ-open set containing y must contain every point of X. This implies that the space X is the unique δ-open set containing y. Hence $\text{Ker}_\delta(\{y\}) = X$ which is a contradiction. Therefore (X, τ) is sober δ-R_0.

Definition 14. A function \(f : X \to Y \) is called always \(\delta \)-closed if the image of every \(\delta \)-closed subset of \(X \) is \(\delta \)-closed in \(Y \).

Theorem 3.3. If \(f : X \to Y \) is an bijective always \(\delta \)-closed function and \(X \) is sober \(\delta \)-\(R_0 \), then \(Y \) is sober \(\delta \)-\(R_0 \).

Proof. Straightforward.

Theorem 3.4. If the topological space \(X \) is sober \(\delta \)-\(R_0 \) and \(Y \) is any topological space, then the product \(X \times Y \) is sober \(\delta \)-\(R_0 \).

Proof. By showing that \(\bigcap_{(x,y) \in X \times Y} Cl_\delta(\{x, y\}) = \emptyset \) we are done. We have:

\[
\bigcap_{(x,y) \in X \times Y} Cl_\delta(\{x, y\}) \subseteq \bigcap_{(x,y) \in X \times Y} (Cl_\delta(\{x\}) \times Cl_\delta(\{y\})) = \bigcap_{x \in X} Cl_\delta(\{x\}) \times \bigcap_{y \in Y} Cl_\delta(\{y\}) \subseteq \emptyset \times Y = \emptyset.
\]

4. \(\delta \)-\(R_0 \) spaces and \(\delta \)-\(R_1 \) spaces

Definition 15. A topological space \((X, \tau)\) is said to be \(\delta \)-\(R_0 \) space [1] if every \(\delta \)-open set contains the \(\delta \)-closure of each of its singletons.

Definition 16. A topological space \((X, \tau)\) is said to be \(\delta \)-\(R_1 \) if for \(x, y \) in \(X \) with \(Cl_\delta(\{x\}) \neq Cl_\delta(\{y\}) \), there exist disjoint \(\delta \)-open sets \(U \) and \(V \) such that \(Cl_\delta(\{x\}) \) is a subset of \(U \) and \(Cl_\delta(\{y\}) \) is a subset of \(V \).

Lemma 4.1. Let \((X, \tau)\) be a topological space and \(x \in X \). Then \(y \in Ker_\delta(\{x\}) \) if and only if \(x \in Cl_\delta(\{y\}) \).

Proof. Suppose that \(y \notin Ker_\delta(\{x\}) \). Then there exists a \(\delta \)-open set \(V \) containing \(x \) such that \(y \notin V \). Therefore we have \(x \notin Cl_\delta(\{y\}) \). The proof of converse case can be done similarly.

Lemma 4.2. The following statements are equivalent for any points \(x \) and \(y \) in a topological space \((X, \tau)\):

1. \(Ker_\delta(\{x\}) \neq Ker_\delta(\{y\}) \);
2. \(Cl_\delta(\{x\}) \neq Cl_\delta(\{y\}) \).
Proof. (1) \rightarrow (2): Suppose that $\text{Ker}_\delta(\{x\}) \neq \text{Ker}_\delta(\{y\})$, then there exists a point z in X such that $z \in \text{Ker}_\delta(\{x\})$ and $z \notin \text{Ker}_\delta(\{y\})$. From $z \in \text{Ker}_\delta(\{x\})$ it follows that $\{x\} \cap \text{Cl}_\delta(\{z\}) \neq \emptyset$ which implies $x \in \text{Cl}_\delta(\{z\})$. By $z \notin \text{Ker}_\delta(\{y\})$, we have $\{y\} \cap \text{Cl}_\delta(\{z\}) = \emptyset$. Since $x \in \text{Cl}_\delta(\{z\})$, $\text{Cl}_\delta(\{x\}) \subset \text{Cl}_\delta(\{z\})$ and $\{y\} \cap \text{Cl}_\delta(\{x\}) = \emptyset$. Therefore it follows that $\text{Cl}_\delta(\{x\}) \neq \text{Cl}_\delta(\{y\})$.

(2) \rightarrow (1): Suppose that $\text{Cl}_\delta(\{x\}) \neq \text{Cl}_\delta(\{y\})$. Then there exists a point z in X such that $z \in \text{Cl}_\delta(\{x\})$ and $z \notin \text{Cl}_\delta(\{y\})$. Then there exists a γ-open set containing z and therefore x but not y, namely, $y \notin \text{Ker}_\delta(\{x\})$. Hence $\text{Ker}_\delta(\{x\}) \neq \text{Ker}_\delta(\{y\})$.

Theorem 4.3. If (X, τ) is δ-R_1, then (X, τ) is δ-R_0.

Proof. Let U be δ-open and $x \in U$. If $y \notin U$, then since $x \notin \text{Cl}_\delta(\{y\})$, $\text{Cl}_\delta(\{x\}) \neq \text{Cl}_\delta(\{y\})$. Hence, there exists a δ-open V_y such that $\text{Cl}_\delta(\{y\}) \subset V_y$ and $x \notin V_y$, which implies $y \notin \text{Cl}_\delta(\{x\})$. Thus $\text{Cl}_\delta(\{x\}) \subset U$. Therefore (X, τ) is δ-R_0.

Theorem 4.4. A topological space (X, τ) is δ-R_1 if and only if for $x, y \in X$, $\text{Ker}_\delta(\{x\}) \neq \text{Ker}_\delta(\{y\})$, there exist disjoint δ-open sets U and V such that $\text{Cl}_\delta(\{x\}) \subset U$ and $\text{Cl}_\delta(\{y\}) \subset V$.

Proof. It follows from Lemma 4.2.

Theorem 4.5. A topological space (X, τ) is a δ-R_0 space if and only if for any x and y in X, $\text{Cl}_\delta(\{x\}) \neq \text{Cl}_\delta(\{y\})$ implies $\text{Cl}_\delta(\{x\}) \cap \text{Cl}_\delta(\{y\}) = \emptyset$.

Proof. Suppose that (X, τ) is δ-R_0 and $x, y \in X$ such that $\text{Cl}_\delta(\{x\}) \neq \text{Cl}_\delta(\{y\})$.

Then, there exist $z \in \text{Cl}_\delta(\{x\})$ such that $z \notin \text{Cl}_\delta(\{y\})$ (or $z \in \text{Cl}_\delta(\{y\})$) such that $z \notin \text{Cl}_\delta(\{x\})$. There exists $V \in \delta\mathcal{O}(X, \tau)$ such that $y \notin V$ and $z \in V$; hence $x \in V$.

Therefore, we have $x \notin \text{Cl}_\delta(\{y\})$. Thus $x \in [\text{Cl}_\delta(\{y\})]^c \in \delta\mathcal{O}(X, \tau)$, which implies $\text{Cl}_\delta(\{x\}) \subset [\text{Cl}_\delta(\{y\})]^c$ and $\text{Cl}_\delta(\{x\}) \cap \text{Cl}_\delta(\{y\}) = \emptyset$. the proof for otherwise is similar.

Sufficiency: Let $V \in \delta\mathcal{O}(X, \tau)$ and let $x \in V$. We still show that $\text{Cl}_\delta(\{x\}) \subset V$.

Let $y \notin V$, i.e., $y \in [V]^c$. Then $x \neq y$ and $x \notin \text{Cl}_\delta(\{y\})$. This shows that $\text{Cl}_\delta(\{x\}) \neq \text{Cl}_\delta(\{y\})$. By assumption, $\text{Cl}_\delta(\{x\}) \cap \text{Cl}_\delta(\{y\}) = \emptyset$. Hence $y \notin \text{Cl}_\delta(\{x\})$. Therefore $\text{Cl}_\delta(\{x\}) \subset V$.

On δ-\mathcal{O}-Sets and Associated Weak Separation Axioms 181
Theorem 4.6. A topological space \((X, \tau)\) is a \(\delta-R_0\) space if and only if for any points \(x\) and \(y\) in \(X\), \(\text{Ker}_\delta(\{x\}) \neq \text{Ker}_\delta(\{y\})\) implies \(\text{Ker}_\delta(\{x\}) \cap \text{Ker}_\delta(\{y\}) = \emptyset\).

Proof. Suppose that \((X, \tau)\) is a \(\delta-R_0\) space. Thus by Lemma 4.2, for any points \(x\) and \(y\) in \(X\) if \(\text{Ker}_\delta(\{x\}) \neq \text{Ker}_\delta(\{y\})\) then \(\text{Cl}_\delta(\{x\}) \neq \text{Cl}_\delta(\{y\})\). Now we prove that \(\text{Ker}_\delta(\{x\}) \cap \text{Ker}_\delta(\{y\}) = \emptyset\). Assume that \(z \in \text{Ker}_\delta(\{x\}) \cap \text{Ker}_\delta(\{y\})\). By \(z \in \text{Ker}_\delta(\{x\})\) and Lemma 4.1, it follows that \(x \in \text{Cl}_\delta(\{z\})\). Similarly, we have \(\text{Cl}_\delta(\{y\}) = \text{Cl}_\delta(\{z\})\). This is a contradiction. Therefore, we have \(\text{Ker}_\delta(\{x\}) \cap \text{Ker}_\delta(\{y\}) = \emptyset\).

Conversely, let \((X, \tau)\) be a topological space such that for any points \(x\) and \(y\) in \(X\), \(\text{Cl}_\delta(\{x\}) \neq \text{Cl}_\delta(\{y\})\), then by Lemma 4.2, \(\text{Ker}_\delta(\{x\}) \neq \text{Ker}_\delta(\{y\})\). Hence by hypothesis \(\text{Ker}_\delta(\{x\}) \cap \text{Ker}_\delta(\{y\}) = \emptyset\) which implies \(\text{Cl}_\delta(\{x\}) \cap \text{Cl}_\delta(\{y\}) = \emptyset\). Because \(z \in \text{Cl}_\delta(\{x\})\) implies that \(x \in \text{Ker}_\delta(\{z\})\) and therefore \(\text{Ker}_\delta(\{x\}) \cap \text{Ker}_\delta(\{z\}) = \emptyset\). Therefore by Theorem 4.5 \((X, \tau)\) is a \(\delta-R_0\) space.

Theorem 4.7. For a topological space \((X, \tau)\), the following properties are equivalent:

1. \((X, \tau)\) is a \(\delta-R_0\) space;
2. For any \(A \neq \emptyset\) and \(G \in \delta O(X, \tau)\) such that \(A \cap G \neq \emptyset\), there exists \(F \in \delta C(X, \tau)\) such that \(A \cap F \neq \emptyset\) and \(F \subseteq G\);
3. Any \(G \in \delta O(X, \tau)\), \(G = \cup\{F \in \delta C(X, \tau) \mid F \subseteq G\}\);
4. Any \(F \in \delta C(X, \tau)\), \(F = \cap\{G \in \delta O(X, \tau) \mid F \subseteq G\}\);
5. For any \(x \in X\), \(\text{Cl}_\delta(\{x\}) \subseteq \text{Ker}_\delta(\{x\})\).

Proof. (1) \(\rightarrow\) (2): Let \(A\) be a nonempty set of \(X\) and \(G \in \delta O(X, \tau)\) such that \(A \cap G \neq \emptyset\). There exists \(x \in A \cap G\). Since \(x \in G \in \delta O(X, \tau)\), \(\text{Cl}_\delta(\{x\}) \subseteq G\). Set \(F = \text{Cl}_\delta(\{x\})\), then \(F \in \delta C(X, \tau)\), \(F \subseteq G\) and \(A \cap F \neq \emptyset\).

(2) \(\rightarrow\) (3): Let \(G \in \delta O(X, \tau)\), then \(G \supseteq \cup\{F \in \delta C(X, \tau) \mid F \subseteq G\}\). Let \(x\) be any point of \(G\). There exists \(F \in \delta C(X, \tau)\) such that \(x \in F\) and \(F \subseteq G\). Therefore, we have \(x \in F \supseteq \cup\{F \in \delta C(X, \tau) \mid F \subseteq G\}\) hence \(G = \cup\{F \in \delta C(X, \tau) \mid F \subseteq G\}\).

(3) \(\rightarrow\) (4): This is obvious.

(4) \(\rightarrow\) (5): Let \(x\) be any of \(x\) and \(y \notin \text{Ker}_\delta(\{x\})\). There exists \(V \in \delta O(X, \tau)\) such that \(x \in V\) and \(y \notin V\); hence \(\text{Cl}_\delta(\{y\}) \cap V = \emptyset\). By (4) \((\cap\{G \in \delta O(X, \tau) \mid \text{Cl}_\delta(\{y\}) \subseteq G\}) \cap V = \emptyset\) and there exists \(G \in \delta O(X, \tau)\) such that
x \not\in G \text{ and } Cl_\delta(\{y\}) \subset G. \text{ Therefore, } Cl_\delta(\{x\}) \cap G = \emptyset \text{ and } y \not\in Cl_\delta(\{x\}). \text{ Consequently, we obtain } Cl_\delta(\{x\}) \subset Ker_\delta(\{x\}).

(5) \rightarrow (1): \text{ Let } G \in \partial O(X, \tau) \text{ and } x \in G. \text{ Suppose } y \in Ker_\delta(\{x\}) \text{, then } x \in Cl_\delta(\{y\}) \text{ and } y \in G. \text{ This implies that } Cl_\delta(\{x\}) \subset Ker_\delta(\{x\}) \subset G. \text{ This shows that } (X, \tau) \text{ is a } \delta{-}R_0 \text{ space.}

Corollary 4.8. For a topological space \((X, \tau)\), the following properties are equivalent:
(1) \((X, \tau)\) is a \(\delta{-}R_0\) space;
(2) \(Cl_\delta(\{x\}) = Ker_\delta(\{x\})\) for all \(x \in X\).

Proof. (1) \rightarrow (2): Suppose that \((X, \tau)\) is a \(\delta{-}R_0\) space. By Theorem 4.7, \(Cl_\delta(\{x\}) = Ker_\delta(\{x\})\) for each \(x \in X\). Let \(y \in Ker_\delta(\{x\})\), then \(x \in Cl_\delta(\{y\})\) and by Theorem 4.5 \(Cl_\delta(\{x\}) = Cl_\delta(\{y\})\). Therefore, \(y \in Cl_\delta(\{x\})\) and hence \(Ker_\delta(\{x\}) \subset Cl_\delta(\{x\})\). This shows that \(Cl_\delta(\{x\}) = Ker_\delta(\{x\})\).

(2) \rightarrow (1): This is obvious by Theorem 4.7.

Theorem 4.9. For a topological space \((X, \tau)\), the following properties are equivalent:
(1) \((X, \tau)\) is a \(\delta{-}R_0\) space;
(2) \(x \in Cl_\delta(\{y\})\) if and only if \(y \in Cl_\delta(\{x\})\), for any points \(x\) and \(y\) in \(X\).

Proof. (1) \rightarrow (2): Assume that \((X, \tau)\) is a \(\delta{-}R_0\) space. Let \(x \in Cl_\delta(\{y\})\) and \(D\) be any \(\delta\)-open set such that \(y \in D\). Now by hypothesis, \(x \in D\). Therefore, every \(\delta\)-open set which contain \(y\) contains \(x\). Hence \(y \in Cl_\delta(\{x\})\).

(2) \rightarrow (1): Let \(U\) be a \(\delta\)-open set and \(x \in U\). If \(y \not\in U\), then \(x \not\in Cl_\delta(\{y\})\) and hence \(y \not\in Cl_\delta(\{x\})\). This implies that \(Cl_\delta(\{x\}) \subset U\). Hence \((X, \tau)\) is \(\delta{-}R_0\).

We observed that by Definition 9 and Theorem 4.9 the notions of \(\delta\)-symmetric and \(\delta{-}R_0\) are equivalent.

Theorem 4.10. For a topological space \((X, \tau)\), the following properties are equivalent:
(1) \((X, \tau)\) is a \(\delta{-}R_0\) space;
(2) If \(F\) is \(\delta\)-closed, then \(F = Ker_\delta(F)\);
(3) If \(F\) is \(\delta\)-closed and \(x \in F\), then \(Ker_\delta(\{x\}) \subset F\);
(4) If \(x \in X\), then \(Ker_\delta(\{x\}) \subset Cl_\delta(\{x\})\).
Proof. (1) \implies (2): Let F be δ-closed and $x \notin F$. Thus $X - F$ is δ-open and contains x. Since (X, τ) is δ-R_0, $\text{Cl}_\delta(\{x\}) \subset X - F$. Thus $\text{Cl}_\delta(\{x\}) \cap F = \emptyset$ and by Lemma 3.1 $x \notin \text{Ker}_\delta(F)$. Therefore $\text{Ker}_\delta(F) = F$.

(2) \implies (3): In general, $A \subset B$ implies $\text{Ker}_\delta(A) \subset \text{Ker}_\delta(B)$. Therefore, it follows from (2) that $\text{Ker}_\delta(\{x\}) \subset \text{Ker}_\delta(F) = F$.

(3) \implies (4): Since $x \in \text{Cl}_\delta(\{x\})$ and $\text{Cl}_\delta(\{x\})$ is δ-closed, by (3) $\text{Ker}_\delta(\{x\}) \subset \text{Cl}_\delta(\{x\})$.

(4) \implies (1): We show the implication by using Theorem 4.9. Let $x \in \text{Cl}_\delta(\{y\})$. Then by Lemma 4.1 $y \in \text{Ker}_\delta(\{x\})$. Since $x \in \text{Cl}_\delta(\{x\})$ and $\text{Cl}_\delta(\{x\})$ is δ-closed, by (4) we obtain $y \in \text{Ker}_\delta(\{x\} \subset \text{Cl}_\delta(\{x\})$, Therefore $x \in \text{Cl}_\delta(\{y\})$ implies $y \in \text{Cl}_\delta(\{x\})$. The converse is obvious and (X, τ) is δ-R_0.

Recall that a filterbase F is called δ-convergent to a point x in X, if for any δ-open set U of X containing x, there exists $B \in F$ such that B is a subset of U.

Lemma 4.11. Let (X, τ) be a topological space and x and y any two points in X such that every net in X δ-converging to y δ-converges to x. Then $x \in \text{Cl}_\delta(\{y\})$.

Proof. Suppose that $x_n = y$ for each $n \in N$. Then $\{x_n\}_{n \in N}$ is a net in $\text{Cl}_\delta(\{y\})$. Since $\{x_n\}_{n \in N}$ δ-converges to y, then $\{x_n\}_{n \in N}$ δ-converges to x and this implies that $x \in \text{Cl}_\delta(\{y\})$.

Theorem 4.12. For a topological space (X, τ), the following statements are equivalent:

(1) (X, τ) is a δ-R_0 space;

(2) If $x, y \in X$, then $y \in \text{Cl}_\delta(\{x\})$ if and only if every net in X δ-converging to y δ-converges to x.

Proof. (1) \implies (2): Let $x, y \in X$ such that $y \in \text{Cl}_\delta(\{x\})$. Suppose that $\{x_\alpha\}_{\alpha \in \Lambda}$ is a net in X such that $\{x_\alpha\}_{\alpha \in \Lambda} \delta$-converges to y. Since $y \in \text{Cl}_\delta(\{x\})$, by Theorem 4.5 we have $\text{Cl}_\delta(\{x\}) = \text{Cl}_\delta(\{y\})$. Therefore $x \in \text{Cl}_\delta(\{y\})$. This means that $\{x_\alpha\}_{\alpha \in \Lambda}$ δ-converges to x. Conversely, let $x, y \in X$ such that every net in X δ-converging to y δ-converges to x. Then $x \in \text{Cl}_\delta(\{y\})$ by Lemma 3.1. By Theorem 4.5, we have $\text{Cl}_\delta(\{x\}) = \text{Cl}_\delta(\{y\})$. Therefore $y \in \text{Cl}_\delta(\{x\})$.

(2) \implies (1): Assume that x and y are any two points of X such that $\text{Cl}_\delta(\{x\}) \cap \text{Cl}_\delta(\{y\}) \neq \emptyset$. Let $z \in \text{Cl}_\delta(\{x\}) \cap \text{Cl}_\delta(\{y\})$. So there exists a net $\{x_\alpha\}_{\alpha \in \Lambda}$ in $\text{Cl}_\delta(\{x\})$ such that $\{x_\alpha\}_{\alpha \in \Lambda} \delta$-converges to z. Since $z \in \text{Cl}_\delta(\{y\})$, then
\{x_\alpha\}_{\alpha \in \Lambda} \text{ } \delta\text{-converges to } y. \text{ It follows that } y \in Cl_\delta(\{x\}). \text{ By the same token we obtain } x \in Cl_\delta(\{y\}). \text{ Therefore } Cl_\delta(\{x\}) = Cl_\delta(\{y\}) \text{ and by Theorem 4.5 } (X, \tau) \text{ is } \delta-R_0.

Acknowledgement. The authors are grateful to the referee for his careful work.

References

4. N.V. Velicko, \(H\)-closed topological spaces, Mat. Sb. 78 (1968), 102–118.