Some Results on Anti-Invariant Submanifolds of a Trans-Sasakian Manifold

MOHAMMED HASAN SHAHID
Department of Mathematics, Faculty of Science, King Abdul Aziz University,
P.O. Box. 80203, Jeddah 21589, Kingdom of Saudi Arabia
e-mail: hasan_jmi@yahoo.com

Abstract. In [7] Oubina introduced a new class of almost contact metric structure known as trans-Sasakian structure which is a generalization of both α-Sasakian and β-Kenmotsu structures [6]. The geometry of anti-invariant submanifolds of Sasakian manifolds have been investigated by Yano and Kon and many others [9,10] etc.

On the other hand, anti-invariant submanifolds of Kenmotsu manifold have been studied by the present author [5]. The purpose of this paper is to study anti-invariant submanifolds of trans-Sasakian manifold generalizing some results on the above mentioned topics.

2000 Mathematics Subject Classification: 53C25, 53C40

1. Introduction

Let \bar{M}^{2n+1} be a $(2n + 1)$-dimensional almost contact metric manifold with structure tensors (ϕ, ξ, η, g) where ϕ is a tensor field of typo (1.1), ξ a vector field, η a 1-form and g is the Riemannian metric on \bar{M}. Then these tensors satisfy [1]

$$\phi^2 X = -X + \eta(X)\xi, \quad \phi\xi = 0, \quad \eta(\xi) = 1, \quad \eta(\phi X) = 0 \quad (1.1)$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad \eta(X) = g(X, \xi) \quad (1.2)$$

for any vector fields X, Y tangent to \bar{M}.

An almost contact structure (ϕ, ξ, η) is called normal if the almost complex structure J on $\bar{M} \times R$ given by

$$J \left[X, f \frac{d}{dt} \right] = \left[\phi X - f\xi, \quad \eta(X) \frac{d}{dt} \right]$$
being a \(f \) function on \(\overline{M} \times R \), is integrable, or equivalently
\[
[\phi, \phi] + 2d\eta \otimes \xi = 0 \text{ where } [\phi, \phi] \text{ is the Nijenhuis tensor of } \phi.
\]

According to Gray and Hervella [4], in the classification of almost Hermitian manifolds, there appears, a class of Hermitian manifolds namely \(o_4 \) which contains locally conformal Kahler manifold. An almost contact metric structure \((\phi, \xi, \eta, g)\) on \(\overline{M} \) is called trans-Sasakian if \((\overline{M} \times R, J, g)\) belongs to the class \(o_4 \) where \(g \) is a Riemannian metric on \(\overline{M} \times R \). This may be expressed by the condition [2]
\[
\left(\nabla_X \phi \right)(Y) = \alpha \{g(X, Y)\xi - \eta(Y)X\} + \beta [g(\phi X, Y)\xi - \eta(Y)\phi(X)]
\]
\((1.3) \)

for functions \(\alpha \) and \(\beta \) on \(\overline{M} \) and the Levi-Civita connection \(\nabla \) on \(\overline{M} \), and in this case we say that the trans-Sasakian structure is of type \((\alpha, \beta)\).

If \(\alpha = 0 \) then \(\overline{M} \) is a \(\beta \)-Kenmotsu manifold and if \(\beta = 0 \) then \(\overline{M} \) is \(\alpha \)-Sasakian manifold [6]. Moreover if \(\alpha = 1 \) and \(\beta = 0 \) then \(\overline{M} \) is a Sasakian manifold and if \(\alpha = 0 \) and \(\beta = 1 \) then \(\overline{M} \) is a Kenmotsu manifold. From (1.3), it follows that
\[
\nabla_X \xi = -\alpha \phi X + \beta [X - \eta(X)\xi]. \quad (1.4)
\]

Let \(M \) be an \(m \)-dimensional Riemannian manifold isometrically immersed in a trans-Sasakian manifold \(\overline{M} \). We denote by \(g \) the metric tensor on \(\overline{M} \) as well as that induced on \(M \). Let \(T_x M \) and \(T^\perp_x M \) denote the tangent and normal bundles of \(M \) at \(x \in M \). Let \(\nabla \) and \(\nabla^\perp \) denote the covariant differentiation with respect to the metrics on \(M \) and \(\overline{M} \), respectively. The Gauss and Weingarten formulae for \(M \) are given by
\[
\nabla_X Y = \nabla_X Y + h(X, Y) \text{ and } \nabla_X N = -A_N X + \nabla^\perp_X N \quad (1.5)
\]
respectively, where \(h \) is the second fundamental form of \(M \) in \(\overline{M} \), and \(\nabla^\perp \) is the operator of covariant differentiation with respect to the linear connection induced in the normal bundle \(T^\perp_x M \).

Moreover,
\[
g(h(X, Y), N) = g(A_N X, Y).
\]

A submanifold \(M \) of a trans-Sasakian manifold \(\overline{M} \) is called invariant if \(\phi T_x M \subset T_x M \). On the other hand, if \(\phi T_x M \subset T^\perp_x M \) for all \(x \in M \), then \(M \) is said to be anti-invariant in \(\overline{M} \).
Now suppose M^m is an m-dimensional anti-invariant submanifold of a trans-Sasakian manifold \tilde{M}^{2n+1}. Then for every vector Z of \tilde{M}^{2n+1} at a point of M^m, we put
\[
Z = Z_t + Z_n
\]
where Z_t and Z_n are tangential and normal vectors to M^m, respectively. Define homomorphisms P and Q of the normal bundle into the tangent and normal bundles of M^m respectively, by
\[
PN = (\phi N)\quad \text{and} \quad QN = (\phi N)_n
\]
for every normal vector field N of M^m.

If X is a vector field on an anti-invariant submanifold M^m of a trans-Sasakian manifold \tilde{M}^{2n+1}, then ϕX is a vector field in the normal bundle of M^m, where $m > 1$, as any 1-dimensional submanifold is anti-invariant.

Now operating ϕ on ϕX, ϕN and ξ and comparing tangential and normal components, we get the following:
\[
-X + \eta(X)\xi = P\phi X, \quad \eta(X)\xi_n = Q\phi X,
\]
\[
\eta(N)\xi_t = PQN, \quad -N + \eta(N)\xi_n = \phi PN + Q^2N,
\]
\[
\phi\xi_t + P\xi_n = 0, \quad Q\xi_n = 0
\]
for any $X \in TM$ and $N \in T^1M$.

2. Anti-invariant submainfold of trans-Sasakian manifold when ξ is tangent to M

In what follows we assume that ξ is tangent to M^m. Then $\xi_n = 0$ and (1.8) becomes
\[
-X + \eta(X)\xi = P\phi X, \quad Q\phi X = 0,
\]
\[
PQN = 0, \quad -N = \phi PN + Q^2N.
\]
From (2.1), we find that $Q^2 + Q = 0$, and hence, Q defines an f-structure in the normal bundle [8].
We now assume that M^m is an anti-invariant submanifold of a trans-Sasakian manifold \bar{M}^{2n+1}. Then differentiating ϕX, $N\phi$, and ξ in the direction of a tangent vector field on M^m and using (1.3), (1.6) and Gauss and Weingarten formulae, we have the following lemmas.

Lemma 2.1. Let M be an anti-invariant submanifold of a trans-Sasakian manifold \bar{M} such that ξ is tangent to M. Then

\[A_{\xi X} Y + Ph(X, Y) = \alpha \left[\eta(X)Y - g(X, Y)\xi \right], \quad (2.2) \]

\[\nabla^\perp Y X - Qh(X, Y) - \phi \nabla^\perp Y X = -\beta \eta(X) \phi Y \quad (2.3) \]

for any $X, Y \in T$.

Lemma 2.2. Let M be an anti-invariant submanifold of trans-Sasakian manifold \bar{M} such that ξ is tangent to M. Then

\[P \nabla^\perp X N = \nabla X PN + A_{\xi X} N, \quad (2.4) \]

\[-QA_{\xi X} N + Q \nabla^\perp X N = h(X, PN) + \nabla^\perp QN \quad (2.5) \]

for any $X \in TM$ and $N \in T^\perp M$.

Lemma 2.3. Let M be an anti-invariant submanifold of a trans-Sasakian manifold \bar{M}^{2n+1} such that ξ is tangent to M. Then

\[\nabla X \xi = \beta (X - \eta(X)\xi), \quad (2.6) \]

\[h(X, \xi) = \alpha \phi X \quad (2.7) \]

for all $X \in TM$.

From the above lemmas, as particular cases, we have

Lemma 2.4. Let M be an anti-invariant submanifold of a α-Sasakian manifold \bar{M} such that ξ is tangent to M. Then

\[A_{\xi X} Y + Ph(X, Y) = \alpha \left[\eta(X)Y - g(X, Y)\xi \right], \]

\[\nabla^\perp Y X - Qh(X, Y) = \phi \nabla^\perp Y X \]

for any $X, Y \in TM$.

Lemma 2.5. Let M be an anti-invariant submanifold of a β-Kenmotsu manifold \overline{M} such that ξ is tangent to M. Then

$$A_{\xi\xi}Y + Ph(X,Y) = 0,$$

$$\nabla^+_{\nabla^{-}_{Y}X}X = \phi \nabla^{-}_{Y}X - \beta \eta(X)\phi Y$$

for any $X,Y \in TM$.

Lemma 2.6. Let M be an anti-invariant submanifold of a α-Sasakian \overline{M} such that ξ is tangent to M. Then

$$\nabla_{X}\xi = 0, \quad h(X,\xi) = \alpha \phi X$$

for all $X \in TM$.

Lemma 2.7. Let M be an anti-invariant submanifold of a β-Kenmotsu manifold \overline{M} such that ξ is tangent to M. Then

$$\nabla_{X}\xi = \beta (X - \eta(X)\xi),$$

$$h(X,\xi) = 0$$

for all $X \in TM$.

Now from Lemma 2.2, we have

$$\nabla_{\xi}PN - P\nabla^+_{\xi}N = A_{Q\xi}\xi.$$

Also

$$g(A_{Q\xi}\xi, X) = g(h(X,\xi), QN) = \alpha g(\phi X, QN) = 0.$$

Thus

$$(\nabla_{\xi}P)(N) = \nabla_{\xi}PN - P\nabla^+_{\xi}N = 0,$$

and similarly

$$(\nabla_{\xi}Q)(N) = \nabla^+_{\xi}QN - Q\nabla^+_{\xi}N = 0.$$
Hence, we have

Proposition 2.9. Let M be an anti-invariant submanifold of a trans-Sasakian manifold \overline{M} such that ξ is tangent to M. Then

(a) ξ is parallel vector field along M and $h(\xi, \xi)$ vanishes in the direction of ξ.

(b) P and Q are parallel along ξ.

Now, suppose that $\dim M = m = n + 1$. Then $Q = 0$ and from Lemma 2.2, we have

$$\overline{R}(X,Y)PN = PR_{\perp}(X,Y)N,$$

for vector field X, Y tangent to M, where R_{\perp} is the curvature tensor on the normal bundle. Thus $\overline{R} = 0$ implies that $R_{\perp} = 0$. Conversely, if $R_{\perp} = 0$ then $\overline{R}(X,Y)PN = 0$ and also $\overline{R}(X,Y)\xi = 0$. Hence $\overline{R}(X,Y) = 0$.

Thus we have

Proposition 2.9. Let \overline{M} be a $(2n + 1)$-dimensional trans-Sasakian manifold and M^{n+1} be an anti-invariant submanifold \overline{M}^{2n+1} with ξ tangent to M^{n+1}. Then $\overline{R} = 0$ if and only if $R_{\perp} = 0$.

Next, we prove

Proposition 2.10. Let M^{n+1} be an anti-invariant submanifold of a trans-Sasakian manifold \overline{M}^{2n+1} such that ξ is tangent to M^{n+1}. Then M cannot be totally umbilical when $n \geq 1$.

Proof. Suppose M is totally umbilical. Then $h(X,Y) = g(X,Y)H$, where H is the mean curvature vector. From (2.7), we have $h(\xi, \xi) = 0$ which implies that $g(\xi, \xi)H = 0$ and therefore M is minimal and hence totally geodesic. Thus, we have $h(X, \xi) = 0$ and consequently $\alpha \phi X = 0$, which is a contradiction as $n > 1$. Hence M is not totally umbilical, whereby proving the result.

Proposition 2.11. Let M be an anti-invariant submanifold of a trans-Sasakian manifold \overline{M} with ξ tangent to M^n. Then we have

$$\nabla_X F(X, \xi) = -\alpha, \quad (2.8)$$

$$\nabla_X \eta(X) = \beta \quad (2.9)$$
where F is the fundamental 2-form given by

$$F(X, Y) = g(X, \phi Y).$$

Proof. From (1.3) and (1.4), we have

$$(\overline{\nabla}_X F)(Y, Z) = -\alpha \{ g(X, Z)\eta(Y) - g(X, Y)\eta(Z) \} - \beta [g(X, \phi Z)\eta(Y) - g(X, \phi Y)\eta(Z)]$$

and

$$(\nabla_X \eta)(Y) = -\alpha g(\phi Y, Y) - \beta [g(X, Y) - \eta(X)\eta(Y)].$$

so that our assertion follows from the above equations.

Proposition 2.12. Let M be an anti-invariant submanifold of a trans-Sasakian manifold \overline{M} with ξ tangent to M. If $A_N X = 0$ for any $N \in T^\perp_M$ then $\phi(T^\perp_M)$ is parallel with respect to the normal connection.

Proof. Using Gauss and Weingarten formulae and Equation (1.3), we have

\[
\nabla^\perp_X \phi Y = \nabla^\perp_X \phi Y + A_{\phi Y} X = (\nabla^\perp_X \phi)(Y) + \phi \nabla^\perp_X Y + A_{\phi Y} X
\]

\[
= \alpha \{ g(X, Y)\xi - \eta(Y)X \} + \beta \{ g(\phi X, Y)\xi - \eta(Y)\phi X \} + \phi \nabla^\perp_X Y + A_{\phi Y} X.
\]

Since $A_N = 0$ for any $N \in T^\perp_M$, we have

\[
g(\nabla^\perp_X \phi Y, N) = -\beta \eta(Y)g(\phi X, N) - g(\overline{\nabla}_X Y, \phi N)
\]

\[
= -\beta \eta(Y)g(\phi X, N) + g(\phi \nabla^\perp_X Y, N) + g(h(X, Y), N)
\]

\[
= \beta \eta(Y)g(X, \phi N) - g(\nabla_X Y, \phi N) + g(h(X, Y), \phi N)
\]

\[
= -g(A_{\phi X} Y, Y) = 0
\]

as $\phi N \in T^\perp_M$ for any $N \in T^\perp_M$, which proves the result.

3. Anti-invariant submanifold of trans-Sasakian manifold when ξ is normal to M

In this section, we assume that ξ is normal to M. Then $\xi_t = 0$ and from (1.8), we get...
\[-X = P\phi X, \quad Q\phi X = 0, \quad PQN = 0,\]
\[-N + \eta(N)\xi = \phi PN + Q^2 N\]

for any \(X \in TM, \ N \in T^1M\).

Now suppose that \(\overline{M}^{2n+1}\) is a trans-Sasakian manifold. Then differentiating \(\phi X, \ phi N\) and \(\xi\) covariantly and using (1.3), (1.7) and Gauss and Weingarten formulae, we have the following:

Lemma 3.1. Let \(M\) be an anti-invariant submanifold of a trans-Sasakian manifold \(\overline{M}\) such that \(\xi\) is normal to \(M\). Then

\[A_{\phi}X = P h(X, Y),\]
(3.1)
\[\nabla_{\phi}^{\perp} \phi Y = -\alpha g(X, Y)\xi + \phi \nabla_{\phi}^\perp Y + Q h(X, Y)\]
(3.2)

for any \(X, Y \in TM\).

Lemma 3.2. Let \(M\) be an anti-invariant submanifold of a trans-Sasakian manifold \(\overline{M}\) such that \(\xi\) is normal to \(M\). Then

\[\nabla X PN - A_{PN}X - PV X N + \alpha \eta(N)X = 0,\]
(3.3)
\[h(X, PN) + \nabla_{\phi}^{\perp} QN - Q\nabla_{\phi}^{\perp} N + \phi A_{N}X = \beta g(\phi X, N)\xi - \eta(N)\phi X\]
(3.4)

for any \(X \in TM, \ N \in T^1M\).

Lemma 3.3. Let \(M\) be an anti-invariant submanifold of a trans-Sasakian manifold \(\overline{M}\) such that \(\xi\) is normal to \(M\). Then

\[-A_{\xi}X = \beta X,\]
(3.5)
\[\nabla_{\phi}^{\perp} \xi = -\alpha \phi X\]
(3.6)

for \(X \in TM\).

We now prove the following.

Proposition 3.4. If \(M\) is an anti-invariant submanifold of a trans-Sasakian manifold \(\overline{M}\) such that \(\xi\) is normal to \(M\), then the curvature tensor of the normal bundle annihilates \(\xi\).
Proof. From (3.2) and (3.6), we get

\[
\nabla_X^\perp(\nabla_X^\perp \xi) = \nabla_X^\perp(-\alpha \phi X) = -\alpha (\nabla_X^\perp \phi X)
\]

\[
= -\alpha \left\{ -\alpha g(X, Y) \xi + \alpha \nabla_Y^\perp X + Qh(X, Y) \right\}
\]

\[
= \alpha^2 g(X, Y) \xi - \alpha \phi \nabla_Y^\perp X - \alpha Qh(X, Y)
\]

for \(X, Y \in TM \).

Now,

\[
R^\perp(X, Y)\xi = \nabla_X^\perp \nabla_Y^\perp \xi - \nabla_Y^\perp \nabla_X^\perp \xi - \nabla_{[X, Y]}^\perp \xi
\]

\[
= \nabla_X^\perp (-\alpha \phi Y) - \nabla_Y^\perp (-\alpha \phi Y) - \alpha \phi [X, Y]
\]

\[
= -\alpha \left\{ \nabla_X^\perp (\phi Y) - \nabla_Y^\perp (\phi X) - \phi [X, Y] \right\}
\]

which, in view of (3.2), gives that

\[
R^\perp(X, Y)\xi = 0
\]

whereby proving the result.

Suppose that \(m = n \) and hence \(Q = 0 \). Then from (3.1)–(3.6), we have

Lemma 3.5. Let \(M \) be an anti-invariant submanifold of a trans-Sasakian manifold \(\overline{M} \) such that \(\xi \) is normal to \(M \). Then

\[
A\phi X = \phi h(X, Y), \quad \nabla_X^\perp (\phi Y) = -\alpha g(X, Y) + \phi \nabla_X Y, \quad \quad (3.7)
\]

\[
\alpha \eta N X - \phi \nabla_X^\perp N = \nabla_X \phi N, \quad \quad (3.8)
\]

\[
A\phi X = -\beta X, \quad \nabla_X^\perp \xi = -\alpha \phi X \quad \quad (3.9)
\]

for any \(X, Y \in TM \).

Proposition 3.6. Let \(M \) be an anti-invariant submanifold of a trans-Sasakian manifold \(\overline{M} \) such that \(\xi \) is normal to \(M \). Then the connection in the normal bundle is trivial if and only if \(M \) is of constant curvature \(-\alpha^2 \).

Proof. Using \(\nabla_X^\perp (\phi Y) = -\alpha g(X, Y) + \phi \nabla_X Y \) and \(\nabla_X^\perp \xi = -\alpha \phi X \).
we have
\[
R^\perp(X, Y)\phi Z = \nabla^\perp_Y \left(\nabla^\perp_X \phi Z \right) - \nabla^\perp_X \left(\nabla^\perp_Y \phi Z \right) - \nabla^\perp_{[X,Y]} \phi Z \\
= -\alpha g(Y, Z)\nabla^\perp_X \xi + \nabla^\perp_X (\phi \nabla^\perp_Y Z) + \alpha g(X, Z) \nabla^\perp_Y \xi \\
- \nabla^\perp_Y (\phi \nabla^\perp_X Z) + \alpha g([X,Y], Z) \xi - \phi \nabla^\perp_{[X,Y]} Z
\]
or,
\[
R^\perp(X, Y)\phi Z = \alpha^2 g(Y, Z)\phi X + \nabla^\perp_X \left(\phi \nabla^\perp_Y Z \right) - \alpha^2 g(X, Z)\phi Y \\
- \nabla^\perp_Y (\phi \nabla^\perp_X Z) + \alpha g([X,Y], Z) \xi - \phi \nabla^\perp_{[X,Y]} Z. \\
\text{(3.10)}
\]
Also,
\[
\phi R(X, Y)Z + \alpha^2 \{ g(Y, Z)\phi X - g(X, Z)\phi Y \} \\
= \nabla^\perp_X (\phi \nabla^\perp_Y Z) + \alpha g(X, \nabla^\perp_Y Z) \xi - \nabla^\perp_Y (\phi \nabla^\perp_X Z) - \alpha g(Y, \nabla^\perp_X Z) \xi \\
- \phi \nabla^\perp_{[X,Y]} Z + \alpha^2 \{ g(Y, Z)\phi X - g(X, Z)\phi Y \}
\]
which on further simplification, gives
\[
\phi R(X, Y)Z + \alpha^2 \{ g(Y, Z)\phi X - g(X, Z)\phi Y \} = R^\perp(X, Y)\phi Z \\
\text{(3.11)}
\]
for any \(X, Y, Z \in TM \).

From (3.11) we find that if the connection of the normal bundle is trivial, that is, \(R^\perp = 0 \). Then \(M^\perp \) is of constant curvature \(-\alpha^2 \).

Conversely, if \(M^\perp \) is of constant curvature \(-\alpha^2 \), then from (3.11) we have \(R^\perp(X, Y)\phi Z = 0 \). Moreover, from Proposition 3.4, we have \(R^\perp(X, Y)\xi = 0 \), which completes the proof.

From the above result, we have

Corollary 3.7. Let \(M \) be an anti-invariant submanifold of a \(\beta \)-Kenmotsu manifold \(\overline{M} \) such that \(\xi \) is normal to \(M \). Then the connection in the normal bundle is trivial if and only if \(M \) is of zero constant curvature.
References

8. K. Yano, On a structure defined by a tensor field f of type $(1,1)$ satisfying $f^3 + f = 0$, *Tensor (N.S.)* **14** (1963), 99–109.

Keywords: anti-invariant submanifolds, Sasakian manifolds, totally umbilical submanifolds.