On a class of discontinuous operators in Hilbert spaces

SEBSTIANO BOSCARINO

Abstract. We construct a class of discontinuous operators in infinite-dimensional separable Hilbert spaces, answering a natural question which arises in comparing a fixed point theorem of Altman and Shinbrot ([1], [4]) with its improvement obtained by Ricceri ([2], [3]).

Keywords: fixed point, Hilbert space, weak topology, discontinuous operator

Classification: 47H10

In [4], M. Shinbrot gave a proof of the following fixed point theorem which was previously announced (without proof) by M. Altman in [1]:

Theorem A. Let \((H, \langle \cdot, \cdot \rangle)\) be a separable real Hilbert space, and \(\Psi : H \to H\) a sequentially weakly continuous operator. Assume that there is some \(r > 0\) such that
\[
\langle \Psi(x), x \rangle \leq r^2
\]
for all \(x \in H\) satisfying \(\|x\| = r\).
Then, there exists \(x^* \in H\) such that \(x^* = \Psi(x^*)\) and \(\|x\| \leq r\).

In [3] (see also [2]), B. Ricceri obtained an extension of Theorem A to a class of discontinuous operators. His result was as follows:

Theorem B. Let \((H, \langle \cdot, \cdot \rangle)\) be an infinite-dimensional separable real Hilbert space; \(V\) the linear hull of an orthonormal base \(\{e_n\}\) of \(H\); \(X \subseteq H\) a closed, bounded, convex set, with \(0 \in \text{int}(X)\). Further, let \(\Psi : X \to H\) be an operator satisfying the following conditions:

(i) for each \(y \in V\), the set
\[
\{x \in X \cap V : \langle x - \Psi(x), y \rangle \leq 0\}
\]
is finitely closed (that is, its intersection with any finite-dimensional linear subspace of \(H\) is closed);
(ii) for each \(n \in \mathbb{N}\), the set
\[
\{x \in X : \langle x - \Psi(x), e_n \rangle = 0\}
\]
is weakly closed;
(iii) for each \(x \in V \cap \partial X \), one has \[
\langle \Psi(x), x \rangle \leq \|x\|^2.
\]

Then, there exists \(x^* \in X \) such that \(x^* = \Psi(x^*) \).

It is clear that the most natural (though less general) way to check (i) and (ii) is to assume that, for each \(n \in \mathbb{N} \), the functional \(x \to \langle \Psi(x), e_n \rangle \) be sequentially weakly continuous in \(X \). To see this, take into account that, since \(H \) is separable and \(X \) is weakly compact, the relative weak topology on \(X \) can be deduced by a metric.

On the other hand, the most natural condition ensuring the sequential weak continuity of each functional \(x \to \langle \Psi(x), e_n \rangle \) \((n \in \mathbb{N})\) is the sequential weak continuity of the operator \(\Psi \), just as required in Theorem A.

Then, it is natural to ask whether there exist operators \(\Psi : X \to H \) which, though not sequentially weakly continuous, satisfy condition (iii) and, at the same time, are such that, for each \(n \in \mathbb{N} \), the functional \(x \to \langle \Psi(x), e_n \rangle \) is sequentially weakly continuous.

The aim of this paper is to provide an affirmative answer to such a question.

Our main result is as follows:

Theorem 1. Let \((H, \langle \cdot, \cdot \rangle) \) be an infinite-dimensional separable real Hilbert space and \(\{e_n\} \) an orthonormal base of \(H \). Put
\[
Y = \{x \in H : \langle x, e_1 \rangle = 0\}.
\]

Then, there exists an operator \(\Phi : H \to H \) which has the following properties:

(a) \(Y \subseteq \Phi^{-1}(0) \);
(b) for each \(n \in \mathbb{N} \), the functional \(x \to \langle \Phi(x), e_n \rangle \) is weakly continuous;
(c) \(\langle \Phi(x), x \rangle = 0 \) for all \(x \in H \);
(d) \(\limsup_{\|x\| \to 0} \|\Phi(x)\| = +\infty \).

Proof: For each \(n \in \mathbb{N} \), define \(\alpha_n : \mathbb{R} \to \mathbb{R} \) by
\[
\alpha_n(t) = \begin{cases}
 t^{-4} & \text{if } |t| > n^{-\frac{1}{2}}, \\
 n^2 & \text{if } (2n)^{-\frac{1}{2}} \leq |t| \leq n^{-\frac{1}{2}}, \\
 2^\frac{1}{2} n^\frac{5}{2} |t| & \text{if } |t| < (2n)^{-\frac{1}{2}}.
\end{cases}
\]

Note that each function \(\alpha_n \) is continuous and non-negative. Moreover, for each \(n \in \mathbb{N}, t \in \mathbb{R} \), one has
\[
\alpha_n(t) \leq \alpha_{n+1}(t)
\]
as well as
\[\sup_{n \in \mathbb{N}} \alpha_n(t) < +\infty. \]

Now, put
\[\varphi_n(t) = (\alpha_n(t) - \alpha_{n-1}(t))^{\frac{1}{2}} \]
with \(\alpha_0(t) = 0 \). Also, for each \(x \in H, n \in \mathbb{N} \), set
\[\gamma_n(x) = \begin{cases}
-\varphi_{n+\frac{1}{2}}(\langle x, e_1 \rangle)\langle x, e_{n+1} \rangle & \text{if } n \text{ is odd}, \\
\varphi_{n+\frac{1}{2}}(\langle x, e_1 \rangle)\langle x, e_{n-1} \rangle & \text{if } n \text{ is even}.
\end{cases} \]

Fix \(x \in H \). Clearly, the series
\[|\langle x, e_2 \rangle|^2 + |\langle x, e_1 \rangle|^2 + |\langle x, e_4 \rangle|^2 + |\langle x, e_3 \rangle|^2 + \ldots \]
is convergent and the sequence
\[|\varphi_1(\langle x, e_1 \rangle)|^2, |\varphi_1(\langle x, e_1 \rangle)|^2, |\varphi_2(\langle x, e_1 \rangle)|^2, |\varphi_2(\langle x, e_1 \rangle)|^2 \ldots \]
is bounded. So, by a classical result, the series
\[
|\gamma_1(x)|^2 + |\gamma_2(x)|^2 + |\gamma_3(x)|^2 + |\gamma_4(x)|^2 + \ldots \\
= |\varphi_1(\langle x, e_1 \rangle)|^2|\langle x, e_2 \rangle|^2 + |\varphi_1(\langle x, e_1 \rangle)|^2|\langle x, e_1 \rangle|^2 \\
+ |\varphi_2(\langle x, e_1 \rangle)|^2|\langle x, e_4 \rangle|^2 + |\varphi_2(\langle x, e_1 \rangle)|^2|\langle x, e_3 \rangle|^2 + \ldots
\]
is convergent. Then, by the Riesz-Fischer theorem, for each \(x \in H \), the series
\[\gamma_1(x)e_1 + \gamma_2(x)e_2 + \gamma_3(x)e_3 + \gamma_4(x)e_4 + \ldots \]
is convergent in \(H \). For each \(x \in H \), put
\[\Phi(x) = \sum_{n=1}^{\infty} \gamma_n(x)e_n. \]

So, for each \(n \in \mathbb{N} \), one has
\[\gamma_n(x) = \langle \Phi(x), e_n \rangle. \]

Let us now prove that the operator \(\Phi : H \to H \) just defined has properties (a)-(d). Property (a) follows at once observing that \(\varphi_n(0) = \gamma_n(0) = 0 \) for all \(n \in \mathbb{N} \). Concerning (b), the weak continuity of each functional \(\gamma_n \) follows at once from
the continuity of φ_n and the weak continuity of any continuous linear functional on H. For each $x \in H$, one has

\[
\langle \Phi(x), x \rangle = \sum_{n=1}^{\infty} \gamma_n(x) \langle x, e_n \rangle
\]

\[
= -\varphi_1(\langle x, e_1 \rangle) \langle x, e_2 \rangle \langle x, e_1 \rangle + \varphi_1(\langle x, e_1 \rangle) \langle x, e_1 \rangle \langle x, e_2 \rangle
\]

\[
- \varphi_2(\langle x, e_1 \rangle) \langle x, e_3 \rangle \langle x, e_2 \rangle + \varphi_2(\langle x, e_1 \rangle) \langle x, e_3 \rangle \langle x, e_2 \rangle + \ldots
\]

Observe that $\sum_{n=1}^{2k} \gamma_n(x) \langle x, e_n \rangle = 0$ for each $k \in \mathbb{N}$, and so $\langle \Phi(x), x \rangle = 0$. That is, (c) is satisfied. Finally, let us check that (d) is satisfied too. To this end, fix $M > 0$ and $r \in]0,1[$. We shall prove that there is $x \in H$, with $\|x\|^2 = r$, such that $\|\Phi(x)\|^2 > M$. Fix $p \in \mathbb{N}$, with $p > Mr^{-\frac{3}{2}}$. For each $n \in \mathbb{N}$, put

\[
\eta_n = \begin{cases}
\left(\frac{r}{2p}\right)^{\frac{1}{2}} & \text{if } n \leq 2p, \\
0 & \text{if } n > 2p.
\end{cases}
\]

Finally, set

\[
x = \sum_{n=1}^{\infty} \eta_n e_n.
\]

Clearly, $\|x\|^2 = r$. Also, one has

\[
\|\Phi(x)\|^2 = \frac{r}{p} \sum_{n=1}^{p} \varphi_n \left(\left(\frac{r}{2p}\right)^{\frac{1}{2}}\right) = \frac{r}{p} \alpha_p \left(\left(\frac{r}{2p}\right)^{\frac{1}{2}}\right) = r^3 p > M.
\]

This concludes the proof. \(\square\)

Remark 1. Observe that, by (d), the operator Φ is even discontinuous with respect to the strong topology.

Applying Theorem B, via Theorem 1, we then get the following extension of Theorem A:

Theorem 2. Let $(H, \langle \cdot, \cdot \rangle)$ be an infinite-dimensional separable real Hilbert space, $X \subseteq H$ a closed, bounded, convex set, with $0 \in \text{int}(X)$, and $\Psi : X \to H$ a sequentially weakly continuous operator such that

\[
\langle \Psi(x), x \rangle \leq \|x\|^2
\]

for all $x \in \partial X$.

Then, for each operator $\Phi : H \to H$ as in Theorem 1, the operator $\Phi + \Psi$ is not sequentially weakly continuous and admits a fixed point in X.

From Theorem 2, in particular, we get the following surjectivity result:
Theorem 3. Let $\Phi : H \to H$ be an operator as in Theorem 1. Then, the operator $x \to x - \Phi(x)$ is surjective.

Proof: Fix $y \in H$ and choose $r > \|y\|$. Let $X = \{x \in H : \|x\| \leq r\}$, and put $\Psi(x) = y$ for all $x \in X$. Then, since, for each $x \in \partial X$, one has

$$\langle \Psi(x), x \rangle \leq \|y\| \|x\| \leq \|x\|^2,$$

one can apply Theorem 2, and so there exists $x^* \in X$ such that $x^* = y + \Phi(x^*)$, as claimed. \hfill \Box

We conclude observing that, when $\Psi : H \to H$ is an affine operator, Theorem B coincides substantially with Theorem A. In fact, we have the following result:

Theorem 4. Let H, $\{e_n\}$, and X be as in Theorem B, and let $\Psi : H \to H$ be a linear operator such that, for each, the set

$$\{x \in X : \langle x - \Psi(x), e_n \rangle = 0\}$$

is closed.

Then, Ψ is continuous.

Proof: First, observe that, if $A \subseteq H$ is a linear subspace such that $A \cap X$ is closed, then A is closed. Indeed, fix $r > 0$ so that $\{x \in H : \|x\| \leq r\} \subseteq X$. Let $x \in \overline{A} \setminus \{0\}$, and let $\{x_n\}$ be any sequence in $A \setminus \{0\}$ converging to x. Then, the sequence $\left\{\frac{rx_n}{\|x_n\|}\right\}$ lies in $A \cap X$ and converges to $\frac{rx}{\|x\|}$. Since $A \cap X$ is closed, it follows that $\frac{rx}{\|x\|} \in A \cap X$, and so $x \in A$, as claimed. Consequently, by assumption, for each $n \in \mathbb{N}$, the hyperplane

$$\{x \in H : \langle x - \Psi(x), e_n \rangle = 0\}$$

is closed, and hence the functional $x \to \langle x - \Psi(x), e_n \rangle$ is continuous. Then, by Osgood’s lemma, there is a non-empty open set $\Omega \subset H$ such that

$$\sup_{x \in \Omega} \sup_{n \in \mathbb{N}} \sum_{i=1}^{n} |\langle x - \Psi(x), e_i \rangle|^2 < +\infty.$$

On the other hand, by Parseval’s identity, we have

$$\sup_{n \in \mathbb{N}} \sum_{i=1}^{n} |\langle x - \Psi(x), e_i \rangle|^2 = \|x - \Psi(x)\|^2$$

and so

$$\sup_{x \in \Omega} \|x - \Psi(x)\| < +\infty.$$

From this, of course, the continuity of Ψ follows. \hfill \Box
References

Department of Mathematics and Computer Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy

(Received June 10, 2002, revised December 23, 2002)