An inequality in Orlicz function spaces with Orlicz norm

JINCAI WANG

Abstract. We use Simonenko quantitative indices of an N-function Φ to estimate two parameters q_Φ and Q_Φ in Orlicz function spaces $L^\Phi[0,\infty)$ with Orlicz norm, and get the following inequality: $\frac{B_\Phi}{A_\Phi-1} \leq q_\Phi \leq \frac{A_\Phi}{A_\Phi-1}$, where A_Φ and B_Φ are Simonenko indices. A similar inequality is obtained in $L^\Phi[0,1]$ with Orlicz norm.

Keywords: Orlicz spaces, Simonenko indices, \triangle_2-condition
Classification: 46B20, 46E30

1. Introduction

Definition 1.1. A function $M : \mathbb{R} \rightarrow \mathbb{R}$ is called an N-function, if

(i) M is continuous, convex and even;
(ii) $M(u) > 0$ for $u \neq 0, M(0) = 0$;
(iii) $\lim_{u \to 0} M(u)/u = 0, \lim_{u \to \infty} M(u)/u = \infty$.

Let

$$\Phi(u) = \int_0^{|u|} \phi(t) \, dt \text{ and } \Psi(u) = \int_0^{|v|} \psi(s) \, ds$$

be a pair of complementary N-functions. The Orlicz function space is defined as follows: $L^\Phi[0,1] = \{x(t) : x(t) \text{ is measurable on } [0,1] \text{ and } \rho_\Phi(\lambda x(t)) \, dt < \infty \text{ for some } \lambda > 0\}$, where $\rho_\Phi(x(t)) = \int_{[0,1]} \Phi(x(t)) \, dt$; $L^\Phi[0,\infty) = \{x(t) : x(t) \text{ is measurable on } [0,\infty), \rho_\Phi(\lambda x(t)) \, dt < \infty \text{ for some } \lambda > 0\}$, and $\rho_\Phi(x(t)) = \int_{[0,\infty)} \Phi(x(t)) \, dt$. We define the Orlicz norm on the Orlicz space as

$$\|x\|_\Phi = \inf_{k>0} \frac{1}{k} [1 + \rho_\Phi(kx)] .$$

An N-function $\Phi(u)$ is said to satisfy the \triangle_2-condition for small u (in symbol $\Phi \in \triangle_2(0)$), if there exists $u_0 > 0$ and $C > 0$, such that $\Phi(2u) \leq C\Phi(u)$ for $0 \leq u \leq u_0$. $\Phi(u)$ is said to satisfy the \triangle_2-condition for large u (in symbol $\Phi \in \triangle_2(\infty)$), if there exists $u_0 > 0$ and $C > 0$ such that $\Phi(2u) \leq C\Phi(u)$ for $u \geq u_0$. $\Phi(u)$ is said to satisfy the \triangle_2-condition for all $u \geq 0$ (in symbol $u \in \triangle_2$), if there exist $C > 0$ such that $\Phi(2u) \leq C\Phi(u)$ for $u \geq 0$. An N-function
\(\Phi(u) \) is said to satisfy the \(\nabla_2 \text{-condition for small } u \) (for large \(u \), for all \(u \geq 0 \)), in symbol \(\Phi \in \nabla_2(0) \) (\(\Phi \in \nabla_2(\infty) \), \(\Phi \in \nabla_2 \)), if its complementary \(\mathcal{N} \)-function \(\Psi \in \nabla_2(0) \) (\(\Psi \in \nabla_2(\infty) \), \(\Psi \in \Delta_2 \)).

The basic results on Orlicz spaces can be found in Krasnosel’skii and Rutickii [2], Lindenstrauss and Tzafriri [3], Rao and Ren [6], Chen [1].

The Simonenko indices of an \(\mathcal{N} \)-function \(\Phi \) are defined as

\[
A_\Phi = \inf_{t > 0} \frac{t \phi(t)}{\Phi(t)}, \quad B_\Phi = \sup_{t > 0} \frac{t \phi(t)}{\Phi(t)}.
\]

Simonenko introduced these indices in [9] and [8], and we can find a detailed description in Maligranda [4].

Clearly, \(1 \leq A_\Phi \leq B_\Phi \leq \infty \).

Proposition 1.1. Let \(\Phi \) be an \(\mathcal{N} \)-function. Then \(\Phi \in \nabla_2 \iff 1 < A_\Phi \); \(\Phi \in \Delta_2 \iff B_\Phi < \infty \).

The proof of the proposition can be found in Krasnosel’skii and Rutickii [2, p. 24–26].

Lemma 1.2. Let \(\Phi \) and \(\Psi \) be a pair of complementary \(\mathcal{N} \)-functions. Then

\[
\frac{1}{A_\Phi} + \frac{1}{B_\Psi} = 1.
\]

The proof of Lemma 1.2 can be found in Simonenko [9] or Rao & Ren [6].

The next lemma can be found in [1], [10] or [5].

Lemma 1.3. Let \(\Phi(u) = \int_0^{|u|} \phi(t) \, dt \) and \(\Psi(v) = \int_0^{|v|} \psi(s) \, ds \) be a pair of complementary \(\mathcal{N} \)-functions. We denote

\[
k_x^* = \inf\{k > 0 : \rho_\Psi[\phi(k|x|)] \geq 1\}, \quad k_x^{**} = \sup\{k > 0 : \rho_\Psi[\phi(k|x|)] \leq 1\}.
\]

Then \(k \in [k_x^*, k_x^{**}] \) if and only if

\[
||x||_\Phi = \frac{1}{k}[1 + \rho_\Phi(kx)].
\]

2. Main results

Y. Yan estimated the two parameters \(Q_\Phi \) and \(q_\Phi \) in the Orlicz sequence space \(l^\Phi \), and got the following result (see [11], [7] or [13]).
Proposition 2.1. Let Φ and Ψ be a pair of complementary N-functions. Then

$$\frac{b^*_\Phi}{b^*_\Phi - 1} \leq q_\Phi \leq \frac{a^*_\Phi}{a^*_\Phi - 1},$$

where

$$a^*_\Phi = \inf \left\{ \frac{t \phi(t)}{\Phi(t)} : 0 < t \leq \psi[\Psi^{-1}(1)] \right\},$$

$$b^*_\Phi = \sup \left\{ \frac{t \phi(t)}{\Phi(t)} : 0 < t \leq \psi[\Psi^{-1}(1)] \right\}.$$

The upper estimate in (3) can also be found in [12]. Now we establish a similar inequality in the Orlicz function space with Orlicz norm. Firstly, we have

Theorem 2.1. Let Φ, Ψ be a pair of complementary N-functions. For $L^\Phi[0, \infty)$, we denote

$$Q_\Phi = \sup_{\|x\|_\Phi = 1} k^{**}_x = \sup_{\|x\|_\Phi = 1} \left\{ k > 0 : \|x\|_\Phi = \frac{1}{k}(1 + \rho_\Phi(kx)) \right\},$$

$$q_\Phi = \inf_{\|x\|_\Phi = 1} k^*_x = \inf_{\|x\|_\Phi = 1} \left\{ k > 0 : \|x\|_\Phi = \frac{1}{k}(1 + \rho_\Phi(kx)) \right\}.$$

Then

$$A_\Psi = \frac{B_\Phi}{B_\Phi - 1} \leq q_\Phi \leq Q_\Phi \leq \frac{A_\Phi}{A_\Phi - 1} = B_\Psi,$$

where A_Φ, B_Φ, A_Ψ and B_Ψ are defined by (1).

Proof: The left and right equations in (4) follow from Lemma 1.2. Now we prove

$$q_\Phi \geq \frac{B_\Phi}{B_\Phi - 1}.$$

For $\Phi \notin \Delta_2$, by Proposition 1.1, we have $B_\Phi = \infty$ or $A_\Psi = 1$. The result is obvious.

For $\Phi \in \Delta_2$, we only prove that for every $x \in L^\Phi[0, \infty)$ which satisfies $\|x\|_\Phi = 1$, we have $k^*_x \geq \frac{B_\Phi}{B_\Phi - 1}$. Firstly, we have $\rho_\Psi(\phi(k^*_x|x(t)|)) \geq 1$. In fact, if $\Phi \in \Delta_2$, then $\rho_\Phi((k^*_x + 1)x] < \infty$. So

$$\rho_\Psi(\phi((k^*_x + 1)|x(t)|)) \leq \rho_\Psi(\phi((k^*_x + 1)|x(t)|) + \rho_\Phi((k^*_x + 1)|x(t)|))$$

$$= \int_G (k^*_x + 1)|x(t)| \cdot \phi((k^*_x + 1)|x(t)|) \, dt$$

$$\leq B_\Phi \rho_\Phi((k^*_x + 1)|x(t)|) < \infty.$$
Choose \(k^*_x < k_n < k^*_x + 1 \) such that \(k_n \downarrow k^*_x \). By the right continuity of \(\phi \) and Lebesgue dominated convergence theorem, we have

\[
\rho_\Psi(\phi(k^*_x|x(t)|)) = \lim_{n \to \infty} \rho_\Psi(\phi(k_n|x(t)|)) \geq 1.
\]

For every \(x \in L^\Phi[0, \infty) \) which satisfies \(\|x\|_\Phi = 1 \), we have

\[
1 + \rho_\Phi(k^*_x x) \leq \rho_\Psi(\phi(k^*_x|x(t)|)) + \rho_\Phi(k^*_x|x(t)|) \\
= \int_{[0,\infty)} \Psi\{\phi[(k^*_x|x(t)|)]\} \, dt + \int_{[0,\infty)} \Phi(k^*_x|x(t)|) \, dt \\
= \int_{[0,\infty)} k^*_x|x(t)|\phi(k^*_x|x(t)|) \, dt \\
\leq B_\Phi \int_{[0,\infty)} \Phi(k^*_x|x(t)|) \, dt = B_\Phi \rho_\Phi(k^*_x x).
\]

This implies

\[
(6) \quad \rho_\Phi(k^*_x x) \geq \frac{1}{B_\Phi - 1}.
\]

By Lemma 1.3, we get

\[
1 = \|x\|_\Phi = \frac{1}{k^*_x} \{1 + \rho_\Phi(k^*_x x)\}.
\]

So \(\rho_\Phi(k^*_x x) = k^*_x - 1 \). By (6)

\[
k^*_x \geq \frac{B_\Phi}{B_\Phi - 1}.
\]

Next, we prove

\[
(7) \quad Q_\Phi \leq \frac{A_\Phi}{A_\Phi - 1}.
\]

If \(\Phi \notin \nabla_2 \), then \(A_\Phi = 1 \) or \(B_\Psi = \infty \). The result is obvious.

If \(\Phi \in \nabla_2 \), then \(A_\Phi > 1 \). For every \(x \in L^\Phi[0, \infty) \) which satisfies \(\|x\|_\Phi = 1 \), and for any \(k \in [k^*_x, k^*_x] \), we have

\[
1 = \|x\|_\Phi = \frac{1}{k}[1 + \rho_\Phi(k x)].
\]

For any \(0 < \epsilon < 1 < k \), we have

\[
(8) \quad 1 = \|x\|_\Phi = \inf_{t > 0} \frac{1}{t}[1 + \rho_\Phi(t x)] \leq \frac{1}{k - \epsilon}[1 + \rho_\Phi((k - \epsilon)x)].
\]
By the definition of \(k^{**}_x \) and \(k - \varepsilon < k^{**}_x \), we have

\[
1 + \rho_{\Phi}[(k - \varepsilon)x] \geq \rho_{\Psi}\{\phi[(k - \varepsilon)x]\} + \rho_{\Phi}[(k - \varepsilon)x]
\]

\[
= \int_{[0, \infty)} (k - \varepsilon)x(t)\phi[(k - \varepsilon)x(t)] \, dt
\]

\[
\geq A_{\Phi} \rho_{\Phi}((k - \varepsilon)x(t)).
\]

Therefore by (8) and (9), we have

\[
1 \geq (A_{\Phi} - 1) \rho_{\Phi}((k - \varepsilon)x(t)) \geq (A_{\Phi} - 1)(k - \varepsilon - 1)
\]

or

\[
k - \varepsilon \leq \frac{A_{\Phi}}{A_{\Phi} - 1}.
\]

Since \(\varepsilon \) is arbitrary, we have

\[
k \leq \frac{A_{\Phi}}{A_{\Phi} - 1}.
\]

This implies (7) since \(x \) and \(k \) are arbitrary. \(\square \)

Corollary 2.1. (i) If \(\Phi \in \nabla_2 \), then \(Q_{\Phi} < \infty \); (ii) If \(\Phi \in \triangle_2 \), then \(q_{\Phi} > 1 \).

For \(0 \neq x \in L_{\Phi}[0, 1] \), we still denote

\[
k^{*}_x = \inf\{k > 0 : \rho_{\Psi}[\phi(kx)] \geq 1\},
\]

\[
k^{**}_x = \sup\{k > 0 : \rho_{\Psi}[\phi(kx)] \leq 1\},
\]

\[
Q_{\Phi} = \sup_{\|x\|_{\Phi} = 1} k^{**}_x = \sup_{\|x\|_{\Phi} = 1} \left\{ k > 0 : \|x\|_{\Phi} = \frac{1}{k}(1 + \rho_{\Phi}(kx)) \right\},
\]

\[
q_{\Phi} = \inf_{\|x\|_{\Phi} = 1} k^{*}_x = \inf_{\|x\|_{\Phi} = 1} \left\{ k > 0 : \|x\|_{\Phi} = \frac{1}{k}(1 + \rho_{\Phi}(kx)) \right\}.
\]

Let \(\varepsilon_0 = \min\{\frac{1}{2\phi(1)}, 1\} \). Denote

\[
A_{\Phi}^* = \inf\left\{ \frac{t\phi(t)}{\Phi(t)} : t \in [\varepsilon_0, \infty) \right\},
\]

\[
B_{\Phi}^* = \sup\left\{ \frac{t\phi(t)}{\Phi(t)} : t \in [\varepsilon_0, \infty) \right\}.
\]

Obviously, \(\varepsilon_0 \phi(\varepsilon_0) \leq \frac{\phi(\varepsilon_0)}{2\phi(1)} \leq \frac{1}{2} \).
Theorem 2.2. If Φ, Ψ is a pair of complementary N-functions, then

$$\frac{B^*_\Phi - \varepsilon_0 \phi(\varepsilon_0)}{B^*_\Phi - 1} \leq q_\Phi \leq \frac{A^*_\Phi + A^*_\Phi \Phi(\varepsilon_0)}{A^*_\Phi - 1}.$$

Proof: Firstly, we prove $q_\Phi \geq \frac{B^*_\Phi - \varepsilon_0 \phi(\varepsilon_0)}{B^*_\Phi - 1}$. If $\Phi \notin \triangle_2(\infty)$, then $B^*_\Phi = \infty$, and the result is clear. If $\Phi \in \triangle_2(\infty)$, then $B^*_\Phi < \infty$. By the proof of Theorem 2.1, for $x \in L^\Phi[0,1]$ with $\|x\|_\Phi = 1$, we have $\rho_\Psi(\phi(k^*_x x)) \geq 1$. So

$$1 + \rho_\Phi(k^*_x x) \leq \rho_\Psi(\phi(k^*_x x)) + \rho_\Phi(k^*_x x)$$

$$= \int_{[0,1]} k^*_x |x(t)|\phi(k^*_x |x(t)|) \, dt$$

$$\leq \int_{G_1 = \{t : k^*_x |x(t)| < \varepsilon_0\}} \varepsilon_0 \phi(\varepsilon_0) \, dt + \int_{G \setminus G_1} k^*_x |x(t)|\phi(k^*_x |x(t)|) \, dt$$

$$< \varepsilon_0 \phi(\varepsilon_0) + B^*_\Phi \rho_\Phi(k^*_x x).$$

Therefore

$$1 - \varepsilon_0 \phi(\varepsilon_0) \leq (B^*_\Phi - 1) \rho_\Phi(k^*_x x).$$

Noting that $\rho_\Phi(k^*_x x) = k^*_x - 1$, we have

$$1 - \varepsilon_0 \phi(\varepsilon_0) \leq k^*_x - 1,$$

i.e.

$$k^*_x \geq \frac{B^*_\Phi - \varepsilon_0 \phi(\varepsilon_0)}{B^*_\Phi - 1}.$$

Since x is arbitrary,

$$q_\Phi \geq \frac{B^*_\Phi - \varepsilon_0 \phi(\varepsilon_0)}{B^*_\Phi - 1}.$$

Next we prove $Q_\Phi \leq \frac{A^*_\Phi (1 + \Phi(\varepsilon_0))}{A^*_\Phi - 1}$. If $\Phi \notin \nabla_2(\infty)$, the result is obvious. If $\Phi \in \nabla_2(\infty)$, then $\forall x \in S(L^\Phi[0,1])$, $\forall k \in [k^*_x, k^{**}_x]$ and $0 < \varepsilon < 1$, we get

$$1 + \rho_\Phi[(k - \varepsilon)x] \geq \rho_\Psi\{\phi[(k - \varepsilon)|x|]\} + \rho_\Phi[(k - \varepsilon)x]$$

$$= \int_{[0,1]} (k - \varepsilon)|x(t)|\phi((k - \varepsilon)|x(t)|) \, dt$$

$$\geq \int_{\{t \in [0,1] : (k - \varepsilon)|x(t)| \geq \varepsilon_0\}} (k - \varepsilon)|x(t)|\phi((k - \varepsilon)|x(t)|) \, dt$$

$$\geq A^*_\Phi \int_{\{(k - \varepsilon)|x(t)| \geq \varepsilon_0\}} \Phi((k - \varepsilon)|x(t)|) \, dt$$

$$\geq A^*_\Phi \{\rho_\Phi[(k - \varepsilon)x(t)] - \int_{\{t \in [0,1] : (k - \varepsilon)|x(t)| \varepsilon_0\}} \Phi((k - \varepsilon)|x(t)|) \, dt\}$$

$$\geq A^*_\Phi \{\rho_\Phi[(k - \varepsilon)x(t)] - \Phi(\varepsilon_0)\}.$$
So
\[1 + A_\Phi^* \Phi(\varepsilon_0) \geq (A_\Phi^* - 1) \rho((k - \varepsilon)x(t)) \geq (A_\Phi^* - 1)(k - \varepsilon - 1), \]
i.e.
\[k \leq \frac{A_\Phi^*[1 + \Phi(\varepsilon_0)]}{A_\Phi^* - 1} + \varepsilon. \]
Therefore,
\[k \leq \frac{A_\Phi^*[1 + \Phi(\varepsilon_0)]}{A_\Phi^* - 1}. \]
Since \(x \in S(L^\Phi[0,1]) \) is arbitrary,
\[Q_\Phi \leq \frac{A_\Phi^*(1 + \Phi(\varepsilon_0))}{A_\Phi^* - 1}. \]

\[\square \]

Corollary 2.2 (S.T. Chen [1, p. 21]).

(i) If \(\Phi \in \Delta_2(\infty) \), then \(q_\Phi > 1 \).

(ii) If \(\Phi \in \nabla_2(\infty) \), then \(Q_\Phi < \infty \).

From the proof of Theorem 2.2, we know Theorem 2.2 is true for any \(0 < \varepsilon < \varepsilon_0 \).
Letting \(\varepsilon \) to tend to 0, we get

Corollary 2.3. Let \(\Phi, \Psi \) be a pair of complementary \(\mathcal{N} \)-functions. Then

(10) \[A_\Psi = \frac{B_\Phi}{B_\Phi - 1} \leq q_\Phi \leq Q_\Phi \leq \frac{A_\Phi}{A_\Phi - 1} = B_\Psi, \]

where \(A_\Phi, B_\Phi, A_\Psi \) and \(B_\Psi \) are defined by (1).

Example 1. For the \(\mathcal{N} \)-function \(\Phi(u) = |u|^p \), which generates \(L^p[0,\infty) \), we have \(A_\Phi = B_\Phi = p \). By Theorem 2.1 and Corollary 2.3, we have \(q_\Phi = Q_\Phi = \frac{p}{p-1} \).

Example 2. For the \(\mathcal{N} \)-function \(\Phi(u) = e^{\lvert u \rvert} - |u| - 1 \), we have

(11) \[1 \leq q_\Phi \leq Q_\Phi \leq 2. \]

Indeed, \(F_\Phi(t) = \frac{t(e^t - 1)}{e^t - t - 1} \) is increasing in \((0, +\infty)\). So \(A_\Phi = \lim_{t \to 0^+} F_\Phi(t) = 2 \) and \(B_\Phi = \lim_{t \to +\infty} F_\Phi(t) = \infty \). Therefore (11) follows from Theorem 2.1 and Corollary 2.3.

Acknowledgment. The author would like to thank the referee for reading this paper carefully and for giving some suggestions.
References

Department of Mathematics, Suzhou University, Suzhou 215006, P.R. China

(Received April 9, 2002, revised November 11, 2002)