A note on intermediate
differentiability of Lipschitz functions

L. Zajíček

Abstract. Let f be a Lipschitz function on a superreflexive Banach space X. We prove that then the set of points of X at which f has no intermediate derivative is not only a first category set (which was proved by M. Fabian and D. Preiss for much more general spaces X), but it is even σ-porous in a rather strong sense. In fact, we prove the result even for a stronger notion of uniform intermediate derivative which was defined by J.R. Giles and S. Sciffer.

Keywords: Lipschitz function, intermediate derivative, σ-porous set, superreflexive Banach space

Classification: Primary 46G05; Secondary 58C20

1. Introduction

In this note we show that a theorem of [2] implies a new result on intermediate differentiability of Lipschitz functions.

Let X be a real Banach space. The open ball with center c and radius r is denoted by $B(c, r)$. If f is a Lipschitz function, then the Lipschitz constant of f is denoted by $\text{Lip}(f)$.

If f is a real function on X and $x, v \in X$, then we consider the upper and lower (one-sided) directional derivatives

$$\overline{f}(x, v) = \limsup_{t \to 0^+} \frac{f(x + tv) - f(x)}{t} \quad \text{and} \quad \underline{f}(x, v) = \liminf_{t \to 0^+} \frac{f(x + tv) - f(x)}{t}.$$

Following [3] we say that $x^* \in X^*$ is an intermediate derivative of a function $f : X \to \mathbb{R}$ at a point $x \in X$ if

$$\underline{f}(x, v) \leq (v, x^*) \leq \overline{f}(x, v) \quad \text{for every} \quad v \in X.$$

Of course, if f has at x the Gâteaux derivative, then it has also the (unique) intermediate derivative. Therefore Aronszajn's differentiability theorem ([1]) implies that every (locally) Lipschitz function on a separable Banach space has an intermediate derivative at all points except a set E which is null in Aronszajn’s sense.

M. Fabian and D. Preiss [3] proved the following theorem.

Supported by CEZ J13/98113200007, GAČR 201/97/1161 and GAUK 190/1996.
Theorem FP. Suppose that a Banach space Y contains a dense continuous linear image of an Asplund space and that X is a subspace of Y. Then every locally Lipschitz function defined on an open subset Ω of X is intermediate differentiable at every point of $\Omega \setminus A$, where A is a first category set.

J.R. Giles and S. Sciffer [4] considered the following stronger notion of uniform intermediate differentiability.

Definition 1. A real function f defined on an open subset Ω of a Banach space X is said to be uniformly intermediate differentiable at $x \in \Omega$ if there exists (a “uniform intermediate derivative”) $x^* \in X^*$ and a sequence $t_n \downarrow 0$ such that

$$\lim_{n \to \infty} \frac{f(x + t_n v) - f(x)}{t_n} = (v, x^*)$$

for each direction $v \in X$ with $\|v\| = 1$.

The following result is proved in [4] using the Preiss deep differentiability theorem of [5].

Theorem GS. Let X be an Asplund space. Then every locally Lipschitz function defined on an open subset Ω of X is uniformly intermediate differentiable at every point of $\Omega \setminus A$, where A is a first category set.

To formulate the result of the present note, we need the following definition (cf. [8], p.327).

Definition 2. Let P be a metric space and $M \subset P$. We say that

(i) M is globally very porous if there exists $c > 0$ such that for every open ball $B(a, r)$ there exists an open ball $B(b, cr) \subset B(a, r) \setminus M$ and

(ii) M is σ-globally very porous if it is a countable union of globally very porous sets.

Remark 1. Every globally very porous set is clearly nowhere dense and thus every σ-globally very porous set is of the first category. It is not difficult to prove that in each Banach space there exists a first category set which is not σ-globally very porous. (For the more difficult result concerning the weaker notion of a σ-porous set see [10].)

Now we can formulate our result.

Theorem. Let X be a superreflexive Banach space. Then every locally Lipschitz function f defined on an open subset Ω of X is uniformly intermediate differentiable at every point of $\Omega \setminus A$, where A is a σ-globally very porous set.

By Remark 1, our Theorem is, in the case of a superreflexive X, an improvement of Theorem GS.

A result analogous to Theorem for the weaker notion of (non-uniform) intermediate differentiability is proved in [7] in the case of a separable Banach space X.
Intermediate differentiability of Lipschitz functions

In this case the set A can be taken to be “σ-directionally porous”. Note that the notions of smallness “σ-globally very porous” and “σ-directionally porous” are incomparable in infinite-dimensional spaces.

We will need also the notion of a very porous set which is clearly weaker than this of a globally very porous set.

Definition 3. Let P be a metric space, $M \subset P$ and $x \in P$. We say that

(i) M is very porous at x if there exist numbers $\delta > 0, \eta > 0$ such that, for each $0 < \rho < \delta$, there exists a ball $B(y, \omega) \subset B(x, \rho) \setminus M$ with $\omega \geq \eta \rho$,

(ii) M is very porous if it is very porous at each of its points and

(iii) M is σ-very porous if it is a countable union of very porous sets.

The basic ingredient of the proof of our Theorem is the following result of [2]. In the terminology of [2], it says that the pair of Banach spaces (X, \mathbb{R}) has the “uniform approximation by affine property (UAAP)” if X is superreflexive. (Moreover, it is proved in [2] that (X, \mathbb{R}) has (UAAP) iff X is superreflexive.)

Theorem BJLPS. Let X be a superreflexive Banach space. Then for each $\varepsilon > 0$ there exists $c = c(\varepsilon) > 0$ such that for every ball $B(x, \rho)$ in X and every Lipschitz function $f : B(x, \rho) \mapsto \mathbb{R}$ there exist a ball $B(y, \tilde{\rho}) \subset B(x, \rho)$ and an affine function $a : X \mapsto \mathbb{R}$ such that $\tilde{\rho} \geq c \rho$ and

$$|f(z) - a(z)| \leq \varepsilon \tilde{\rho} \text{Lip}(f) \quad \text{for each} \quad z \in B(y, \tilde{\rho}).$$

We will use also the following relatively easy fact (see [11], Lemma E).

Proposition Z. Let X be a Banach space and $M \subset X$. Then M is σ-globally very porous iff it is σ-very porous.

2. Proof of Theorem

Let G_n be the union of all balls $B(c, r) \subset \Omega$ such that $r < 1/n$ and there exists an affine function a on X for which $|f(z) - a(z)| \leq r/n$ whenever $z \in B(c, 2r)$. Put $P_n = \Omega \setminus G_n$ and $A = \bigcup_{n=1}^{\infty} P_n$. It is sufficient to prove that

(1) each P_n is σ - globally porous and

(2) f has a uniform intermediate derivative at each point of $\Omega \setminus A = \bigcap_{n=1}^{\infty} G_n$.

First we will prove (1). By Proposition Z, it is sufficient to prove that each P_n is very porous at each point $x \in \Omega$. To this end choose n, x and find $\delta > 0, K > 0$ such that $B(x, \delta) \subset \Omega, \delta < 1/n$ and f is Lipschitz with constant K on $B(x, \delta)$. Now find $c = c(1/2nK)$ by Theorem BJLPS and consider an arbitrary $0 < \rho < \delta$.

By the choice of \(c \) there exists a ball \(B(y, \tilde{\rho}) \subset B(x, \rho) \) and an affine function \(a \) on \(X \) such that \(\tilde{\rho} \geq c\rho \) and

\[
|f(z) - a(z)| \leq \frac{1}{2nK\tilde{\rho}} = \frac{\tilde{\rho}}{2n}
\]

for each \(z \in B(y, \tilde{\rho}) \).

Therefore \(B(y, \tilde{\rho}/2) \subset G_n \) and we see that \(P_n \) is very porous at \(x \) (with \(\eta = c/2 \)).

To prove (2), suppose that \(z \in \bigcap_{n=1}^\infty G_n \) is given. Then there exist sequences \((B(c_n, r_n))\) of balls and \((a_n)\) of affine functions on \(X \) such that \(0 < r_n < 1/n, \ z \in B(c_n, r_n) \)

(3) \[
|f(y) - a_n(y)| < r_n/n \text{ for each } y \in B(c_n, 2r_n).
\]

Let \(a_n(t) = q_n + x_n^*(t) \), where \(q_n \in R \) and \(x_n^* \) is a linear function on \(X \). If \(v \in X, \|v\| = 1 \), then (3) implies

(4) \[
\left| \frac{f(z + r_nv) - f(z)}{r_n} - (v, x_n^*) \right| = \left| \frac{f(z + r_nv) - f(z)}{r_n} - \frac{a_n(z + r_nv) - a_n(z)}{r_n} \right| < \frac{2}{n}.
\]

Since \(f \) is locally Lipschitz, there exist \(L > 0 \) and \(n_0 \in N \) such that \(|(v, x_n^*)| < L + 2/n \) whenever \(n \geq n_0 \) and \(\|v\| = 1 \). Therefore \((x_n^*)_{n=n_0}^\infty \) is a norm bounded sequence in \(X^* \). By the Eberlein-Smulyan theorem we can choose a subsequence \((x_{n_k})_{k=1}^\infty \) and \(x^* \in X^* \) such that

(5) \[
x_{n_k}^* \to x^* \text{ in the } w^* \text{ - topology}.
\]

Put \(t_k := r_{n_k} \). Then (4) and (5) clearly imply that

\[
\lim_{k \to \infty} \frac{f(z + t_kv) - f(z)}{t_k} = (v, x^*)
\]

for each \(v \in X, \|v\| = 1 \), which completes the proof.

Acknowledgment. In [11] a characterization of \(\sigma \)-globally very porous sets based on a modification of the Banach-Mazur game is given. In the original version of the present paper, this characterization (similarly as in [9]) was used. The author thanks the anonymous referee who suggested the more direct argument (based on the definition of \(G_n \)) which is used in the present version.

References

Intermediate differentiability of Lipschitz functions

Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic
E-mail: Zajicek@karlin.mff.cuni.cz

(Received December 17, 1998, revised June 26, 1999)