Appendix A: Statistical and Economic Terms

X – Product Quality Characteristic
L – Lower Specification Limit Of X
U – Upper Specification Limit Of X
N – Lot Size
n – Sample Size
\bar{X} – Sample Mean
μ – Mean Of The Quality Characteristic X
σ^2 – Variance Of The Quality Characteristic X
m – Mean Of The Mean μ
c – Acceptance Number Under Attribute Sampling
s – Number Of Defectives In A Sample Under Attribute Sampling

K_R – Sales Price Of An Item

K_p – Production Cost Of An Item

K_J – Junk Value Of A Scrapping Item = 0 In This Model

K_A – Cost Of Accepting A Defective Item Delivered To The Consumer

p – Fraction Of Items Defective

p' – Minimum Variance Unbiased Estimate Of The Fraction Defective p

$1 - \alpha$ – Minimum Probability Of Accepting A Lot Given A Lot Of Acceptable Quality

$1 - \beta$ – Maximum Probability Of Rejecting A Lot Given A Lot Of Rejectable Quality

C_1 – Prior Cost Function Associated With The Decision To Accept Outright
\(C_2 \) – Prior Cost Function Associated With The Decision To Reject Outright and scrap

\(p_1 \) – Profit Per Item To Accept The Lot Without Sampling

\(p_2 \) – Profit Per Item To Reject The Lot Outright

\(p_3 \) – Expected Posterior Profit Per Item For Accepting The Remainder Of The Lot

\(p_4 \) – Expected Posterior Profit Per Item For Rejecting And Scrapping The Remainder Of The Lot

\(p_5 \) – Profit Per Item Resulting From Sampling And Scrapping \(n \) Units

\(K'_1 \) – Posterior Cost Function Associated With Acceptance

\(K'_2 \) – Posterior Cost Function Associated With Rejection

\(F(K'_1 \Phi) \) – Expected Posterior Cost Associated With Acceptance