On functional weak convergence for partial sum processes

Danijel Krizmanić*

Abstract

For a strictly stationary sequence of regularly varying random variables we study functional weak convergence of partial sum processes in the space $D[0,1]$ with the Skorohod J_1 topology. Under the strong mixing condition, we identify necessary and sufficient conditions for such convergence in terms of the corresponding extremal index. We also give conditions under which the regular variation property is a necessary condition for this functional convergence in the case of weak dependence.

Keywords: Extremal index; functional limit theorem; regular variation; Skorohod J_1 topology; strong mixing; weak convergence.

AMS MSC 2010: 60F17; 60G52; 60G70.

1 Introduction

Let (X_n) be a strictly stationary sequence of real-valued random variables. If the sequence (X_n) is i.i.d. then it is well known (see for example Gnedenko and Kolmogorov [8], Rvačeva [16], Feller [7]) that there exist real sequences (a_n) and (b_n) such that

$$
\frac{1}{a_n} \sum_{k=1}^{n} (X_k - b_n) \xrightarrow{d} S,
$$

for some non-degenerate α-stable random variable S with $\alpha \in (0,2)$ if and only if X_1 is regularly varying with index $\alpha \in (0,2)$, that is,

$$
P(|X_1| > x) = x^{-\alpha} L(x),
$$

where $L(\cdot)$ is a slowly varying function at ∞ and the tails are balanced: there exist $p,q \geq 0$ with $p + q = 1$ such that

$$
\frac{P(X_1 > x)}{P(|X_1| > x)} \to p \quad \text{and} \quad \frac{P(X_1 < -x)}{P(|X_1| > x)} \to q,
$$

as $x \to \infty$. As α is less than 2, the variance of X_1 is infinite. The functional generalization of (1.1) has been studied extensively in probability literature. Define the partial sum processes

$$
V_n(t) = \frac{1}{a_n} \sum_{k=1}^{\lfloor nt \rfloor} X_k - tb_n, \quad t \in [0,1],
$$

*Department of Mathematics, University of Rijeka, Croatia.
E-mail: dkrizmanic@math.uniri.hr
Functional weak convergence

where the sequences \((a_n)\) and \((b_n)\) are chosen as

\[
nP(|X_1| > a_n) \to 1 \quad \text{and} \quad b_n = \frac{n}{a_n} E(X_1 1_{|X_1| \leq a_n}).
\]

Here \([x]\) represents the integer part of the real number \(x\). In functional limit theory one investigates the asymptotic behavior of the processes \(V_n(\cdot)\) as \(n \to \infty\). Since the sample paths of \(V_n(\cdot)\) are elements of the space \(D[0,1]\) of all right-continuous real valued functions on \([0,1]\) with left limits, it is natural to consider the weak convergence of distributions of \(V_n(\cdot)\) with the one of Skorohod topologies on \(D[0,1]\) introduced in Skorohod [18].

A functional limit theorem for processes \(V_n(\cdot)\) for infinite variance i.i.d. regularly varying sequences \((X_n)\) was established by Skorohod [19]. Under some weak dependence conditions, weak convergence of partial sum processes in the Skorohod \(J_1\) topology were obtained by Leadbetter and Rootzén [12] and Tyran-Kamińska [20]. They give a characterization of the \(J_1\) convergence in terms of convergence of the corresponding point processes of jumps. Further in [20] are given sufficient conditions for such convergence when the stationary sequence is strongly mixing. One of them is a certain local dependence condition, which is implied by the local dependence condition \(D^*\) of Davis [5]. It prevents clustering of large values of \(|X_n|\), which allows the \(J_1\) convergence to hold, since the \(J_1\) topology is appropriate when extreme values do not cluster.

After recalling relevant notations and background in Section 2, in Section 3 we characterize the functional \(J_1\) convergence of the partial sum process of a strictly stationary strongly mixing sequence \((X_n)\) of regularly varying random variables in terms of the the extremal index of the sequence \(|X_n|\), which is a standard tool in describing clustering of large values. When clustering of large values occurs \(J_1\) convergence fails to hold, although convergence with respect to the weaker Skorohod \(M_1\) topology might still hold. Recently Basrak et al. [2] gave sufficient conditions for functional limit theorem with the \(M_1\) topology to hold for stationary, jointly regularly varying sequences for which all extremes within each cluster of high-threshold excesses have the same sign.

The regular variation property is a necessary condition for the \(J_1\) convergence of the partial sum process in the i.i.d. case (see for example Corollary 7.1 in Resnick [15]). In Section 4 we extend this result to the weak dependent case when clustering of large values do not occur.

2 Preliminaries

In this section we introduce some basic tools and notions to be used throughout the paper.

2.1 Regular Variation

Let \(E = \mathbb{R} \setminus \{0\}\), where \(\mathbb{R} = [-\infty, \infty]\). The space \(E\) is equipped with the topology by which the Borel \(\sigma\)-algebras \(B(E)\) and \(B(\mathbb{R})\) coincide on \(\mathbb{R} \setminus \{0\}\). A set \(B \subseteq E\) is relatively compact if it is bounded away from origin, that is, if there exists \(u > 0\) such that \(B \subseteq \mathbb{R} \setminus [-u,u]\). Let \(M_+(E)\) be the class of all Radon measures on \(E\), i.e. all nonnegative measures that are finite on relatively compact subsets of \(E\). A useful topology for \(M_+(E)\) is the vague topology which renders \(M_+(E)\) a complete separable metric space. If \(\mu_n \in M_+(E)\), \(n \geq 0\), then \(\mu_n\) converges vaguely to \(\mu_0\) (written \(\mu_n \rightharpoonup \mu_0\)) if \(\int f \, d\mu_n \to \int f \, d\mu_0\) for all \(f \in C^+_c(E)\), where \(C^+_c(E)\) denotes the class of all nonnegative continuous real functions on \(E\) with compact support.

Regular variation can be expressed in terms of vague convergence of measures on
Functional weak convergence

E. Relation (1.2) together with (1.3) are equivalent to
\[nP(a_n^{-1} X_1 \in \cdot) \xrightarrow{w} \mu(\cdot) \quad \text{as } n \to \infty, \]
the Radon measure \(\mu \) on \(E \) being given by
\[\mu(dx) = (p\alpha x^{\alpha-1}1_{(0,\infty)}(x) + q\alpha(-x)^{-\alpha-1}1_{(-\infty,0)}(x))dx, \]
where \(p \) and \(q \) are as in (1.3).

Using standard regular variation arguments it can be shown that for every \(\lambda > 0 \) it holds that
\[\frac{a_n}{a_{\lambda n}} \to \lambda^{1/\alpha} \quad \text{as } n \to \infty. \]
Therefore \(a_n \) can be represented as
\[a_n = n^{1/\alpha} L'(n), \]
where \(L'(\cdot) \) is a slowly varying function at \(\infty \).

2.2 Skorohod \(J_1 \) and \(M_1 \) topologies

Since the stochastic processes that we consider in this paper have discontinuities, for the function space of sample paths of these stochastic processes we take the space \(D[0,1] \) of all right-continuous real valued functions on \([0,1] \) with left limits. Usually the space \(D[0,1] \) is endowed with the Skorohod \(J_1 \) topology, which is appropriate when clustering of large values do not occur.

The metric \(d_{J_1} \) that generates the \(J_1 \) topology on \(D[0,1] \) is defined in the following way. Let \(\Delta \) be the set of strictly increasing continuous functions \(\lambda : [0,1] \to [0,1] \) such that \(\lambda(0) = 0 \) and \(\lambda(1) = 1 \), and let \(e \in \Delta \) be the identity map on \([0,1] \), i.e. \(e(t) = t \) for all \(t \in [0,1] \). For \(x, y \in D[0,1] \) define
\[d_{J_1}(x,y) = \inf\{\|x \circ e - y\|_{[0,1]} \lor \|\lambda - e\|_{[0,1]} : \lambda \in \Delta\}, \]
where \(\|x\|_{[0,1]} = \sup\{|x(t)| : t \in [0,1]\} \) and \(a \lor b = \max\{a, b\} \). Then \(d_{J_1} \) is a metric on \(D[0,1] \) and is called the Skorohod \(J_1 \) metric.

When stochastic processes exhibit rapid successions of jumps within temporal clusters of large values, collapsing in the limit to a single jump, the \(J_1 \) topology becomes inapplicable since the \(J_1 \) convergence fails to hold. This difficulty can be overcome by using a weaker topology in which the functional convergence may still hold, i.e. the Skorohod \(M_1 \) topology.

The \(M_1 \) metric \(d_{M_1} \) that generates the \(M_1 \) topology is defined using the completed graphs. For \(x \in D[0,1] \) the completed graph of \(x \) is the set
\[\Gamma_x = \{(t,z) \in [0,1] \times \mathbb{R} : z = \lambda x(t-) + (1 - \lambda)x(t) \text{ for some } \lambda \in [0,1]\}, \]
where \(x(t-) \) is the left limit of \(x \) at \(t \). Thus the completed graph of \(x \) besides the points of the graph \(\{(t,x(t)) : t \in [0,1]\} \) contains also the vertical line segments joining \((t,x(t)) \) and \((t,x(t-)) \) for all discontinuity points \(t \) of \(x \). We define an order on the graph \(\Gamma_x \) by saying that \((t_1, z_1) \leq (t_2, z_2) \) if either (i) \(t_1 < t_2 \) or (ii) \(t_1 = t_2 \) and \(|x(t_1-) - z_1| \leq |x(t_2-) - z_2| \). A parametric representation of the completed graph \(\Gamma_x \) is a continuous nondecreasing function \((r,u) \) mapping \([0,1]\) onto \(\Gamma_x \), with \(r \) being the time component and \(u \) being the spatial component. Denote by \(\Pi(x) \) the set of parametric representations of the graph \(\Gamma_x \). For \(x_1, x_2 \in D[0,1] \) define
\[d_{M_1}(x_1, x_2) = \inf\{\|r_1 - r_2\|_{[0,1]} \lor \|u_1 - u_2\|_{[0,1]} : (r_i, u_i) \in \Pi(x_i), i = 1, 2\}. \]
This definition introduces d_{M_1} as a metric on $D[0,1]$. The induced topology is called the Skorohod M_1 topology.

The J_1 and M_1 metrics are related by the following inequality

$$d_{M_1}(x,y) \leq d_{J_1}(x,y), \quad x,y \in D[0,1]$$

(see for instance Theorem 6.3.2 in Whitt [21]).

Define the maximum (absolute) jump functional $T : D[0,1] \to \mathbb{R}$ by

$$T(x) = \sup\{|x(t) - x(t^-)| : t \in [0,1]\}, \quad x \in D[0,1]. \quad (2.2)$$

The supremum in (2.2) is always attained, because for any $\epsilon > 0$ a function $x \in D[0,1]$ has finitely many jumps of magnitude greater than ϵ (cf. Whitt [21], page 98). If $d_{M_1}(x_n, x) \to 0$, by Lemma 4.1 of Pang and Whitt [14] (cf. Whitt [21], Corollary 12.11.3) it follows that

$$\limsup_{n \to \infty} T(x_n) \leq T(x). \quad (2.3)$$

Lemma 2.1. The functional $T : D[0,1] \to \mathbb{R}$ is continuous on $D[0,1]$, when $D[0,1]$ is endowed with the Skorohod J_1 topology.

Proof. Take an arbitrary $x \in D[0,1]$ and suppose that $d_{J_1}(x_n, x) \to 0$ in $D[0,1]$. Since the J_1 convergence implies the M_1 convergence, by relation (2.3) we have $\limsup_{n \to \infty} T(x_n) \leq T(x)$.

From the definition of the functional T, we know that there exists some $t_0 \in (0,1]$ such that $|x(t_0) - x(t_0^-)| = T(x)$. From the definition of the J_1 metric, there exists a sequence (t_n) in $[0,1]$ such that $t_n \to t_0$, $x_n(t_n) \to x(t_0)$ and $x_n(t_n^-) \to x(t_0^-)$ as $n \to \infty$ (it suffices to let $t_n = \lambda_n(t_0)$ where $\|\lambda_n - e\|_{[0,1]} \to 0$ and $\|x_n \circ \lambda_n - x\|_{[0,1]} \to 0$). Hence

$$|x_n(t_n) - x_n(t_n^-)| \to |x(t_0) - x(t_0^-)| = T(x) \quad \text{as } n \to \infty.$$

Nothing that

$$T(x_n) = \sup\{|x_n(t) - x_n(t^-)| : t \in [0,1]\} \geq |x_n(t_n) - x_n(t_n^-)|,$$

we obtain $\liminf_{n \to \infty} T(x_n) \geq T(x)$. Therefore $\lim_{n \to \infty} T(x_n) = T(x)$, and we conclude that T is continuous at x.

Remark 2.2. Similar results as in Lemma 2.1 hold for the maximum positive and negative jump functionals $T^+, T^- : D[0,1] \to \mathbb{R}$ defined by

$$T^+(x) = \sup\{|x(t) - x(t^-)|1_{\{x(t) - x(t^-) > 0\}} : t \in [0,1]\}, \quad T^-(x) = \sup\{|x(t) - x(t^-)|1_{\{x(t) - x(t^-) < 0\}} : t \in [0,1]\},$$

for $x \in D[0,1]$. Precisely, the functionals T^+ and T^- are continuous on $D[0,1]$ when $D[0,1]$ is endowed with the Skorohod J_1 topology. This can be proven using a slight modification of the proof of Lemma 4.1 in Pang and Whitt [14] and the procedure used in the proof of Lemma 2.1 (we omit the details here).

For more discussion about the J_1 and M_1 topologies we refer to Resnick [15], section 3.3.4 and Whitt [21], sections 12.3–12.5.
2.3 Weak dependence

A strictly stationary sequence \((\xi_n)\) has extremal index \(\theta\) if for every \(\tau > 0\) there exists a sequence of real numbers \(\{u_n\}\) such that

\[
\lim_{n \to \infty} nP(\xi_1 > u_n) \to \tau \quad \text{and} \quad \lim_{n \to \infty} P\left(\max_{1 \leq i \leq n} \xi_i \leq u_n\right) \to e^{-\theta \tau}.
\]

(2.4)

It holds that \(\theta \in [0, 1]\). In particular, if the \(\xi_n\) are i.i.d. then (2.4) can hold only for \(\theta = 1\). Dependent random variables can also have extremal index equal to 1. For this it suffices that they satisfy the extreme mixing conditions \(D(u_n)\) and \(D'(u_n)\) introduced by Leadbetter [10], [11]. The extremal index can be interpreted as the reciprocal mean cluster size of large exceedances (cf. Hsing et al. [9]). When \(\theta < 1\) clustering of extreme values occurs. If the sequence \((\xi_n)\) is strongly mixing and the \(\xi_n\)’s are regularly varying then for \(\theta\) to be the extremal index of \((\xi_n)\) it suffices that (2.4) holds for some \(\tau > 0\) (cf. Leadbetter and Rootzén [12], page 439).

In order to restrict the dependence in the sequence \((X_n)\) we will use the strong mixing condition. Let \((\Omega, \mathcal{F}, P)\) be a probability space. For any \(\sigma\)-field \(A \subset \mathcal{F}\), let \(L_2(A)\) denote the space of square-integrable, \(A\)-measurable, real-valued random variables. For any two \(\sigma\)-fields \(A, B \subseteq \mathcal{F}\) define

\[
\alpha(A, B) = \sup\{|P(A \cap B) - P(A)P(B)| : A \in A, B \in B\}
\]

For a sequence \((X_n)\) of random variables on \((\Omega, \mathcal{F}, P)\), we define \(\mathcal{F}_j^1 = \sigma\{X_k : k \leq i \leq l\}\). Then we say the sequence \((X_n)\) is \(\alpha\)-mixing (or strongly mixing) if

\[
\alpha_n = \sup_{i \geq 1} \alpha(\mathcal{F}_i^1, \mathcal{F}_{i+n}^\infty) \to 0 \quad \text{as} \quad n \to \infty.
\]

Let \((u_n)\) be a sequence of real numbers and \((q_n)\) any sequence of positive integers with \(q_n \to \infty\) as \(n \to \infty\) and \(q_n = o(n)\). O’Brien [13] showed that if the sequence \((X_n)\) is strongly mixing and there exists a sequence \((p_n)\) of positive integers such that \(p_n = o(n)\), \(n\alpha_{q_n} = o(p_n)\), \(q_n = o(p_n)\), and either \(\lim \inf P(X_1 > u_n)^n > 0\) or \(\lim \inf P(M_{2,p_n} \leq u_n|X_1 > u_n) > 0\), then

\[
P(M_n \leq u_n) - P(X_1 \leq u_n)^n P(M_{2,p_n} \leq u_n|X_1 > u_n) \to 0 \quad \text{as} \quad n \to \infty,
\]

(2.5)

where \(M_{i,j} = \max\{X_k : k = i, \ldots, j\}\).

3 Limit theorem with \(J_1\) convergence

Let \((X_n)\) be a strongly mixing and strictly stationary sequence of regularly varying random variables with index \(\alpha \in (0, 2)\). Let \((a_n)\) be a sequence of positive real numbers such that

\[
nP(|X_1| > a_n) \to 1 \quad \text{as} \quad n \to \infty.
\]

(3.1)

Tyran-Kamińska [20] showed that under a certain “vanishing small values” condition when \(\alpha \in [1, 2)\) (see Condition 3.2 below), the partial sum process

\[
V_n(t) = \sum_{k=1}^{[nt]} \frac{X_k}{a_n} - nt E\left(\frac{X_1}{a_n}\mathbb{1}_{\left\{|X_1| \leq 1\right\}}\right), \quad t \in [0, 1],
\]

satisfies a nonstandard functional limit theorem in the space \(D[0, 1]\) equipped with the Skorohod \(J_1\) topology, with a Lévy \(\alpha\)-stable process as a limit if and only if the following local dependence condition holds:
Functional weak convergence

Condition 3.1. For any \(x > 0 \) there exist sequences of integers \(p_n = p_n(x), q_n = q_n(x) \to \infty \) such that

\[
p_n = o(n), \quad n \alpha_{q_n} = o(p_n), \quad q_n = o(p_n) \quad \text{as} \ n \to \infty,
\]

and

\[
\lim_{n \to \infty} \Pr \left(\max_{2 \leq i \leq p_n} |X_i| > xa_n \bigg| |X_1| > xa_n \right) = 0. \quad (3.2)
\]

Here \((\alpha_n)\) is the sequence of \(\alpha\)-mixing coefficients of \((X_n)\).

We will show a similar result, but with a certain condition involving the extremal index of the sequence \(|X_n|\) instead of Condition 3.1. Roughly speaking Condition 3.1 prevents clustering of large values of \(|X_n|\). In terms of the extremal index \(\theta\) of the sequence \(|X_n|\), the non-clustering of large values occurs when \(\theta = 1\). Hence it is expected that the functional \(J_1\) convergence of the partial sum process holds if and only if the sequence \(|X_n|\) has extremal index equal to 1, which we formally prove in the theorem below.

Recall that the distribution of a Lévy process \(W(\cdot)\) is characterized by its characteristic triplet, i.e. the characteristic triplet of the infinitely divisible distribution of \(W(1)\). The characteristic function of \(W(1)\) and the characteristic triplet \((a, \mu, b)\) are related in the following way:

\[
\mathbb{E}[e^{izW(1)}] = \exp \left(-\frac{1}{2} az^2 + ibz + \int_R (e^{izx} - 1 - izx1_{[-1,1]}(x)) \mu(dx) \right)
\]

for \(z \in \mathbb{R}; \) here \(a \geq 0, b \in \mathbb{R}\) are constants, and \(\mu\) is a measure on \(\mathbb{R}\) satisfying

\[
\mu(\{0\}) = 0 \quad \text{and} \quad \int_R (\{|x|^2 \wedge 1\}) \mu(dx) < \infty,
\]

that is, \(\mu\) is a Lévy measure. For a textbook treatment of Lévy processes we refer to Bertoin [3] and Sato [17].

In this section we identify some necessary and sufficient conditions for the \(J_1\) convergence of partial sum processes \(V_n(\cdot)\) to a Lévy stable process. In case \(\alpha \in [1,2)\), we will need to assume that the contribution of the smaller increments of the partial sum process is close to its expectation.

Condition 3.2. For all \(\delta > 0\),

\[
\lim_{n \to \infty} \limsup_{u \to 0} \Pr \left[\max_{0 \leq k \leq n} \left| \sum_{i=1}^{k} \left(\frac{X_i}{a_n} 1_{\{|X_i| \leq u\}} - \mathbb{E} \left(\frac{X_i}{a_n} 1_{\{|X_i| \leq u\}} \right) \right) \right| > \delta \right] = 0.
\]

Theorem 3.3. Let \((X_n)\) be a strictly stationary sequence of regularly varying random variables with index \(\alpha \in (0,2)\). Assume the sequence \((X_n)\) is strongly mixing, and if \(1 \leq \alpha < 2\), also suppose that Condition 3.2 holds. Then

\[
V_n \xrightarrow{d} V, \quad n \to \infty,
\]

in \(D[0,1]\) endowed with the \(J_1\) topology, where \(V(\cdot)\) is an \(\alpha\)-stable Lévy process with characteristic triplet \((0, \mu, 0)\) and \(\mu\) as in (2.1), if and only if the sequence \(|X_n|\) has extremal index \(\theta = 1\).
Functional weak convergence

Proof. First assume the sequence \(|X_n|\) has extremal index \(\theta = 1\). Let \(q_n\) be any sequence of positive integers such that \(q_n \to \infty\) and \(q_n = o(n)\). Fix an arbitrary \(x > 0\) and put \(p_n = \max\{\lfloor n/\theta q_n \rfloor, \lfloor \sqrt{a_n} \rfloor + 1\}\), where \((\alpha_n)\) is the sequence of \(\alpha\)-mixing coefficients of \((X_n)\). Then it can easily be seen that \(p_n = o(n), n\alpha_{q_n} = o(p_n)\) and \(q_n = o(p_n)\). Since by a standard regular variation argument

\[
\lim_{n \to \infty} \left[\frac{\ln(\|X_1\| \leq x a_n)}{n} \right]^n = \lim_{n \to \infty} \left[1 - \frac{n\ln(\|X_1\| > x a_n)}{n} \right]^n = e^{-x^{-\alpha}},
\]

i.e. \(\lim_{n \to \infty} \ln(\|X_1\| \leq x a_n)^n = e^{-x^{-\alpha}} > 0\), from relation (2.5) we obtain that, as \(n \to \infty\),

\[
P\left(\max_{1 \leq i \leq n} |X_i| \leq x a_n \right) \to G(x)\quad \text{as } n \to \infty,
\]

where

\[
G(x) = \lim_{n \to \infty} P\left(\max_{1 \leq i \leq n} |X_i| \leq x a_n \right) = \lim_{n \to \infty} \ln[P(|X_1| \leq x a_n)]^n = e^{-x^{-\alpha}}.
\]

Since \(\theta = 1\), from (3.5) we obtain

\[
P\left(\max_{1 \leq i \leq n} |X_i| \leq x a_n \right) \to e^{-x^{-\alpha}}\quad \text{as } n \to \infty.
\]

Therefore, from (3.4) and (3.6) we obtain, as \(n \to \infty\),

\[
P\left(\max_{2 \leq i \leq n} |X_i| \leq x a_n \left| |X_1| > x a_n \right. \right) \cdot \ln[P(|X_1| \leq x a_n)]^n \to -x^{-\alpha},
\]

and taking into account relation (3.3) it follows that

\[
P\left(\max_{2 \leq i \leq n} |X_i| > x a_n \left| |X_1| > x a_n \right. \right) \to 0\quad \text{as } n \to \infty.
\]

Therefore (3.2) holds and an application of Theorem 1.1 in Tyran-Kamińska [20] yields that \(V_n \overset{d}{\to} V\) in \(D[0, 1]\) with the Skorohod \(J_1\) topology.

Now assume \(V_n \overset{d}{\to} V\) in \(D[0, 1]\) with the \(J_1\) topology. Since by Lemma 2.1 the functional \(T\) is continuous, by the continuous mapping theorem we obtain

\[
T(V_n) = \frac{1}{a_n} \sum_{i=1}^{n} |X_i| \overset{d}{\to} T(V)\quad \text{as } n \to \infty.
\]

Following the Lévy-Ito representation of Lévy processes, \(V(\cdot)\) can be represented as

\[
V(t) = \sum_{t_k \leq t} j_k 1_{|j_k| > 1} + \lim_{\epsilon \to 0} \sum_{t_k \leq t} j_k 1_{\epsilon < |j_k| \leq 1} - \int_{\epsilon < |x| \leq 1} x \mu(dx),
\]

with \(N = \sum_{k} \delta_{(t_k, j_k)}\) being a Poisson process with mean measure \(\lambda \mu\), where \(\lambda\) is the Lebesgue measure (see Resnick [15], page 150). Since \(T(V) = \sup\{|j_k| : t_k \leq 1\}\), we have for every \(x > 0\),

\[
P(T(V) \leq x) = P(N([0, 1] \times E_x) = 0) = e^{-x^{-\alpha}}.
\]
Functional weak convergence

Hence (3.7) yields
\[
\lim_{n \to \infty} P \left(\frac{1}{a_n} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} |X_i| \leq x \right) \to e^{-x^{-\alpha}}.
\]
Taking \(x = 1 \), we obtain
\[
\lim_{n \to \infty} P \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} |X_i| \leq a_n \right) \to e^{-1},
\]
and from this, taking into account relation (3.1) we conclude that \(|X_n|\) has extremal index equal to 1.

Remark 3.4. If random variables \(X_n \) are regularly varying with index \(\alpha \in (0, 1) \), the centering function in the definition of the process \(V_n(\cdot) \) can be removed and this removing affects the characteristic triplet of the limiting process in the way we describe here.

By Karamata’s theorem, as \(n \to \infty \),
\[
n E \left(\frac{X_1}{a_n} 1 \{ |X_1| \leq \frac{1}{a_n} \} \right) \to (p - q) \frac{\alpha}{1 - \alpha},
\]
where \(p \) and \(q \) are as in (2.1). Put \(b = (p - q) \alpha/(1 - \alpha) \) and define the function \(x_0: [0, 1] \to \mathbb{R} \) by \(x_0(t) = bt \). The function \(x_0 \) is continuous, and hence it belongs to \(D[0, 1] \). Further, by standard arguments one can show that the function \(h: D[0, 1] \to D[0, 1] \) defined by \(h(x) = x + x_0 \) is continuous (with respect to the \(J_1 \) topology on \(D[0, 1] \)). Hence by the continuous mapping theorem from \(V_n \to V \) we obtain \(h(V_n) \to h(V) \).

Since the \(J_1 \) metric on \(D[0, 1] \) is bounded above by the uniform metric on \(D[0, 1] \), for every \(\delta > 0 \) it holds
\[
P \left[d_{J_1} \left(h(V_n(\cdot)), \sum_{i=1}^{n} \frac{X_i}{a_n} \right) > \delta \right] \leq P \left(\sup_{t \in [0, 1]} \left| nt E \left(\frac{X_1}{a_n} 1 \{ |X_1| \leq \frac{1}{a_n} \} \right) - bt \right| > \delta \right)
= P \left(\left| nt E \left(\frac{X_1}{a_n} 1 \{ |X_1| \leq \frac{1}{a_n} \} \right) - b \right| > \delta \right).
\]
Hence (3.8) yields
\[
\lim_{n \to \infty} P \left[d_{J_1} \left(h(V_n(\cdot)), \sum_{i=1}^{n} \frac{X_i}{a_n} \right) > \delta \right] = 0,
\]
and an application of Slutsky’s theorem (cf. Theorem 3.4 in Resnick [15]) leads to
\[
\sum_{k=1}^{n} \frac{X_k}{a_n} \xrightarrow{d} h(V(\cdot)) = V(\cdot) + (\cdot)b,
\]
in \(D[0, 1] \) endowed with the \(J_1 \) topology. The characteristic triplet of the limiting process is therefore \((0, \mu, b)\).

Remark 3.5. The \(J_1 \) convergence in Theorem 3.3 fails to hold when the extremal index \(\theta < 1 \). For example, the extremal index of the moving average process
\[
X_n = Y_n + Y_{n+1}, \quad n \in \mathbb{Z},
\]
where \(\{Y_n\} \) is an i.i.d. sequence of regularly varying random variables, is equal to 1/2 (cf. Leadbetter and Rootzén [12] or Embrechts et al. [6], page 415). By Theorem 1 of Avram and Taqqu [1], the \(J_1 \) convergence does not hold for this process.
In this case the J_1 topology is inappropriate as the partial sum process may exhibit rapid successions of jumps within temporal clusters of large values, collapsing in the limit to a single jump. In other words the J_1 convergence could hold only if extreme values do not cluster; i.e. when $\theta = 1$.

When $\theta < 1$, the functional convergence may still hold in the weaker M_1 topology. Sufficient conditions for such convergence were obtained by Basrak et al. [2].

4 Necessity of the regular variation condition

The theorem below gives a certain converse of Theorem 3.3. It gives conditions under which the regular variation property of X_n’s is a necessary condition for the functional J_1 convergence of partial sum processes $V_n(\cdot)$ to a Lévy stable process. This can be viewed as a generalization of the corresponding result for i.i.d. random variables (cf. Corollary 7.1 in Resnick [15]). In the dependent case some restrictions on the sequence (X_n) are necessary, since in general the functional convergence may hold although the random variables are not regularly varying. This can be seen in the following example.

Example 4.1. Let (X_i) be a sequence of i.i.d. Pareto random variables with the tail function $P(X_i > x) = 1_{(-\infty,1)}(x) + x^{-\alpha/\theta}1_{[1,\infty]}(x)$, $x \in \mathbb{R}$. Hence X_i is regularly varying with index $\alpha = 1/2$. Assume Z is a random variable with the tail function $P(Z > x) = 1_{(-\infty,1)}(x) + (\log x)^{-1}1_{[1,\infty)}(x)$, and independent of the sequence (X_i). Here $\log x$ represents the natural logarithm of the positive real number x. Since the random variables X_i are i.i.d. and regularly varying it is well known that

$$\sum_{i=1}^{\lfloor n \rfloor} \frac{X_i}{a_n} \xrightarrow{d} \tilde{V}(\cdot), \quad n \to \infty, \quad (4.1)$$

in $D[0,1]$ with the J_1 topology, where the limiting process $\tilde{V}(\cdot)$ is an α–stable Lévy process with characteristic triplet $(0, \mu, (p-q)/\alpha/(1-\alpha))$ with μ as in (2.1) (see for instance Theorem 7.1 and Corollary 7.1 in Resnick [15]). This follows also from Theorem 3.3 since the i.i.d. sequence (X_i) has extremal index $\theta = 1$.

Using again the fact that the J_1 metric on $D[0,1]$ is bounded above by the uniform metric on $D[0,1]$, for every $\delta > 0$ we obtain

$$P \left[d_{J_1} \left(\sum_{i=1}^{\lfloor n \rfloor} \frac{X_i}{a_n} \right, \sum_{i=1}^{\lfloor n \rfloor} \frac{X_i}{a_n} + \lfloor n \rfloor \frac{Z}{a_n} \right] > \delta \right] \leq P \left(\sup_{t \in [0,1]} \left| \frac{nZ}{a_n} \right| > \delta \right) = P \left(\frac{n}{a_n} |Z| > \delta \right).$$

Recall that a_n can be represented as $a_n = n^{1/\alpha}L'(n)$, with $L'(\cdot)$ being a slowly varying function at ∞. Using this and Proposition 1.3.6 in Bingham et al. [4] we obtain

$$\frac{n}{a_n} = n^{1/\alpha - 1}L'(n) \to 0 \quad \text{as } n \to \infty.$$

This implies $P(n|Z|/a_n > \delta) \to 0$ as $n \to \infty$, and hence

$$\lim_{n \to \infty} P \left[d_{J_1} \left(\sum_{i=1}^{\lfloor n \rfloor} \frac{X_i}{a_n} \right, \sum_{i=1}^{\lfloor n \rfloor} \frac{X_i}{a_n} + \lfloor n \rfloor \frac{Z}{a_n} \right] > \delta \right] = 0.$$

By Slutsky’s theorem, as $n \to \infty$,

$$\sum_{i=1}^{\lfloor n \rfloor} \frac{X_i + Z}{a_n} \xrightarrow{d} \tilde{V}(\cdot),$$
in $D[0,1]$ with the J_1 topology. Therefore, the functional J_1 convergence holds for the sequence (Y_i), where $Y_i = X_i + Z$.

Let show now that random variables Y_i are not regularly varying. For large $x > 0$ it holds that $P(Y_1 > x) \geq P(Z > x)$. If we assume Y_1 is regularly varying, then it would hold $P(Y_1 > x) = x^{-\beta}L(x)$ for some $\beta > 0$ and some slowly varying function $L(\cdot)$. Hence

$$x^{-\beta}L(x) \geq (\log x)^{-1}, \text{i.e.}$$

$$x^{-\beta/2}L(x) \geq x^{\beta/2}(\log x)^{-1}.$$

Letting $x \to \infty$, we obtain 0 on the left hand side of this inequality (by Proposition 1.3.6 in Bingham et al. [4]) and ∞ on the right hand side, which is a contradiction. Therefore, Y_1 is not regularly varying.

Theorem 4.2. Let (X_n) be a strictly stationary sequence of random variables. Suppose that $|X_n|$ has extremal index $\theta = 1$ and that the sequences (X^+_n) and (X^-_n) have positive extremal indexes. If $V_n \overset{d}{\to} V$ in $D[0,1]$ endowed with the J_1 topology, where $V(\cdot)$ is an α–stable Lévy process with characteristic triplet $(0, \mu, 0)$,

$$\mu(dx) = \left(p \alpha x^{-\alpha-1} 1_{(0,\infty)}(x) + q \alpha (-x)^{-\alpha-1} 1_{(-\infty,0)}(x)\right)dx,$$

$(p, q \geq 0, p + q = 1)$ and $\alpha \in (0, 2)$, then

$$nP(a_n^{-1}X_1 \in \cdot) \overset{d}{\to} \mu(\cdot) \quad \text{as } n \to \infty,$$

i.e. X_1 is regularly varying with index α.

Proof. Let $x > 0$ be arbitrary. As in the second part of the proof of Theorem 3.3, applying the functional T: $D[0,1] \to \mathbb{R}$ to the convergence $V_n \overset{d}{\to} V$ we obtain

$$\lim_{n \to \infty} P\left(\frac{1}{a_n} \sum_{i=1}^{n} |X_i| \leq x \right) \to e^{-x^{-\alpha}}. \quad \text{(4.2)}$$

In the same way, applying the functional T^+ to the convergence $V_n \overset{d}{\to} V$ yields

$$\lim_{n \to \infty} P\left(\frac{1}{a_n} \sum_{i=1}^{n} X^+_i \leq x \right) \to e^{-p x^{-\alpha}}. \quad \text{(4.3)}$$

Here we used the fact that

$$P(T^+(V) \leq x) = P(N([0,1] \times (x, \infty)) = 0) = e^{-p x^{-\alpha}},$$

with N being a Poisson process with mean measure $\lambda \times \mu$ (as described in the proof of Theorem 3.3). Using Theorem 2.2.1 in Leadbetter and Rootzén [12], from (4.3) we obtain

$$\lim_{n \to \infty} P\left(\frac{1}{a_n} \sum_{i=1}^{n} \hat{X}^+_i \leq x \right) \to e^{-\theta_1 x^{-\alpha}}, \quad \text{where } \theta_1 \text{ is the extremal index of } (X^+_n) \text{ and } \hat{X}_n \text{ is the associated independent sequence of } (X_n).$$

Now by Lemma 1.2.2 in Leadbetter and Rootzén [12] (cf. also Proposition 7.1 in Resnick [15]) it holds that

$$nP(X^+_n > x \alpha_n) \to \frac{p}{\theta_1} x^{-\alpha} \quad \text{as } n \to \infty. \quad \text{(4.4)}$$

Repeating the same procedure for the functional T^- we obtain

$$nP(X^-_n > x \alpha_n) \to \frac{q}{\theta_2} x^{-\alpha} \quad \text{as } n \to \infty, \quad \text{(4.5)}$$
where θ_2 is the extremal index of (X_n^-). In the same manner from (4.2) we get

$$nP(|X_1| > x a_n) \rightarrow \frac{1}{\theta} x^{-\alpha} = x^{-\alpha} \quad \text{as } n \rightarrow \infty.$$

On the other hand,

$$nP(|X_1| > x a_n) = nP(X_1^+ > x a_n) + nP(X_1^- > x a_n) \rightarrow \left(\frac{p}{\theta_1} + \frac{q}{\theta_2} \right) x^{-\alpha} \quad \text{as } n \rightarrow \infty,$n

and hence we conclude that

$$\frac{p}{\theta_1} + \frac{q}{\theta_2} = 1. \quad (4.6)$$

Since $\theta_1, \theta_2 \in (0, 1]$ and $p + q = 1$, from relation (4.6) we obtain $\theta_1 = \theta_2 = 1$. Now, from (4.4) and (4.5) it follows (cf. Lemma 6.1 in Resnick [15])

$$nP(a_n^{-1} X_1 \in \cdot) \Rightarrow \mu(\cdot) \quad \text{as } n \rightarrow \infty.$$

\[\square \]

Remark 4.3. If the random variables X_n that appear in Theorem 4.2 are positive, then the conditions on extremal indexes of $(|X_n|)$, (X_n^+) and (X_n^-) reduce to a single condition, i.e. that (X_n) has extremal index equal to 1. The same holds if the X_n are negative.

Remark 4.4. From the functional M_1 convergence of the partial sum process, using arguments as in the proof of Theorem 4.2, we can not obtain the regular variation property for random variables X_n. This is due to the fact that the maximum jump functional T is not continuous on $D[0, 1]$ with respect to the Skorohod M_1 topology (see the comment after Lemma 4.1 in Pang and Whitt [14]).

References

Functional weak convergence

