We give the existence result and the vanishing order of the solution in 0 for the following equation: \(-\Delta u(x) + (\mu/|x|^2)u(x) = \lambda u(x) + u^{2^*-1}(x)\), where \(x \in B_1\), \(\mu > 0\), and the potential \(\mu/|x|^2 - \lambda\) is positive in \(B_1\).

1. Introduction

In this paper, we consider the following problem:

\[-\Delta u(x) + \frac{\mu}{|x|^2}u(x) = \lambda u(x) + u^{2^*-1}(x), \quad x \in B_1,\]

\[u(x) \geq 0, \quad x \in B_1,\]

\[u(x) = 0, \quad x \in \partial B_1,\]

where \(B_1 = \{x \in \mathbb{R}^N \mid |x| < 1\}\) is the unit ball in \(\mathbb{R}^N (N \geq 3)\), \(\lambda, \mu > 0, 2^* := 2N/(N - 2)\). When \(\mu < 0\), this problem has been considered by many authors recently (cf. [5, 6, 7, 8]). But when \(\mu > 0\), this problem has not been considered as far as we know. In fact, the existence of nontrivial solution for (1.1) when \(\mu > 0\) is an open problem which was imposed in [7]. In this paper, we get the following results.

Theorem 1.1. If \(N = 3\) and \(3/4 < \lambda \leq \mu\) or if \(N \geq 4\) and \(0 < \lambda \leq \mu\), then for (1.1) there exists a nontrivial radially symmetric solution.

Remark 1.2. Condition \(0 < \lambda \leq \mu\) shows that the potential \(\mu/|x|^2 - \lambda\) is positive in \(B_1\). Thus the Brézis-Nirenberg method (cf. [1]) cannot be used.

Theorem 1.3. If \(\mu > 0\) and \(u \in H^1_0(B_1)\) is a solution of (1.1), then there are \(C_1, C_2 > 0\) and \(\delta > 0\) such that \(C_2|x|^\alpha \geq u(x) \geq C_1|x|^\alpha\), for \(x \in B_\delta\), where \(\alpha = (1/2)(\sqrt{(N - 2)^2 + 4\mu^2 - (N - 2)}) > 0\).

Remark 1.4. One can easily deduce that if \(u \in H^1_0(B_1)\) is a solution of (1.1), then \(u \in C^2(B_1 \setminus \{\theta\})\) and \(u > 0\) in \(B_1 \setminus \{\theta\}\). Theorem 1.3 shows that \(u(\theta) = 0\). It is greatly different from the case of \(\mu \leq 0\) (see [6]).
2. Proof of Theorem 1.1

Lemma 2.1. Every radially symmetric nonnegative solution u of the equation

$$-\Delta u + \frac{\mu}{|x|^2} u(x) = u^{2^* - 1}(x), \quad u \in \mathcal{D}^{1,2}(\mathbb{R}^N),$$ \tag{2.1}$$

can be represented by $u(x) = \rho^{(N-2)/2} U(\rho x)$ for some positive number ρ, where

$$U(x) = \frac{C_0 |x|^\tau}{(1 + |x|^{4\tau/(N-2)})^{(N-2)/2}},$$ \tag{2.2}$$

$$\tau = \sqrt{((N-2)/2)^2 + \mu},$$

and C_0 is a constant.

Proof. Let \(t = -\ln |x|, \ \theta = x/|x|, \) and \(v(t, \theta) := e^{-(N-2)/2}t} u(e^{-t} \theta). \) Then by \[3\], we know that v satisfies the equation

$$-v_{tt} - \Delta \theta v + \tau^2 v = v^{2^* - 1} \quad \text{in} \ \mathbb{R} \times S^{N-1}. \tag{2.3}$$

Since u is radially symmetric, v depends only on t and satisfies $-v_{tt} + \tau^2 v = v^{2^* - 1}, v > 0$ in \mathbb{R}. By \[3\], we know that the only positive solutions of the equation are translation of

$$v(t) = \left(\frac{\tau^2 2^*}{2}\right)^{1/(2^* - 1)} \left(\cosh \left(\frac{2^* - 2}{2} \tau t\right)\right)^{-2/(2^* - 2)}. \tag{2.4}$$

Thus, every radially symmetric nonnegative solution u of (2.1) can be represented by $u(x) = \rho^{(N-2)/2} U(\rho x)$ for some positive number ρ. \hfill \square

Define $\mathcal{D}_r^{1,2}(\mathbb{R}^N) := \{ u \in \mathcal{D}^{1,2}(\mathbb{R}^N) \mid u \text{ is radially symmetric} \}$ and $H_0^{1,r}(B_1) := \{ u \in H_0^1(B_1) \mid u \text{ is radially symmetric} \}$. Let

$$S_{\mu} := \inf_{u \in \mathcal{D}_r^{1,2}(\mathbb{R}^N), \ u \neq 0} \frac{\int_{\mathbb{R}^N} |
abla u|^2 + \mu \int_{\mathbb{R}^N} (u^2/|x|^2)}{(\int_{\mathbb{R}^N} |u|^{2^*})^{2/2^*}}. \tag{2.5}$$

It follows from Lemma 2.1 that $S_{\mu} = (\int_{\mathbb{R}^N} |
abla U|^2 + \mu \int_{\mathbb{R}^N} (U^2/|x|^2))/((\int_{\mathbb{R}^N} U^{2^*})^{2/2^*}$. Let $\Sigma = \{ u \in H_0^{1,r}(B_1) \mid \|u\|_{2^*} = 1 \}$. For $u \in \Sigma$, define

$$S_{\lambda,\mu}(u) = \int_{B_1} |
abla u|^2 + \mu \int_{B_1} \frac{u^2}{|x|^2} - \lambda \int_{B_1} u^2. \tag{2.6}$$

Lemma 2.2. If $N = 3$ and $3/4 < \lambda \leq \mu$ or if $N \geq 4$ and $0 < \lambda \leq \mu$, then $S_{\lambda,\mu} := \inf_{u \in \Sigma} S_{\lambda,\mu}(u) < S_{\mu}$.

Proof. Let \(\eta \in C^\infty_0 (\mathbb{R}^N) \) be a cut function which satisfies \(0 \leq \eta(x) \leq 1, |\nabla \eta| \leq 2 \) in \(\mathbb{R}^N \), \(\eta(x) \equiv 1 \) in \(B_{1/2} \), and \(\eta(x) \equiv 0 \) in \(\mathbb{R}^N \setminus B_1 \). Let \(U_\rho(x) := \rho^{(N-2)/2} U(\rho x) \) and \(u_\rho(x) = \eta(x) U_\rho(x) \). By (2.2), we know that when \(|x| \) is big enough, there are constants \(C_1, C_2 > 0 \) such that

\[
|U(x)| \leq \frac{C_1}{|x|^\tau + N/2 - 1}, \quad |\nabla U(x)| \leq \frac{C_2}{|x|^\tau + N/2}, \tag{2.7}
\]

since

\[
\int_{B_1} |\nabla u_\rho|^2 = \int_{B_1} \eta^2 |\nabla u_\rho|^2 + \int_{B_1} u_\rho^2 |\nabla \eta|^2 + 2 \int_{B_1} u_\rho \cdot \eta \cdot \nabla u_\rho \cdot \nabla \eta \leq \int_{B_1} |\nabla u_\rho|^2 + 4 \int_{B_1 \setminus B_{1/2}} u_\rho^2 + 4 \left(\int_{B_1 \setminus B_{1/2}} u_\rho^2 \right)^{1/2} \left(\int_{B_1 \setminus B_{1/2}} |\nabla u_\rho|^2 \right)^{1/2} = \int_{\mathbb{R}^N} |\nabla U|^2 + \int_{\mathbb{R}^N \setminus B_p} |\nabla U|^2 + \frac{4}{\rho^2} \int_{B_p \setminus B_{\rho/2}} U^2 + \frac{4}{\rho^2} \left(\int_{B_p \setminus B_{\rho/2}} U \right)^{1/2} \left(\int_{B_p \setminus B_{\rho/2}} |\nabla U|^2 \right)^{1/2}. \tag{2.8}
\]

By (2.7), when \(N = 3 \) and \(3/4 < \lambda \leq \mu \) or when \(N \geq 4 \) and \(0 < \lambda \leq \mu \), for \(\rho \) big enough,

\[
\int_{B_p \setminus B_{\rho/2}} U^2 \leq \int_{B_p \setminus B_{\rho/2}} \frac{C_1}{|x|^{2r+N-2}} dx = \frac{C_3}{\rho^{2r-2}}, \quad \int_{\mathbb{R}^N \setminus B_p} |\nabla U|^2 \leq \int_{\mathbb{R}^N \setminus B_p} \frac{C_2}{|x|^{2r+N}} dx = \int_{0}^{+\infty} \frac{C_4}{r^{2r+1}} dr = \frac{C_4}{\rho^{2r}}, \tag{2.9}
\]

\[
\int_{B_1} |\nabla u_\rho|^2 \leq \int_{\mathbb{R}^N} |\nabla U|^2 + \frac{C_5}{\rho^{2r}}, \quad \int_{B_1} u_\rho^2 \leq \int_{\mathbb{R}^N} U^2 + \frac{C_6}{\rho^{2r}}, \quad \int_{B_1} |u_\rho|^2 \geq \int_{\mathbb{R}^N} U^2 - \frac{C_7}{\rho^{2r}}, \tag{2.10}
\]

\[
\int_{B_1} u_\rho^2 \geq \frac{C_8}{\rho^8}. \tag{2.11}
\]

When \(N = 3 \) and \(3/4 < \lambda \leq \mu \) or when \(N \geq 4 \) and \(0 < \lambda \leq \mu \), we have \(2r > 2 \). Thus by (2.10) and (2.11), we get

\[
S_{\lambda, \mu} \frac{u_\rho}{|u_\rho|^2} \leq S_\mu - \frac{C_0}{\rho^2} + o \left(\frac{1}{\rho^2} \right), \quad \text{as } \rho \to \infty. \tag{2.12}
\]

It proves the lemma.

Proof of Theorem 1.1. By Lemma 2.2 and [10, Theorem 8.8], we deduce that \(S_{\lambda, \mu} \) can be achieved by some \(0 \leq u \in H_{0,r}(B_1) \), then \(S_{\lambda, \mu}^{-1/(2r-2)} u \) is a nontrivial radially symmetric solution of (1.1).
3. Proof of Theorem 1.3

Let E be the space which is the completion of $C_0^\infty(B_1)$ under the norm $\|u\|_E = (\int_{B_1} |x|^{2\alpha} |\nabla u|^2 \, dx)^{1/2}$.

Lemma 3.1 (see [2]). For all $u \in C_0^\infty(\mathbb{R}^N) \,(N \geq 3)$,

$$\left(\int_{\mathbb{R}^N} |x|^{-bp} |u|^p \, dx\right)^{2/p} \leq C_{a,b} \int_{\mathbb{R}^N} |x|^{-2a} |\nabla u|^2 \, dx,$$

where $-\infty < a < (N-2)/2$, $a \leq b \leq a + 1$, and $p = 2N/(N - 2 + 2(b - a))$.

Choosing $a = -\alpha$, $p = 2$ and 2^*, respectively, in (3.1), we get the following lemma.

Lemma 3.2. There is a constant $C > 0$ such that, for any $u \in C_0^\infty(\mathbb{R}^N)$,

$$\left(\int_{\mathbb{R}^N} |x|^{2^*a} |u|^{2^*} \, dx\right)^{2/2^*} \leq C \int_{\mathbb{R}^N} |x|^{2a} |\nabla u|^2 \, dx,$$

$$\int_{\mathbb{R}^N} |x|^{2a-2} |u|^2 \, dx \leq C \int_{\mathbb{R}^N} |x|^{2a} |\nabla u|^2 \, dx.$$

Proof of Theorem 1.3. If $v \in H_0^1(B_1)$ is a solution of (1.1), then by the standard regularity theory, one can easily deduce that $v \in C^2(B_1 \setminus \{\theta\})$. Let $u(x) = |x|^{-\alpha} v(x)$ (this kind of transform has been used in [9]). Direct calculation shows that, for any $x \in B_1 \setminus \{\theta\}$,

$$-\text{div} \left(|x|^{2^*a} \nabla u\right) = |x|^{2^*a} u^{2^*-1} + \lambda |x|^{2a} u.$$

Since $v \in E$, then by **Lemma 3.1** we know that v is a weak solution of (3.3), that is, for any $\zeta \in C_0^\infty(B_1)$,

$$\int_{B_1} |x|^{2a} \nabla u \nabla \zeta = \int_{B_1} |x|^{2^*a} u^{2^*-1} \zeta + \int_{B_1} |x|^{2a} u \zeta.$$

For $t > 2$, $k > 0$, define

$$h(r) = \begin{cases} r^{t/2}, & 0 \leq r \leq k, \\ \frac{t}{2} k^{t/2-1} r + \left(1 - \frac{t}{2}\right) k^{t/2}, & r \geq k, \end{cases}$$

and $\phi(r) = \int_0^r |h'(s)|^2 \, ds$. It is easy to verify that there exists a constant $C > 0$ independent of k such that

$$|r \phi(r)| \leq \frac{t^2}{4(t-1)} |h(r)|^2,$$

$$|\phi(r) - h(r)h'(r)| \leq C_t |h(r)h'(r)|,$$

where $C_t = (t-2)/2(t-1) < 1$.

Let \(0 < r_2 < r_1 < 1\) and \(\eta \in C_0^\infty(B(\theta, r_1))\) satisfying \(0 \leq \eta \leq 1, \eta \equiv 1 \) in \(B(\theta, r_2), \eta \equiv 0 \) in \(\mathbb{R}^N \setminus B(\theta, r_1)\), and \(|\nabla \eta| \leq 2/(r_1 - r_2)\). Notice that \(\eta^2 \phi(u) \in E\), then

\[
\int_{B_1} |x|^{2\alpha} \nabla u \nabla (\eta^2 \phi(u)) = \int_{B_1} |x|^{2\alpha} \eta^2 (h'(u))^2 |\nabla u|^2 + 2 \int_{B_1} |x|^{2\alpha} \eta \phi(u) \nabla u \nabla \eta \\
= \int_{B_1} |x|^{2\alpha} \eta^2 |\nabla (h(u))|^2 + 2 \int_{B_1} |x|^{2\alpha} \eta \phi(u) \nabla u \nabla \eta.
\]

(3.8)

Since \(|\nabla (\eta h(u))|^2 = \eta^2 |\nabla (h(u))|^2 + h^2(u) |\nabla \eta|^2 + 2 \eta h(u) \nabla (h(u)) \nabla \eta\), by (3.7), we have

\[
\int_{B_1} |x|^{2\alpha} \nabla u \nabla (\eta^2 \phi(u)) = \int_{B_1} |x|^{2\alpha} |\nabla (\eta h(u))|^2 - \int_{B_1} |x|^{2\alpha} h^2(u) |\nabla \eta|^2 \\
- 2 \int_{B_1} |x|^{2\alpha} \eta h(u) h'(u) \nabla u \nabla \eta + 2 \int_{B_1} |x|^{2\alpha} \eta \phi(u) \nabla u \nabla \eta \\
\geq \int_{B_1} |x|^{2\alpha} |\nabla (\eta h(u))|^2 - \int_{B_1} |x|^{2\alpha} h^2(u) |\nabla \eta|^2 \\
- 2 \int_{B_1} |x|^{2\alpha} \eta |\phi(u) - h(u) h'(u)| |\nabla u \nabla \eta| \\
\geq \int_{B_1} |x|^{2\alpha} |\nabla (\eta h(u))|^2 - \int_{B_1} |x|^{2\alpha} h^2(u) |\nabla \eta|^2 \\
- 2 C_i \int_{B_1} |x|^{2\alpha} |\eta h(u) \nabla (h(u)) \nabla \eta|.
\]

Since

\[
\int_{B_1} |x|^{2\alpha} |\eta h(u) \nabla (h(u)) \nabla \eta| = \int_{B_1} |x|^{2\alpha} \left| \left(\nabla (\eta h(u)) - h(u) \nabla \eta \right) \nabla \eta \right| |h(u)| \\
\leq \int_{B_1} |x|^{2\alpha} |h(u) \nabla (\eta h(u)) \nabla \eta| + \int_{B_1} |x|^{2\alpha} |h(u)|^2 |\nabla \eta|^2 \\
\leq \frac{1}{2} \int_{B_1} |x|^{2\alpha} h^2(u) |\nabla \eta|^2 + \frac{1}{2} \int_{B_1} |x|^{2\alpha} \left| \nabla (\eta h(u)) \right|^2 \\
+ \int_{B_1} |x|^{2\alpha} |h(u)|^2 |\nabla \eta|^2,
\]

(3.10)

and by (3.9), we deduce that

\[
\int_{B_1} |x|^{2\alpha} \nabla u \nabla (\eta^2 \phi(u)) \\
\geq \int_{B_1} |x|^{2\alpha} |\nabla (\eta h(u))|^2 - \int_{B_1} |x|^{2\alpha} h^2(u) |\nabla \eta|^2 \\
- 2 C_i \left(\frac{1}{2} \int_{B_1} |x|^{2\alpha} h^2(u) |\nabla \eta|^2 + \frac{1}{2} \int_{B_1} |x|^{2\alpha} \left| \nabla (\eta h(u)) \right|^2 + \int_{B_1} |x|^{2\alpha} |h(u)|^2 |\nabla \eta|^2 \right)
\]
By Lemma 3.1, we get that
\[
\int_{B_1} |x|^{2a} |\nabla (\eta \mathbf{h}(u))|^2 - (1 + 3C_t) \int_{B_1} |x|^{2a} h^2(u) |\nabla \eta|^2,
\]
and
\[
\geq \frac{Ct}{2(t-1)} \left(\int_{B_1} |x|^{2a} |\eta \mathbf{h}(u)|^2 \right)^{2/2^*} - (1 + 3C_t) \int_{B_1} |x|^{2a} h^2(u) |\nabla \eta|^2.
\]
(3.11)

By (3.6), we have
\[
\int_{B_1} |x|^{2a} u^{2^*-1} \eta^2 \phi(u) + \int_{B_1} |x|^{2a} u \eta^2 \phi(u)
\]
\[
\leq \frac{t^2}{4(t-1)} \int_{B_1} |x|^{2a} |u|^{2^*-2} |\eta \mathbf{h}(u)|^2 + \frac{t^2}{4(t-1)} \int_{B_1} |x|^{2a} |\eta \mathbf{h}(u)|^2
\]
\[
\leq \frac{t^2}{4(t-1)} \left(\int_{\eta \neq 0} |x|^{2a} |u|^{2^*} \right)^{(2^*-2)/2^*} \left(\int_{B_1} |\eta \mathbf{h}(u)|^2 \right)^{2/2^*}
\]
\[
+ \frac{t^2}{4(t-1)} \int_{B_1} |x|^{2a} |\eta \mathbf{h}(u)|^2.
\]
(3.12)

Notice that \(u \) is a solution of (3.3), by (3.11) and (3.12) we have
\[
\left(\int_{B_1} |x|^{2a} |\eta \mathbf{h}(u)|^2 \right)^{2/2^*}
\]
\[
\leq \frac{t}{2C} \left(\int_{\eta \neq 0} |x|^{2a} |u|^{2^*} \right)^{(2^*-2)/2^*} \left(\int_{B_1} |x|^{2a} |\eta \mathbf{h}(u)|^2 \right)^{2/2^*}
\]
\[
+ \frac{2(1 + 3C_t)(t-1)}{Ct} \int_{B_1} |x|^{2a} h^2(u) |\nabla \eta|^2 + \frac{t}{2C} \int_{B_1} |x|^{2a} |\eta \mathbf{h}(u)|^2.
\]
(3.13)

Choose \(r_1 \) small enough such that \((t/2C)\int_{\eta \neq 0} |x|^{2a} |u|^{2^*} \right)^{(2^*-2)/2^*} < 1/2\). Notice that \(2(1 + 3C_t)(t-1)/t < 8 \) (since \(0 < C_t < 1 \) and \(t > 2 \)) and \(|\nabla \eta| < 2/(r_1 - r_2) \), from (3.13) we have
\[
\left(\int_{B(\theta_{r_1}, r_2)} |x|^{2a} |h(u)|^2 \right)^{2/2^*}
\]
\[
\leq \left(\frac{64}{C(r_1 - r_2)^2} + \frac{t}{C} \right) \int_{B(\theta, r_1)} |x|^{2a} h^2(u).
\]
(3.14)

Choosing \(2(N - 2\alpha)/(N - 2 + 2\alpha) > t_0 > 2 \) and letting \(k \to \infty \) in (3.14), we get
\[
\left(\int_{B(\theta_{r_2})} |x|^{2a} |u|^{2^* t_0/2} \right)^{2/2^*}
\]
\[
\leq \left(\frac{64}{C(r_1 - r_2)^2} + \frac{t_0}{C} \right) \int_{B(\theta_{r_2})} |x|^{2a} |u|^{t_0}.
\]
(3.15)

By Lemma 3.1, we know that \((\int_{B_1} |x|^{2a} |u|^{t_0})^{2/2^*} \leq \int_{B_1} |x|^{2a} |\nabla u|^2 < \infty\). Combining (3.15), we get that
\[
\int_{B_1} |x|^{2a} |u|^{2^* t_0/2} < \infty.
\]
(3.16)
Since

\[\int_{B_{1}} |x|^{2\alpha} \nabla u \nabla (\phi(u)) = \int_{B_{1}} |x|^{2\alpha} |\nabla (h(u))|^{2} \geq \left(\int_{B_{1}} |x|^{2\alpha} |h(u)|^{2} \right)^{2/2^{*}}, \]

\[\int_{B_{1}} |x|^{2\alpha} u_{t} \phi(u) + \int_{B_{1}} |x|^{2\alpha} u \phi(u) \]

\[\leq \frac{t^{2}}{4(t-1)} \int_{B_{1}} |x|^{2\alpha} |u|^{2^{*}-2} |h(u)|^{2} + \frac{t^{2}}{4(t-1)} \int_{B_{1}} |x|^{2\alpha} |h(u)|^{2} \]

\[\leq \frac{t^{2}}{4(t-1)} \left(\int_{B_{1}} |x|^{2\alpha} |u|^{2^{*}t_{0}/2} \right)^{2(2^{*}-2)/2^{*}t_{0}} \left(\int_{B_{1}} |x|^{2\alpha} |h(u)|^{q} \right)^{2/q} \]

\[+ \frac{t^{2}}{4(t-1)} \left(\int_{B_{1}} |x|^{2\alpha} |u|^{2^{*}t_{0}/2} \right)^{2(2^{*}-2)/2^{*}t_{0}} \left(\int_{B_{1}} |x|^{2\alpha} |h(u)|^{q} \right)^{2/q}, \]

where \(q = 2 \cdot 2^{*}t_{0}/((t_{0} - 2)2^{*} + 4) \) and \(2/q + 1/q' = 1 \), we can deduce that if \(\epsilon > 0 \) small enough and \(t_{0} \in (2, 2 + \epsilon) \), then \((2\alpha - 2^{*}a/q')^{1/q'} > -2 \). Thus \((\int_{B_{1}} |x|^{(2\alpha - 2^{*}a/q')^{1/q'}})^{1/q'} < \infty \). Let \(C' = (\int_{B_{1}} |x|^{2\alpha} |u|^{2^{*}t_{0}/2})^{2(2^{*}-2)/2^{*}t_{0}} + (\int_{B_{1}} |x|^{2\alpha} q^{1/q}) \), then by (3.17), we have

\[\left(\int_{B_{1}} |x|^{2\alpha} |h(u)|^{2^{*}} \right)^{2/2^{*}} \leq \frac{C't^{2}}{4(t-1)} \left(\int_{B_{1}} |x|^{2\alpha} |h(u)|^{q} \right)^{2/q}. \]

Letting \(k \to \infty \), we get

\[|u|_{2^{*}t_{0}/2^{*}, a} \leq \left(\frac{C't^{2}}{4(t-1)} \right)^{1/t} |u|_{qt/2^{*}a}, \]

where \(|u|_{t^{2}/2^{*}, a} := (\int_{B_{1}} |x|^{2\alpha} |u|^{t})^{1/t} \).

Choose \(t_{1} = (2^{*}/q)^{n}, n = 1, 2, \ldots \). Then by (3.19) we have

\[|u|_{2^{*}t_{n}/2^{*}, a} \leq \prod_{i=1}^{n} \left(\frac{C't_{i}^{2}}{4(t_{i} - 1)} \right)^{1/t_{i}} |u|_{2^{*}t_{n}/2^{*}, a}. \]

Letting \(n \to \infty \), we deduce that \(u \in L^{\infty}(B_{1}) \). Thus there is \(C_{2} > 0 \) such that \(v(x) \leq C_{2} |x|^{a} \).

Since \(\text{div}(|x|^{2\alpha} \nabla u) \leq 0 \), by [4, Lemma 4.2], we have \(u(x) \geq C'' > 0 \) for \(x \in B_{\delta} \). So, there is \(C_{1} > 0 \) such that \(u(x) \geq C_{1} |x|^{a} \) for \(x \in B_{\delta} \). \(\square \)
An elliptic problem with critical exponent

References

Shaowei Chen: Institute of Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China
E-mail address: chensw@mail.amss.ac.cn

Shujie Li: Institute of Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China
E-mail address: lisj@math.ac.cn
Special Issue on
Time-Dependent Billiards

Call for Papers
This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors
Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru