ON THE PROJECTION CONSTANTS OF SOME
TOPOLOGICAL SPACES AND SOME
APPLICATIONS

ENTISARAT EL-SHOBAKY, SAHAR MOHAMMED ALI,
AND WATARU TAKAHASHI

Received 13 May 2001

We find a lower estimation for the projection constant of the projective tensor product $X \otimes \wedge Y$ and the injective tensor product $X \otimes \vee Y$, we apply this estimation on some previous results, and we also introduce a new concept of the projection constants of operators rather than that defined for Banach spaces.

1. Introduction

If Y is a closed subspace of a Banach space X, then the relative projection constant of Y in X is defined by

$$\lambda(Y, X) := \inf \{ \| P \| : P \text{ is a linear projection from } X \text{ onto } Y \}. \quad (1.1)$$

And the absolute projection constant of Y is defined by

$$\lambda(Y) := \sup \{ \lambda(Y, X) : X \text{ contains } Y \text{ as a closed subspace} \}. \quad (1.2)$$

It is well known that any Banach space Y can be isometrically embedded into $l_\infty(\Gamma)$ for some index set Γ (it is usually taken to be U_Y^* where Y^* denotes the dual space of Y and U_Y^* denotes the set $\{ f : f \in Y^* : \| f \| \leq 1 \}$) and that if Y is complemented in $l_\infty(\Gamma)$, then it is complemented in every Banach space containing it as a closed subspace, that is, Y is injective. We also know that for any such embedding the supremum in (1.2) is attained, that is, $\lambda(Y) = \lambda(\Gamma, l_\infty(\Gamma))$ (see [1, 4]). For each finite-dimensional space Y_n with $\dim Y_n = n$, Kadets and Snobar [6] proved that $\lambda(Y_n) \leq \sqrt{n}$. König [7] showed that for each prime number n the space l_∞^n contains an n-dimensional subspace Y_n with projection constant

$$\lambda(Y_n) = \sqrt{n} - \left(\frac{1}{\sqrt{n}} - \frac{1}{n} \right). \quad (1.3)$$
On the projection constants of some topological spaces

Konig and Lewis [9] verified the strict inequality \(\lambda(Y_n) < \sqrt{n} \) in case \(n \geq 2 \).

Lewis [14] showed that

\[
\lambda(Y_n) \leq \sqrt{n - \frac{1}{\sqrt{n} - 2}} + O\left(\frac{n^{-1/4}}{\sqrt{n}}\right)
\]

(1.4)

Konig and Tomczak-Jaegermann [11] also showed that there is a sequence \(\{X_n\}_{n \in \mathbb{N}} \) of Banach spaces \(X_n \) with \(\dim X_n = n \) such that

\[
\lim_{n \to \infty} \frac{\lambda(X_n)}{\sqrt{n}} = \frac{\sqrt{2}}{\pi}.
\]

(1.5)

In fact, it is shown in [9] that for each Banach space \(Y_n \) with dimension \(n \),

\[
\lambda(Y_n) \leq \sqrt{n - \frac{1}{\sqrt{n} - 2}} + O\left(\frac{n^{-1/4}}{\sqrt{n}}\right),
\]

in the real field,

\[
\lambda(Y_n) \leq \sqrt{n - \frac{1}{\sqrt{n} - 2}} + O\left(\frac{n^{-1/4}}{\sqrt{n}}\right),
\]

in the complex field.

(1.6)

(1.7)

The precise values of \(l_1^n, l_2^n \), and \(l_p^n, 1 < p < \infty, p \neq 2 \), have been calculated by Grünbaum [4], Rutovitz [15], Gordon [3], and Garling and Gordon [2]. In the case of \(1 < p < 2 \), the improvement of these results was given by König, Schütt, and Tomczak-Jaegermann in [10], they showed that

\[
\lim_{n \to \infty} \frac{\lambda(l_p^n)}{\sqrt{p^n}} = \begin{cases} \frac{\sqrt{p^n}}{\sqrt{\pi}}, & \text{in the real field,} \\ \frac{\sqrt{p^n}}{2}, & \text{in the complex field.} \end{cases}
\]

Some other results are mentioned in [2, 3, 13, 15].

For finite codimensional subspaces, Garling and Gordon [2] showed that if \(Y \) is a finite codimensional subspace of the Banach space \(X \) with codimension \(n \), then for every \(\epsilon > 0 \) there exists a projection \(P \) from \(X \) onto \(Y \) with norm

\[
\|P\| \leq 1 + (1 + \epsilon)\sqrt{n}.
\]

(1.8)

2. Notations and basic definitions

The sets \(X, Y, Z, \) and \(E \) denote Banach spaces, \(X^* \) denotes the conjugate space of \(X \) and \(U_X \) denotes the unit ball of the space \(X \). Elements of \(X, Y, X^*, \) and \(Y^* \) will be denoted by \(x, y, \ldots, y, h, \ldots, g, k, \ldots \), respectively. The
Injective tensor product $X \otimes^\vee Y$ between the normed spaces X and Y is defined as the completion of the smallest cross norm on the space $X \otimes Y$ and the norm on the space $X \otimes Y$ is defined by

$$\left\| \sum_{i=1}^n x_i \otimes y_i \right\|_{X \otimes Y} = \sup \left\{ \left\| \sum_{i=1}^n f(x_i)g(y_i) \right\| : f \in U_X^*, g \in U_Y^* \right\}.$$ \hspace{1cm} (2.1)

where the supremum is taken over all functionals $f \in U_X^*$ and $g \in U_Y^*$.

The projective tensor product $X \otimes^\wedge Y$ between the normed spaces X and Y is defined as the completion of the largest cross norm on the space $X \otimes Y$ and the norm on $X \otimes Y$ is defined by

$$\left\| \sum_{i=1}^n x_i \otimes y_i \right\|_{X \otimes^\wedge Y} = \inf \left\{ \left\| \sum_{j=1}^m u_j \otimes v_j \right\| : \sum_{j=1}^m \left\| u_j \right\| \left\| v_j \right\| \leq \left\| \sum_{i=1}^n x_i \otimes y_i \right\| \right\}.$$ \hspace{1cm} (2.2)

where the infimum is taken over all equivalent representations $\sum_{j=1}^m u_j \otimes v_j \in X \otimes Y$ of $\sum_{i=1}^n x_i \otimes y_i$ (see [5]).

If X is a Banach space on which every linear bounded operator from X into any Banach space Y is nuclear (this is the case in all finite-dimensional Banach spaces X), then for any Banach space Y the space $X \otimes^\vee Y$ is isomorphically isometric to $X \otimes^\wedge Y$ (see [16]).

The set $\Omega = \{(f,g) : f \in U_X^*, g \in U_Y^*\} = U_X^* \times U_Y^*.$

We start with the following two lemmas.

Lemma 2.1. For Banach spaces X and Y there is a norm one projection from $l_\infty(U_X^*) \otimes^\vee l_\infty(U_Y^*)$ onto $l_\infty(\Omega)$.

Proof. Since the space $l_\infty(\Omega)$ has the 1-extension property, it is sufficient to show that $l_\infty(\Omega)$ can be isometrically embedded in the space $l_\infty(U_X^*) \otimes^\vee l_\infty(U_Y^*)$. In fact, every nonzero element $0 \neq \tilde{F} = [\tilde{F}((f,g)) : f \in U_X^*, g \in U_Y^*]$ in the space $l_\infty(\Omega)$ (note that the norm in this Banach space is given by $\left\| \tilde{F} \right\|_{l_\infty(\Omega)} = \sup_{f \in U_X^*} \sup_{g \in U_Y^*} \left| \tilde{F}((f,g)) \right|$) defines two scalar-valued functions $F \in l_\infty(U_X^*)$ and $G \in l_\infty(U_Y^*)$ by the following formulas:

$$F(f) = \sup_{g \in U_Y^*} \left| \tilde{F}((f,g)) \right|, \quad G(g) = \sup_{f \in U_X^*} \left| \tilde{F}((f,g)) \right|.$$ \hspace{1cm} (2.3)

Clearly the element $\tilde{F} = (1/\left\| \tilde{F} \right\|_{l_\infty(\Omega)}) \times (F \otimes G)$ is an element of the space $l_\infty(U_X^*) \otimes^\vee l_\infty(U_Y^*)$. Since both the injective and the projective tensor products are cross norms, $\left[\tilde{F} \right]_{l_\infty(U_X^*) \otimes^\vee l_\infty(U_Y^*)} = \left[\tilde{F} \right]_{l_\infty(\Omega)}$. The mapping J defined by the formula $J(F) = \tilde{F}$ is the required isometric embedding. \hspace{1cm} □

Lemma 2.2. Let X and Y be two Banach spaces. Then $\lambda(X \otimes^\vee Y) = \lambda(X \otimes^\wedge Y, l_\infty(\Omega))$.

Proof. It is also sufficient to show that the space $X \otimes Y$ can be isometrically embedded in $l_\infty(\Omega)$. In fact, every element $\hat{F} = \sum_{i=1}^\infty f_i \otimes g_i \in X \otimes Y$ defines a scalar-valued bounded function $\hat{F} \in l_\infty(\Omega)$ by the formula $\hat{F}(f, g) = \sum_{i=1}^\infty f_i g_i$. Using definition (2.1) for the injective tensor product, we have $\|\hat{F}\| = \|\hat{F}\|_{l_\infty(\Omega)}$. The mapping i defined by the formula $i(F) = \hat{F}$ is the required isometric embedding. □

We have the following theorem.

Theorem 2.3. (1) If Y_1 and Y_2 are complemented subspaces of Banach spaces X_1 and X_2, respectively, then the injective (resp., projective) tensor product $Y_1 \otimes Y_2$ (resp., $Y_1 \otimes Y_2$) of the spaces Y_1 and Y_2 is complemented in the injective (resp., projective) tensor product $X_1 \otimes X_2$ (resp., $X_1 \otimes X_2$) and

$$\lambda \left(Y_1 \otimes Y_2, X_1 \otimes X_2 \right) \leq \lambda \left(Y_1, X_1 \right) \lambda \left(Y_2, X_2 \right).$$

(2.4)

(2) If X and Y are injective spaces, then the space $X \otimes Y$ is injective. Moreover,

$$\lambda \left(X \otimes Y \right) \leq \lambda(X) \lambda(Y).$$

(2.5)

Proof. Let P_1 and P_2 be any projections from X_1 onto Y_1 and from X_2 onto Y_2, respectively. Then the operator P from the space $X_1 \otimes X_2$ onto the space $Y_1 \otimes Y_2$ (resp., from the space $X_1 \otimes X_2$ onto the space $Y_1 \otimes Y_2$) defined by

$$P \left(\sum_{i=1}^n x_i \otimes y_i \right) = \sum_{i=1}^n P_1(x_i) \otimes P_2(y_i)$$

(2.6)

is a projection and its norm $\|P\|$ is not exceeding $\|P_1\|\|P_2\|$. In fact, let $\sum_{i=1}^n x_i \otimes y_i$ be any element of the space $X_1 \otimes X_2$. Then, in the case of projective tensor product we have

$$\left\| P \left(\sum_{i=1}^n x_i \otimes y_i \right) \right\|_{T_1 \otimes T_2} \leq \sum_{i=1}^n \left\| P_1(x_i) \right\|_{T_1} \left\| P_2(y_i) \right\|_{T_2} \leq \|P_1\|\|P_2\| \sum_{i=1}^n \left\| x_i \right\| \left\| y_i \right\|.$$

(2.7)
for all equivalent representations \(\sum_{j=1}^{m} u_j \otimes v_j \) of \(\sum_{i=1}^{n} x_i \otimes y_i \). So
\[
\left\| P \left(\sum_{i=1}^{n} x_i \otimes y_i \right) \right\|_{Y_1 \otimes Y_2} \leq \| P_1 \| \| P_2 \| \left\| \sum_{i=1}^{n} x_i \otimes y_i \right\|_{X_1 \otimes X_2}.
\] (2.8)

And in the case of injective tensor product we have
\[
\left\| P \left(\sum_{i=1}^{n} x_i \otimes y_i \right) \right\|_{Y_1 \otimes Y_2} = \sup \left\{ \left\| \sum_{i=1}^{n} f(P_1(x_i)) \otimes g(P_2(y_i)) \right\| : f \in U_{Y_1}, g \in U_{Y_2} \right\}.
\] (2.9)

Thus in both cases, \(\| P \| \leq \| P_1 \| \| P_2 \| \). Taking the infimum of each side with respect to all such \(P_1 \) and \(P_2 \), we get inequality (2.4). To prove inequality (2.5), we apply inequality (2.4) and get in particular
\[
\lambda(X \otimes Y, l_\infty(U_{X^*} \otimes l_\infty(U_{Y^*})) \geq \lambda(X, l_\infty(U_{X^*})) \lambda(Y, l_\infty(U_{Y^*})).
\] (2.10)

Using Lemma 2.2 and definition (1.2), we get \(\lambda(X \otimes Y, l_\infty(U_{X^*} \otimes l_\infty(U_{Y^*}))) = \lambda(X \otimes Y). \) We claim that the sign \(\geq \) is an equal sign. In fact, if \(P \) is any projection from \(l_\infty(U_{X^*} \otimes l_\infty(U_{Y^*})) \) onto \(X \otimes Y \) and \(J \) is the embedding given in Lemma 2.1, then \(P = PJ \) is a projection from \(l_\infty(U_{X^*}) \) onto \(X \otimes Y \) with \(\| P \| \leq \| P \| \). This is the sufficient condition for the two infimum
On the projection constants of some topological spaces

\[\lambda(X \otimes Y, l_{\infty}(\Omega_1)) \]
and

\[\lambda(X \otimes Y, l_{\infty}(U_X \ast \otimes \ast l_{\infty}(U_Y))) \]
to be equal. Therefore

\[\lambda(X \otimes Y) = \lambda(X \otimes Y, l_{\infty}(U_X \ast \otimes \ast U_Y)). \] (2.11)

Using inequality (2.10), we get (2.5).

\[\square \]

Remark 2.4. Since

\[\lambda(l_{\infty}(\Gamma_1)) = 1 \]
for any index set \(\Gamma_1 \), we conclude that

\[\lambda(l_{\infty}(\Gamma_1) \otimes (\vee \text{ or } \wedge) l_{\infty}(\Lambda_1), X \otimes (\vee \text{ or } \wedge) Y) = 1 \]
for every

\[X \supset l_{\infty}(\Gamma_1) \text{ and } Y \supset l_{\infty}(\Lambda_1). \]

We have the following two corollaries.

Corollary 2.5. For any finite sequence \(\{X_i\}_{i=1}^n \) of Banach spaces with complemented subspaces \(\{Y_i\}_{i=1}^n \), the relative projection constant of the injective (resp., projective) tensor product \(\bigotimes_{i=1}^n Y_i \) of the spaces \(Y_i \) in the space \(\bigotimes_{i=1}^n X_i \) satisfies

\[\lambda \left(\bigotimes_{i=1}^n Y_i, \bigotimes_{i=1}^n X_i \right) \leq \prod_{i=1}^n \lambda(Y_i, X_i). \] (2.12)

Corollary 2.6. Let \(\{Y_i\}_{i=1}^n \) be a finite sequence of finite-dimensional Banach spaces. Then the relation between the absolute projection constant of the injective (or projective) tensor product \(\bigotimes_{i=1}^n Y_i \) and the direct sum \(\sum_{i=1}^n \bigoplus Y_i \) (with the supremum norm) is as follows:

\[\lambda \left(\bigotimes_{i=1}^n Y_i \right) \leq \lambda \left(\sum_{i=1}^n \bigoplus Y_i \right)^n. \] (2.13)

Proof. In fact, the proof is a combination of Corollary 2.5 and the results of [3, Theorem 4].

\[\square \]

3. Applications

In this section, using Theorem 2.3, we obtain new results.

1. For finite-dimensional Banach spaces \(X \) and \(Y \) with dimensions \(n \) and \(m \), respectively, we have

\[\lambda(X \otimes Y) \leq \sqrt{nm} - \frac{1}{\sqrt{nm}} + O\left((nm)^{-3/4}\right) \]

\[- \left\{ \left(\sqrt{m} - \frac{1}{\sqrt{m}} \right) \left(\frac{1}{\sqrt{n}} - O\left((m)^{-3/4}\right) \right) \right\} + \left(\sqrt{n} - \frac{1}{\sqrt{n}} \right) \left(\frac{1}{\sqrt{m}} - O\left((n)^{-3/4}\right) \right) \]. (3.1)
in the real field

\[\lambda(X \otimes Y) \leq \sqrt{\frac{1}{2\sqrt{2}}} + O(\sqrt{m^{-3/4}}) \]

\[- \left(\sqrt{\frac{1}{2\sqrt{2}}} \right) \left(\frac{1}{2\sqrt{2}} - O(m^{-3/4}) \right) \]

\[+ \left(\sqrt{\frac{1}{2\sqrt{2}}} \right) \left(\frac{1}{2\sqrt{2}} - O(m^{-3/4}) \right) \}

in the complex field. Compare this result with the result in (1.6).

(2) For any positive integer \(m \) (not necessarily prime) with a prime factorization \(m = \prod_{i=1}^{n} q_i \) where the numbers \(q_i \) are distinct prime numbers, the space \(\bigotimes_{i=1}^{n} l_{q_i}^\infty \) contains a subspace \(Y \) of dimension \(m \) with

\[\lambda(Y) \leq \sqrt{\prod_{i=1}^{n} q_i} - \sqrt{\prod_{i=1}^{n} q_i - 1} - C(m), \]

where \(C(m) \) is a positive number depending on \(m \) (in case of \(m = q_1 q_2 \), \(C(m) = \left(\frac{1}{\sqrt{q_1} - \frac{1}{\sqrt{q_2}}} \right) \left(\frac{1}{\sqrt{q_2} - 1} \right) \)). Comparing this result with (1.3), we mention that the \(m^2 \)-dimension of the space \(\bigotimes_{i=1}^{n} l_{q_i}^\infty \) is not a square of a prime number, so it gives a new subspace \(Y \) with a new projection constant.

(3) For numbers \(p, q \) with \(1 \leq p, q \leq 2 \), we have

\[\lim_{n,m \to \infty} \frac{\lambda\left(l_{p/q}^\infty \right)}{\sqrt{2m}} \leq \begin{cases} \frac{2}{\pi} & \text{in the real field,} \\ \frac{\pi}{2} & \text{in the complex field.} \end{cases} \]

4. The projection constants of operators

Now we start with our basic definitions of the projection constants of operators.

Definition 4.1. (1) A linear bounded operator \(A \) from a Banach space \(X \) into a Banach space \(Y \) is said to be left complemented with respect to a Banach space \(Z \) (\(Z \) contains \(Y \) as a closed subspace) if and only if there exists a linear bounded operator \(B \) from \(Z \) into \(X \) such that the composition \(AB \) is a projection from \(Z \) onto \(Y \). In this case \(Z \) is said to be a left complementation of \(A \).

If \(P_Z(A) \) denotes the convex set of all operators \(B \) from \(Z \) into \(X \) such that the composition \(AB \) is a projection, then

(2) the left relative projection constant of the operator \(A \) with respect to the space \(Z \) is defined as

\[\lambda_l(A, Z) := \inf \left\{ \| AB \| : B \in P_Z(A) \right\}. \]
306 On the projection constants of some topological spaces

(3) And the left absolute projection constant of A is defined as

$$\lambda_l(A) := \sup \{ \lambda_l(A, Z) : Z \text{ is a left complementation of the operator } A \}. \quad (4.2)$$

We define the same analogy from the right.

Remark 4.2. We notice the following.

1. From the definition of $\lambda_l(A, Z)$, the infimum in (4.1) is taken only with respect to the projections that are factored (through X) into two operators one of them is A and the other is an operator from Z into X, so $1 \leq \lambda(Y, Z) \leq \lambda_l(A, Z)$ for every left complementation Z of A.

2. If A is a projection from X onto Y, then A is left complemented with respect to Y. In fact AJ is a projection for any embedding J from Y into X.

3. If I_Y is the identity operator on Y and X contains Y as a complemented subspace, then $I_Y P = P$ for every projection P from X onto Y and hence I_Y is left complemented with respect to X. Moreover, $\lambda_l(I_Y, X) = \lambda(Y, X)$, that is, the relative projection constant of the identity operator on the space Y with respect to the space X is the relative projection constant of the space Y in the space X.

4. If Z is a left complementation of the linear bounded operator $A : X \to Y$, then Y is complemented in Z and the operator A is onto.

5. If Z is a separable or reflexive Banach space and X is a Banach space, then for any index set Γ the space Z is not a right complementation of any linear bounded operator from $l_\infty(\Gamma)$ into X. In particular, if X is a Banach space, then for any index set Γ, the space $l_\infty(\Gamma)$ is not a left complementation of any linear bounded operator from X into the space c_0.

The following lemma is parallel to that lemma mentioned in [8] for Banach spaces and we omit the proof since the proof is nearly similar.

Lemma 4.3. Let Γ be an index set such that Γ is isometrically embedded into $l_\infty(\Gamma)$ and let A be a linear bounded operator from X onto Y such that $\iota_{\infty}(\Gamma)$ is one of its left complementation. Then for a given $B \in P_{l_\infty(\Gamma)}(A)$,

1. For all Banach spaces $E, Z, E \subseteq Z$ and every linear bounded operator T from E into Y there is an operator T from Z into Y extending the operator T with $\|T\| \leq \|AB\|\|T\|$, that is, the space Y has $\|AB\|$-extension property, and in particular, if $Z \supseteq X$, the operator A has a linear extension \hat{A} from Z into Y with $\|\hat{A}\| \leq \|AB\|\|A\|$. That is, the extension constant $c(A)$ of the operator A defined by ($c(A) := \sup_{\gamma \in \Gamma} \inf \{\|\hat{A}\| : \hat{A} \text{ is an extension of } A, \hat{A} : Z \to Y\}$) satisfies $c(A) \leq \|AB\|\|A\|$.

2. For every Banach space $Z \supseteq Y$, there exists a projection P from Z onto Y such that $\|P\| \leq \|AB\|$.

The following theorem is also parallel to that given in (1.3) for Banach spaces.
Theorem 4.4. Let Y be isometrically embedded in $l_{\infty}(\Gamma)$ and let A be a linear bounded operator from X onto Y such that $l_{\infty}(\Gamma)$ is a left complementation of A. Then A is left complemented with respect to any other Banach space Z containing Y as a closed subspace. Moreover,

$$\lambda_l(A, Z) \leq \lambda_l(A, l_{\infty}(\Gamma))$$

(4.3)

for every Banach space Z containing Y as a closed subspace, that is, $\lambda_l(A)$ attains its supremum at $l_{\infty}(\Gamma)$. Therefore,

$$\lambda_l(A) = \lambda_l(A, l_{\infty}(\Gamma)), \quad c(A) \leq \|A\| \lambda_l(A).$$

(4.4)

References

On the projection constants of some topological spaces

Entiharay El-Shobaky, Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt
E-mail address: solar@photoenergy.org

Sahar Mohammed Ali, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
E-mail address: sahar@is.titech.ac.jp

Wataru Takahashi, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
E-mail address: wataru@is.titech.ac.jp
Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics. It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/mpe/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>July 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>October 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>January 1, 2010</td>
</tr>
</tbody>
</table>

Lead Guest Editor
Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors
Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br
Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br
Silvia Maria Giuliani Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br