ON SECOND-ORDER MULTIVALUED IMPULSIVE FUNCTIONAL DIFFERENTIAL INCLUSIONS IN BANACH SPACES

M. BENCHOHRA, J. HENDERSON, AND S. K. NTOUYAS

Received 13 May 2001

A fixed point theorem for condensing maps due to Martelli is used to investigate the existence of solutions to second-order impulsive initial value problem for functional differential inclusions in Banach spaces.

1. Introduction

Differential equations arise in many real world problems such as physics, population dynamics, ecology, biological systems, biotechnology, industrial robotics, pharmacokinetics, optimal control, and so forth. Much has been done under the assumption that the state variables and system parameters change continuously. However, one may easily visualize situations in nature where abrupt changes such as shock, harvesting, and disasters may occur. These phenomena are short-term perturbations whose duration is negligible in comparison with the duration of the whole evolution process. Consequently, it is natural to assume, in modeling these problems, that these perturbations act instantaneously, that is, in the form of impulses. For more details on this theory and on its applications we refer to the monographs of Bainov and Simeonov [2], Lakshmikantham, Bainov, and Simeonov [19], and Samoilenko and Perestyuk [24]. However, very few results are available for impulsive differential inclusions; see for instance, the papers of Benchohra and Boucherif [4, 5], Erbe and Krawcewicz [12], and Frigon and O’Regan [14].

Very recently an extension to functional differential equations of first order with impulsive effects has been done by Yujun [10] by using the coincidence degree theory, and by Benchohra and Ntouyas [7] with the aid of Schaefer’s theorem. These results have been also generalized to the multivalued case by the authors in [6] by combining the a priori bounds and the Leray-Schauder
nonlinear alternative for multivalued maps. For other results concerning func-
tional differential equations, we refer the interested reader to the monographs of
Erbe, Qingai, and Zhang [13], Hale [15], Henderson [16], and the survey paper
of Ntouyas [23].

The fundamental tools used in the existence proofs of all the above-mentioned
works are essentially fixed point arguments, nonlinear alternative, topological
transversality [11], topological degree theory [22], or the monotone method
combined with upper and lower solutions [18].

In this paper, we will be concerned with the existence of solutions of the
second-order initial value problem for the impulsive functional differential
inclusion
\[y'' \in F(t,y_t), \quad t \in [0,T], \quad t \neq t_k, \quad k = 1, \ldots, m, \quad (1.1) \]
\[\Delta y|_{t=t_k} = I_k(y_{t_k}), \quad k = 1, \ldots, m, \quad (1.2) \]
\[\Delta y'|_{t=t_k} = \bar{I}_k(y_{t_k}), \quad k = 1, \ldots, m, \quad (1.3) \]
\[y(t) = \phi(t), \quad t \in [-r,0], \quad y'(0) = y_0, \quad (1.4) \]

where \(F : J \times C([-r,0],E) \to 2^E \) is a given multivalued map with compact
and convex values, \((0 < r < \infty), 0 = t_0 < t_1 < \ldots < t_m = t_{m+1} = T, I_k, \bar{I}_k \in
C(E,E) (k = 1,2,\ldots,m)\) are bounded, \(y_0 \in E, \Delta y|_{t=t_k} = y(t_k^+) - y(t_k^-)\),
\(y'|_{t=t_k} = y'(t_k^-) - y'(t_k^+)\) and \(y(t_k^-), y(t_k^+), \bar{I}_k(y_{t_k^-}), \bar{I}_k(y_{t_k^+})\) represent the
left and right limits of \(y(t)\) and \(y'(t)\), respectively at \(t = t_k\), and \(E\) a real Banach
space with norm \(\|\cdot\|\).

For any continuous function \(y\) defined on the interval \([-r,T) - \{t_1,\ldots,t_m\}\) and any \(t \in J\), we denote by \(y_t\) the element of \(C([-r,0],E)\) defined by
\[y_t(\theta) = y(\theta + t), \quad \theta \in [-r,0]. \quad (1.5) \]

Here \(y(\cdot)\) represents the history of the state from time \(t-r\), up to the present
time \(t\).

In this paper, we will generalize the results of Benchohra and Ntouyas [8]
considered for second-order impulsive functional differential equations to the
multivalued case. Our approach is based on a fixed point theorem for condensing
maps due to Martelli [21].

2. Preliminaries

In this section, we introduce notations, definitions, and results which are used
throughout the paper.

Let \([a,b]\) denote a real compact interval of \(\mathbb{R}\). Let \(C([a,b],E)\) be the Banach
space of continuous functions from \([a,b]\) into \(E\) with norm
\[\|y\|_\infty = \sup_{t \in [a,b]} |y(t)|, \quad \forall y \in C([a,b],E). \quad (2.1) \]
Let \(y : [a, b] \to E \) be a measurable function. By \(\int_a^b y(t) dt \), we mean the Bochner integral of \(y \), assuming it exists. A measurable function \(y : [a, b] \to E \) is Bochner integrable if and only if \(|y| \) is Lebesgue integrable. For properties of the Bochner integral, see Yosida [25].

\[L^1([a, b], E) \] denotes the Banach space of functions Bochner integrable normed by

\[\|y\|_{L^1} = \int_a^b |y(t)| dt \quad \forall y \in L^1([a, b], E). \]

Let \((X, |·|) \) be a Banach space. A multivalued map \(G : X \to 2^X \) has convex (closed) values if \(G(x) \) is convex (closed) for all \(x \in X \). \(G \) is bounded on bounded sets if \(G(B) \) is bounded in \(X \) for each bounded set \(B \) of \(X \) (i.e., \(\sup_{x \in B} \sup \{|y| : y \in G(x)\} < \infty \)).

\(G \) is called upper semicontinuous (u.s.c.) on \(X \) if for each \(x_0 \in X \) the set \(G(x_0) \) is a nonempty, closed subset of \(X \), and if for each open set \(N \) of \(X \) containing \(G(x_0) \), there exists an open neighbourhood \(M \) of \(x_0 \) such that \(G(M) \subseteq N \).

\(G \) is said to be completely continuous if \(G(B) \) is relatively compact for every bounded subset \(B \subseteq X \).

If the multivalued \(G \) is completely continuous with nonempty compact values, then \(G \) is u.s.c. if and only if \(G \) has a closed graph (i.e., \(x_n \to x^*, y_n \to y^* \), \(y_n \in G(x_n) \) imply \(y^* \in G(x^*) \)).

\(G \) has a fixed point if there is \(x \in X \) such that \(x \in G(x) \).

In the following \(CC(E) \) denotes the set of all nonempty compact, convex subsets of \(E \).

A multivalued map \(G : [a, b] \to CC(X) \) is said to be measurable if for each \(x \in E \) the function \(Y : [a, b] \to R \) defined by

\[Y(t) = d(x, G(t)) = \inf \{|x - z| : z \in G(t)\} \]

is measurable. For more details on multivalued maps see Aubin and Frankowska [1], Deimling [9], and Hu and Papageorgiou [17].

An upper semi-continuous map \(G : X \to 2^X \) is said to be condensing [3] if for any subset \(B \subseteq X \) with \(a(B) \neq 0 \), we have \(a(G(B)) < a(B) \), where \(a \) denotes the Kuratowski measure of noncompacteness [3].

We remark that a completely continuous multivalued map is the easiest example of a condensing map.

Definition 2.1. A multivalued map \(F : J \times C([-r, 0], E) \to 2^E \) is said to be an \(L^1 \)-Carathéodory if

(i) \(t \mapsto F(t, u) \) is measurable for each \(u \in C([-r, 0], E) \);

(ii) \(u \mapsto F(t, u) \) is upper semicontinuous for a.a. \(t \in J \);

(iii) for each \(\rho > 0 \), there exists \(h_\rho \in L^1(J, R_+) \) such that

\[|F(t, u)| \leq h_\rho(t) \quad \forall |u| \leq \rho \text{ and for a.a. } t \in J. \]
In order to define the solution of (1.1), (1.2), (1.3), and (1.4) we will consider the following space
\[\Omega_1 = \{ y : [-r, T] \to E : y_k \in C(J_k, E), k = 0, \ldots, m \text{ and there exist } y(t_k^+), y(t_k^−) \text{ with } y(t_k^+) = y(t_k), y(t) = \phi(t), \text{ for all } t \in [-r, 0] \} \]
which is a Banach space with the norm
\[\| y \|_{\Omega_1} = \max \{ \| y_k \|_{C(J_k, E)} : k = 0, \ldots, m \} \] (2.5)
where \(y_k \) is the restriction of \(y \) to \(J_k = [t_k, t_k + 1] \), \(k = 0, \ldots, m \).

We will also consider the set \(\Omega_1^1 = \{ y : [-r, T] \to E : y_k \in W^{2,1}(J_k, E), y(t_k^+) \text{ and } y(t_k^−) \text{ with } y(t_k^+) = y(t_k), \text{ for all } t \in [-r, 0] \} \), where \(W^{2,1}(J_k, E) \) is the Sobolev space of functions \(y : J_k \to E \) such that \(y \text{ and } y' \text{ are absolutely continuous, and } y'' \in L^1(J_k, E) \). The set \(\Omega_1^1 \) is a Banach space with the norm
\[\| y \|_{\Omega_1^1} = \max \{ \| y_k \|_{W^{2,1}(J_k, E)} : k = 0, \ldots, m \} \] (2.6)

Let \(I \) be a compact real interval. For any \(y \in C(I, E) \) we define the set
\[S_{F,y} = \{ v \in L^1(I, E) : v(t) \in F(t, y(t)) \text{ for a.e. } t \in I \} \] (2.7)

Definition 2.2. A function \(y \in \Omega_1 \cap \Omega_1^1 \) is said to be a solution of (1.1), (1.2), (1.3), and (1.4) if \(y \) satisfies the differential inclusion
\[y''(t) \in F(t, y(t)) \text{ a.e. on } J - \{ t_1, \ldots, t_m \} \]
and the conditions
\[\Delta y |_{t = t_k} = \Delta_1 y |_{t = t_k} = \Delta_2 y |_{t = t_k} = \Delta_3 y |_{t = t_k} = 0, \]
\(k = 1, \ldots, m \).

The following lemmas are crucial in the proof of our main theorem.

Lemma 2.3 [20]. Let \(I \) be a compact real interval and \(X \) a Banach space. Let \(F \) be a multivalued map satisfying the Carathéodory conditions with the set of \(L^1 \)-selections \(S_F \) is nonempty, and let \(\Gamma : L^1(I, X) \to C(I, X) \) be a linear continuous mapping from \(L^1(I, X) \) to \(C(I, X) \). Then the operator
\[\Gamma \circ S_F : C(I, X) \to CC(C(I, X)), \quad y \mapsto (\Gamma \circ S_F)(y) := \Gamma(S_F y) \] (2.8)
is a closed graph operator in \(C(I, X) \times C(I, X) \).

Lemma 2.4 [21]. Let \(G : X \to CC(X) \) be an a.s.c. condensing map. If the set
\[H := \{ y \in C(I, X) : y |_{\lambda x} \in G(x) \text{ for some } \lambda > 1 \} \] (2.9)
is bounded, then \(G \) has a fixed point.

We introduce the following hypotheses:

(H1) \(F : J \times C([-r, 0], E) \to C(E) \); \(F(t, u) \) is an \(L^1 \)-Carathéodory multivalued map and for each fixed \(u \in C([-r, 0], E) \) the set
\[S_{F,u} = \{ g \in L^1(J, E) : g(t) \in F(t, u) \text{ for a.e. } t \in J \} \] (2.10)
is nonempty;
(H2) there exist constants c_k, d_k such that $|I_k(y)| \leq c_k$, $|\bar{I}_k(y)| \leq d_k$, $k = 1, \ldots, m$ for each $y \in E$.

(H3) $\|F(t,u)\| := \sup\{|v| : v \in F(t,u)\} \leq p(t)\psi(\|u\|)$ for a.a. $t \in J$ and all $u \in C([0,T], E)$, where $p \in L^1(J, \mathbb{R}^+)$ and $\psi : \mathbb{R}^+ \to (0, \infty)$ is continuous and increasing with

$$\int_0^T (T-s)p(s)ds < \int_\infty c d\tau \psi(\tau);$$

(H4) for each bounded $B \subseteq C([−r,0], E)$, and for each $t \in J$ the set

$$\{\phi(0) + y_0 + \int_0^t (t-s)g(s)ds + \sum_{0 < t_k < t} \left(y(t_k^+) - y(t_k^-) + (t - t_k)\bar{I}_k(y(t_k^-)) \right) : g \in SF,B \}$$

is relatively compact in E, where $SF,B = \cup \{SF,B_y : y \in B\}$.

Remark 2.5. (i) If $\dim E < \infty$, then for each $u \in C([−r,0], E)$, $SF,u \neq \emptyset$ (see Lasota and Opial [20]).

(ii) If $\dim E = \infty$ and $u \in C([−r,0], E)$ the set SF,u is nonempty if and only if the function $Y : J \to \mathbb{R}$ defined by

$$Y(t) := \inf \{|v| : v \in F(t,u)\}$$

belongs to $L^1(J, \mathbb{R})$ (see Hu and Papageorgiou [17]).

(iii) If $\dim E < \infty$, then (H4) is satisfied.

We have the following auxiliary result. In what follows we will use the notation $\sum_{t_k < t} (y(t_k^+) - y(t_k^-))$ to mean 0, when $k = 0$ and $0 < t < t_1$, and to mean $\sum_{t_k < t} (y(t_k^+) - y(t_k^-))$, when $k \geq 1$ and $t_k < t \leq t_{k+1}$.

Lemma 2.6. If $y \in \Omega \cap \Omega^1$, then

$$y(t) = y(0) + ty'(0) + \int_0^t (t-s)y''(s)ds + \sum_{0 < t_k < t} \left((y(t_k^+) - y(t_k^-)) + (t - t_k)(y'(t_k^+) - y'(t_k^-)) \right) \quad \text{for } t \in J.$$

Proof. Recall that $0 = t_0 < t_1 < \cdots < t_m < t_{m+1} = T$. We first show that

$$y(t) = y(0) + \int_0^t y'(s)ds + \sum_{0 < t_k < t} \left((y(t_k^+) - y(t_k^-)) \right) \quad \text{for } t \in J.$$

(2.14)
Suppose $t_k < t \leq t_{k+1}$. Then
\[
y(t_k) - y(0) = \int_0^{t_k} y'(s) ds,
\]
\[
y(t) - y(t^+) = \int_t^{t^+} y'(s) ds,
\]
\[\vdots \]
\[
y(t_k) - y(t_{k-1}) = \int_{t_{k-1}}^{t_k} y'(s) ds.
\]
Adding these equalities together, we get
\[
y(t) - y(0) - \sum_{i=1}^{k} [y(t^+_{i}) - y(t_i)] = \int_0^{t} y'(s) ds.
\]
Hence
\[
y(t) = y(0) + \int_0^{t} y'(s) ds + \sum_{0 < t_i < t} [y(t^+_{i}) - y(t_i)].
\]
Similarly, we have
\[
y'(t) = y'(0) + \int_0^{t} y''(s) ds + \sum_{0 < t_i < t} [y'(t^+_{i}) - y'(t_i)].
\]
Substituting (2.19) into (2.15), it is easy to get (2.14).

3. Main result

Theorem 3.1. Suppose that hypotheses (H1), (H2), (H3), and (H4) are satisfied. Then the impulsive initial value problem (1.1), (1.2), (1.3), and (1.4) has at least one solution on $[-r, T]$.

Proof. Transform the problem into a fixed point problem. Consider the multi-valued map, $G : \Omega \to 2^\Omega$ defined by
\[
G(y)(t) = \begin{cases}
\phi(t), & t \in [-r, 0] \\
\phi(t) + \int_0^{t} (t-s)g(s) ds + \sum_{0 < t_i < t} \left[h_i(y(t_i)) + (t-t_i) \bar{h}_i(y(t_i)) \right], & t \in J.
\end{cases}
\]
where
\[g \in S_{\mathcal{Y}} = \{ g \in L^1(J, E) : g(t) \in F(t, y_t) \text{ for a.e. } t \in J \}. \] (3.2)

Remark 3.2. Clearly from Lemma 2.6 the fixed points of \(G \) are solutions to (1.1), (1.2), (1.3), and (1.4).

We will show that \(G \) satisfies the assumptions of Lemma 2.4. The proof will be given in several steps.

Step 1. \(G(y) \) is convex for each \(y \in \Omega \)

Indeed, if \(h_1, h_2 \) belong to \(G(y) \), then there exist \(g_1, g_2 \in S_{\mathcal{Y}} \) such that for each \(t \in J \) we have
\[
h_i(t) = \phi(0) + ty_0 + \int_0^t (t-s)g_i(s)ds + \sum_{0 < t_k < t} \left[h_i(y(t_k)) + (t-t_k)\bar{h}_i(y(t_k)) \right], \quad i = 1, 2.
\] (3.3)

Let \(0 \leq d \leq 1 \). Then for each \(t \in J \) we have
\[
(dh_1 + (1-d)h_2)(t) = \phi(0) + ty_0 + \int_0^t (t-s)\left[d g_1(s) + (1-d) g_2(s) \right] ds + \sum_{0 < t_k < t} \left[h_1(y(t_k)) + (t-t_k)\bar{h}_1(y(t_k)) \right].
\] (3.4)

Since \(S_{\mathcal{Y}} \) is convex (because \(F \) has convex values) then
\[
dh_1 + (1-d)h_2 \in G(y).
\] (3.5)

Step 2. \(G \) maps bounded sets into bounded sets in \(\Omega \)

Indeed, it is enough to show that there exists a positive constant \(\ell \) such that for each \(h \in G(y) \) with \(y \in B_q = \{ y \in \Omega : \|y\|_{\infty} \leq q \} \) one has \(\|h\|_{\infty} \leq \ell \). If \(h \in G(y) \), then there exists \(g \in S_{\mathcal{Y}} \) such that for each \(t \in J \) we have
\[
h(t) = \phi(0) + ty_0 + \int_0^t (t-s)g(s)ds + \sum_{0 < t_k < t} \left[h(y(t_k)) + (t-t_k)\bar{h}(y(t_k)) \right],
\] (3.6)

By (H2) and (H3) we have for each \(t \in J \)
Impulsive functional differential inclusions

\[h(t) \leq \| \phi \| + \| y_0 \| + \int_0^t (t-s) g(s) ds \\
+ \sum_{\theta \in \Theta} \left[|I_k(y(t_0))| + |t-t_k| |\tilde{I}_k(y(t_k))| \right] \]

\[\leq \| \phi \| + T \| y_0 \| + \int_0^T (T-s) g_q(s) ds \\
+ \sum_{k=1}^m \left[\sup \{|I_k(y)| : \| y \| \leq q \} \right] \\
+ (T-t_k) \sup \{|\tilde{I}_k(y)| : \| y \| \leq q \} \]

Thus

\[\| h \|_\infty \leq \| \phi \| + T \| y_0 \| + \int_0^T (T-s) g_q(s) ds \\
+ \sum_{k=1}^m \left[\sup \{|I_k(y)| : \| y \| \leq q \} \right] \\
+ (T-t_k) \sup \{|\tilde{I}_k(y)| : \| y \| \leq q \} = \ell. \]

(3.7)

Thus

\[\| h \|_\infty \leq \| \phi \| + T \| y_0 \| + \int_0^T (T-s) g_q(s) ds \\
+ \sum_{k=1}^m \left[\sup \{|I_k(y)| : \| y \| \leq q \} \right] \\
+ (T-t_k) \sup \{|\tilde{I}_k(y)| : \| y \| \leq q \} \]

(3.8)

Step 3. \(G \) maps bounded sets into equicontinuous sets of \(\Omega \).

Let \(r_1, r_2 \in J, r_1 < r_2 \) and \(B_q = \{ y \in \Omega : \| y \|_\infty \leq q \} \) a bounded set of \(\Omega \).

For each \(y \in B_q \) and \(h \in G(y) \), there exists \(g \in \mathcal{S} \), such that

\[h(t) = \phi(0) + t y_0 + \int_0^t (t-s) g(s) ds + \sum_{\theta \in \Theta} \left[I_k(y(t_0)) + (t-t_k) \tilde{I}_k(y(t_k)) \right]. \]

(3.9)

Thus

\[|h(r_2) - h(r_1)| \leq \int_{r_1}^{r_2} (t-r_1) g_q(t) dt + \sum_{\theta \in \Theta} \left[I_k(y(0)) + (r_2-r_1) \tilde{I}_k(y(t_k)) \right]. \]

(3.10)

As \(r_2 \to r_1 \) the right-hand side of the above inequality tends to zero.

The equicontinuity for the cases \(r_1 < r_2 \leq 0 \) and \(r_1 \leq 0 \leq r_2 \) are obvious.

Step 4. \(G \) has a closed graph.

Let \(y_n \to y, b_n \in G(y_n) \), and \(b_n \to b \). We will prove that \(b \in G(y) \).

For each \(y \in B_q \) and \(b \in G(y) \), there exists \(g \in \mathcal{S} \) such that for each \(t \in J \)

\[b(t) = \phi(0) + t y_0 + \int_0^t (t-s) g_q(s) ds + \sum_{\theta \in \Theta} \left[I_k(y(t_0)) + (t-t_k) \tilde{I}_k(y(t_k)) \right]. \]

(3.11)
We must prove that there exists $g^* \in SF,y^*$ such that for each $t \in J$

$$h_n(t) = \phi(0) + t\gamma_0 + \int_0^t (t-s)g_n(s)ds + \sum_{0 < t_k < t} \left[t_n(y_n(t_k)) + \beta(t_n)\bar{h}_n(y_n(t_k)) \right].$$

(3.12)

Clearly, since I_k and \bar{I}_k, $k = 1, \ldots, m$ are continuous we have

$$\left\| h_n(t) - \phi(0) - t\gamma_0 - \sum_{0 < t_k < t} \left[t_n(y_n(t_k)) + \beta(t_n)\bar{h}_n(y_n(t_k)) \right] \right\|_\infty \rightarrow 0, \quad \text{as} \quad n \rightarrow \infty. \quad (3.13)$$

Consider the linear continuous operator

$$\Gamma : L^1(J, E) \rightarrow C(J, E), \quad g \mapsto \Gamma(g)(t) = \int_0^t (t-s)g(s)ds. \quad (3.14)$$

From Lemma 2.3, it follows that $\Gamma \circ SF$ is a closed graph operator.

Moreover, we have

$$\left(h_n(t) - \phi(0) - t\gamma_0 - \sum_{0 < t_k < t} \left[I_k(y_n(t_k)) + \beta(t_n)\bar{h}_n(y_n(t_k)) \right] \right) \in \Gamma(SF_n).$$

(3.15)

Since $y_n \rightarrow y^*$, it follows from Lemma 2.3 that

$$\left(h_n(t) - \phi(0) - t\gamma_0 - \sum_{0 < t_k < t} \left[I_k(y_n(t_k)) + \beta(t_n)\bar{h}_n(y_n(t_k)) \right] \right) = \int_0^t g_n(s)ds \quad \text{for some} \quad g_n \in SF_n. \quad (3.16)$$

Step 5. Now it remains to show that the set

$$M := \{ y \in C([-r, T], E) : \lambda y \in G(y), \text{ for some } \lambda > 1 \} \quad (3.17)$$

is bounded.
378 Impulsive functional differential inclusions

Let \(y \in \mathcal{H} \). Then \(\lambda y \in G(y) \) for some \(\lambda > 1 \). Thus there exists \(g \in SF, y \) such that

\[
y(t) = \lambda^{-1} \phi(0) + \lambda^{-1} t_0 + \lambda^{-1} \int_0^t (t-s)g(s)ds + \lambda^{-1} \sum_{0 < r_j < t} [I_k(y(r_j)) + (t-r_j)\bar{k}(y(r_j))], \quad t \in J.
\]

(3.18)

This implies by (H2) and (H3) that for each \(t \in J \), we have

\[
|y(t)| \leq ||\phi|| + T||y_0|| + \int_0^t (T-s)p(s)\psi(||y_s||)ds + \sum_{k=1}^n [c_k + (T-t_k)d_k].
\]

(3.19)

We consider the function \(\mu \) defined by

\[
\mu(t) = \sup_{-r \leq s \leq t} |y(s)|, \quad 0 \leq t \leq T.
\]

(3.20)

Let \(t^* \in [-r,t] \) be such that \(\mu(t^*) = |y(t^*)| \). If \(t^* \in [0,T] \), by the previous inequality we have for \(t \in [0,T] \)

\[
\mu(t) \leq ||\phi|| + T||y_0|| + \int_0^t (T-s)p(s)\psi(||y_s||)ds + \sum_{k=1}^n [c_k + (T-t_k)d_k].
\]

(3.21)

If \(t^* \in J \) then \(\mu(t) = ||\phi|| \) and the previous inequality holds.

We take the right-hand side of the above inequality as \(v(t) \), then we have

\[
e = v(0) = ||\phi|| + T||y_0|| + \sum_{k=1}^n [c_k + (T-t_k)d_k],
\]

(3.22)

\[
\mu(t) \leq v(t), \quad t \in [0,T].
\]

Using the nondecreasing character of \(\psi \) we get

\[
v(t) = (T-t)p(t)\psi(\mu(t)) \leq (T-t)p(t)\psi(v(t)), \quad t \in [0,T].
\]

(3.23)

This implies for each \(t \in J \) that

\[
\int_{v(t)}^{v(t+)} \frac{du}{\psi(u)} \leq \int_{v(t)}^{v(t+)} (T-s)p(s)ds \leq \int_{v(t)}^{v(t+)} \frac{du}{\psi(u)}.
\]

(3.24)

This inequality implies that there exists a constant \(b \) such that \(v(t) \leq b, \ t \in J \), and hence \(\mu(t) \leq b, \ t \in J \). Since for every \(t \in [0,T], |y(t)| \leq \mu(t) \), we have

\[
|y|_{\infty} = \sup_{-r \leq s \leq T} |y(s)| \leq b.
\]

(3.25)

where \(b \) depends only on \(T \) and on the functions \(p \) and \(\psi \). This shows that \(\mathcal{H} \) is bounded.
Set $X := C([-r, T), E)$. As a consequence of Lemma 2.4 we deduce that G has a fixed point y which is a solution of (1.1), (1.2), (1.3), and (1.4). □

References

Impulsive functional differential inclusions

M. Benchohra: Department of Mathematics, University of Sidi Bel Abbes, BP 89, 22000 Sidi Bel Abbes, Algeria
E-mail address: benchohra@yahoo.com

J. Henderson: Department of Mathematics, Auburn University, Auburn, AL 36849-5310, USA
E-mail address: hendej24@mail.auburn.edu

S. K. Ntouyas: Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece
E-mail address: ntouyas@cc.uoi.gr
Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal's Author Guidelines, which are located at http://www.hindawi.com/journals/mpe/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>July 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>October 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>January 1, 2010</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliani Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br