ON SEQUENCES OF CONTRACTIVE MAPPINGS AND THEIR FIXED POINTS

M. IMDAD

Aligarh Muslim University
Department of Mathematics
Aligarh-202001, India

M.S. KHAN

King Abdul Aziz University
Department of Mathematics
Faculty of Science
P.O. BOX 9028
Jeddah, Saudi Arabia

S. SESSA

Universita di Napoli
Facoltà di Architettura
Istituto di Matematica
Via Monteoliveto, 3
80134 Napoli, Italy

(Received October 12, 1984 and in revised form February 9, 1987)

ABSTRACT. By using a condition of Reich, we establish two fixed point theorems concerning sequences of contractive mappings and their fixed points. A suitable example is also given.

KEY WORDS AND PHRASES: Complete metric space, Fixed point, Sequence of mappings.

1980 AMS SUBJECT CLASSIFICATION CODE. 47H10, 54H25.

1. INTRODUCTIONS.

Throughout this paper, \((X,d)\) denotes a complete metric space and \(T\) stands for a mapping of \(X\) into itself. It is well known that each of the following conditions ensure the existence and uniqueness of a fixed point of \(T\):

(A) (Banach). There exists a number \(k, 0 \leq k < 1\), such that for each \(x,y\) in \(X\),

\[
d(Tx, Ty) \leq k \cdot d(x,y)
\]

(B) (Rakotch [1]). There exists a monotonically decreasing function \(g: (0,\infty) \to [0,1]\) such that for each \(x,y\) in \(X\),

\[
d(Tx, Ty) \leq g(d(x,y)) \cdot d(x,y).
\]

(C) (Reich [2]). There exist nonnegative numbers \(a,b\) such that for each \(x,y\) in \(X\),

\[
d(Tx, Ty) \leq a \cdot d(x,y) + b \cdot [d(x,Tx)+d(y,Ty)].
\]
(D) (Reich [3]). There exist monotonically decreasing functions $a, b: (0, \infty) \to [0, 1)$ such that for each x, y in X, $x \neq y$,
\[d(Tx, Ty) \leq a(d(x, y)) \cdot d(x, y) + b(d(x, y)) \cdot [d(x, Tx) + d(y, Ty)], \]
(1.1)
where for any $t > 0$,
\[a(t) + 2b(t) \leq 1. \]
(1.2)

(E) (Reich [4]). There exist functions $a, b: (0, \infty) \to [0, 1)$ such that (1.1) holds for each x, y in X, $x \neq y$, satisfying (1.2) and
\[\limsup_{r \to t^+} [a(r) + 2b(r)] < 1. \]

(F) (Hardy and Rogers [5]). There exist monotonically decreasing functions $a, b, c: (0, \infty) \to [0, 1)$ such that for each x, y in X, $x \neq y$,
\[d(Tx, Ty) \leq a(d(x, y)) \cdot d(x, y) + b(d(x, y)) \cdot [d(x, Tx) + d(y, Ty)] + c(d(x, y)) \cdot [d(x, Ty) + d(y, Tx)], \]
(1.3)
where for any $t > 0$,
\[a(t) + 2b(t) + 2c(t) \leq 1. \]
(1.4)

It is not hard to show that, adopting the same proof of [4], that T has a unique fixed point if

(G) There exist functions $a, b, c: (0, \infty) \to [0, 1)$ such that (1.3) holds for each x, y in X, $x \neq y$, satisfying (1.4) and
\[\limsup_{r \to t^+} [a(r) + 2b(r) + 2c(r)] < 1. \]

Evidently (A) implies (B) and (C), (B) and (C) imply (D), (D) imply (E) and (F), (E) and (F) imply (G). Suitable examples can be found in Rhoades [6] to illustrate some of the above implications. In the sequel, N stands for the set of natural numbers.

The following result was established in [5] and [6].

Theorem 1. Let T_n, $n \in N$, be mappings of (X, d) into itself satisfying condition (F) with the same functions a, b, c and with fixed points z_n. Suppose that a mapping T of X into itself can be defined pointwise by $T(x) = \lim_{n \to \infty} T_n(x)$ for any x in X. Then T has a unique fixed point z and $z = \lim_{n \to \infty} z_n$.

Theorem 1 generalizes an analogous result of Bonsall [7], Theorem 6 of [2] and Theorem 4 of [3] established for mappings T_n satisfying conditions (A), (C) and (D), respectively. Results due to Chatterjea [8] and Singh [9], Kannan type mappings, are also included in Theorem 1.

The proof of Theorem 1 consists essentially in the fact that the sequence $\{z_n\}$ is regular, i.e. it possesses a limit z(say). It appears that a result corresponding to Theorem 1 for mappings satisfying condition (G) does not exist in print in the
2. RESULTS.

We first state the following result more general than Theorem 1.

THEOREM 2. Let $T_n, n \in \mathbb{N}$, be mappings of (X,d) into itself satisfying condition (G) with the same functions a, b, c and with fixed points z_n. Suppose that a mapping T of X into itself can be defined pointwise by $T(x) = \lim_{n \to \infty} T_n(x)$ for any x in X and the sequence $\{z_n\}$ is regular. Then T has a unique fixed point z and $z = \lim_{n \to \infty} z_n$.

PROOF. Since the metric $d: X \times X \to [0,\infty)$ is continuous, the limit mapping T satisfies the inequality (1.3). By condition (G), T has a unique fixed point z. We claim that

$$
\ell = \inf_{n \in \mathbb{N}} d(z_n, z) = 0,
$$

otherwise assume $\ell > 0$. By observing that $d(z_n, z) > \ell > 0$ and hence $z_n \neq z$ for any $n \in \mathbb{N}$, we deduce using (1.3) and the triangular property of the metric d,

$$
d(z_n, z) = d(T_n z_n, Tz) \leq d(T_n z_n, Tz) + d(T_n z, Tz) \\
\leq a \cdot d(z_n, z) + b \cdot d(z, Tz) \\
+ c \cdot [d(z_n, z) + d(z, Tz) + d(z, T z_n)] + d(T_n z, Tz) \\
= (a + 2c) \cdot d(z_n, z) + (1 + b + c) \cdot d(T_n z, Tz)
$$

for any $n \in \mathbb{N}$, where $a = a(d(z_n, z))$ and similarly for b and c.

Thus

$$
d(z_n, z) \leq \frac{2d(T_n z, z)}{1 - (a + 2c)}
$$

for any $n \in \mathbb{N}$. If we denote with $\{z_{k(n)}\}$ a subsequence of $\{z_n\}$ such that

$$
\ell \leq d(z_{k(n)}, z) < \ell + 1/n,
$$

we obtain that

$$
\lim_{n \to \infty} d(z_{k(n)}, z) = \ell > 0.
$$

Following Reich [4], we observe that the assumptions about the functions a, b, c of condition (G) imply the existence of two functions $h, k: (0, \infty) \to (0, \infty)$ for which, given $t > 0$, there exists an $h(t) > 0$ such that $0 \leq t < h(t)$ implies

$$
a(t) + 2b(t) + 2c(t)k(t) < 1.
$$

By (2.2), let $p \in \mathbb{N}$ such that

$$
0 \leq d(z_{k(n)}, z) - \ell < h(\ell)
$$
for any \(n > p \). From (2.3), it follows that
\[
a (d(Z_{k(n)}, z)) + 2c (d(Z_{k(n)}, z)) \leq k(\ell) < 1
\]
for any \(n > p \). On the other hand, since the sequence \(\{T_{k(n)}(z)\} \) converges to \(z = T(z) \), we can find an integer \(q \in \mathbb{N} \) such that
\[
d(Tz, T_{k(n)}(z)) < \ell (1 - k(\ell))/2
\]
for any \(n > q \). By (2.1), then we have for any \(n \geq \max\{p, q\} \),
\[
2d(Tz, T_{k(n)}(z)) \leq d(Z_{k(n)}, z) < 1 - [a (d(Z_{k(n)}, z)) + 2c (d(Z_{k(n)}, z))]
\]
a contradiction. Thus \(\ell = 0 \) and therefore the sequence \(\{z_{k(n)}\} \) converges to \(z \). Since \(\{z_n\} \) is regular, it has limit \(z \) and this concludes the proof.

Theorem 3. Let \(T_n \) be mappings of \((X, d)\) into itself with at least one fixed point \(z_n \). If \(\{T_n\} \) converges uniformly to a mapping \(T \) of \(X \) into itself satisfying condition (G) and if the sequence \(\{z_n\} \) is regular, then \(z = \lim_{n \to \infty} z_n \), where \(z \) is the unique fixed point of \(T \).

Proof. We have that
\[
d(z_n, z) = d(z_n, Tz) \leq d(z_n, Tz_n) + d(Tz_n, Tz)
\]
\[
\leq d(z_n, Tz_n) + a \cdot d(z_n, z) + b \cdot d(z_n, Tz_n) + c \cdot [d(z_n, z) + d(z_n, Tz_n)]
\]
\[
= (a + 2c) \cdot d(z_n, z) + (1 + b + c) \cdot d(z_n, Tz_n).
\]
for any \(n \in \mathbb{N} \), where \(a = a (d(z_n, z)) \) and similarly for \(b \) and \(c \). Thus
\[
d(z_n, z) \leq \frac{2d(z_n, Tz_n)}{1 - (a + 2c)}
\]
for any \(n \in \mathbb{N} \) and proceeding as in the proof of Theorem 2, we get the thesis.

Remark 1. It is evident that there certainly exists a subsequence of \(\{z_n\} \) converging to \(z \), even if \(\{z_n\} \) is not regular. It is not yet known if the regularity of \(\{z_n\} \) is a necessary condition in Theorems 2 and 3.

Remark 2. Theorem 3 generalizes Theorem 5 of Ray [13], which in turn extends Theorem 9 of Reich [3].

Remark 3. Following Ray [13] and Fraser and Nadler [14], one can establish a result analogous to Theorem 10 of Reich [3] by using condition (G).
3. AN EXAMPLE.

In order to illustrate the degree of generality of Theorem 2 over Theorem 1, we furnish an example which shows that there exist mappings T_n of X into itself satisfying condition (G) but no condition (F).

EXAMPLE. Let $X=\{0,1\}$ be equipped with metric d defined as follows,

$$d(x,y) = \begin{cases} |x-y| & \text{if } x,y \in [0,1], \\ x+y & \text{if one of } x,y \in \mathbb{N} - \{1\} \end{cases}$$

Then (X,d) is a complete metric space because it is isometric to a closed subspace of the space of absolutely summable sequences. For further details, see Boyd and Wong [15].

Now we define $T_n: x \mapsto x$, for $n \geq 3$,

$$T_n(x) = \begin{cases} x-(n-1)x^2/(2n-3) & \text{if } x \in [0,1], \\ x-1 & \text{if } x \in \mathbb{N} - \{1\} \end{cases}$$

Further, T_n does not satisfy condition (F) for $n \geq 3$, otherwise we should have for $y=0$ and $x=t \in (0,1]$,

$$t - \frac{(n-1)t^2}{2n-3} \leq a(t) \cdot t + b(t) \cdot \frac{(n-1)t^2}{2n-3} + c(t) \cdot \frac{(n-1)t^2}{2n-3} + t$$

$$\leq \frac{(n-1)t^2}{2n-3} \cdot [a(t)+2c(t)] \cdot t + [b(t)-c(t)] \cdot \frac{(n-1)t^2}{2n-3}$$

$$< 1 - 2b(t) \cdot t + b(t) \cdot \frac{(n-1)t^2}{2n-3}.$$

Since $b(t) < 1/2$ for any $t > 0$, we obtain

$$1 - \frac{(n-1)t}{2n-3} < 1 - 2b(t) + \frac{1}{2} \cdot \frac{(n-1)t}{2n-3}$$

for any $t \in (0,1]$. This implies, for $n \geq 3$, that

$$1 - t \leq 1 - \frac{3}{2} \cdot \frac{(n-1)t}{2n-3} < 1 - 2b(t),$$

i.e. $b(t) \leq 2b(t) < t$ for any $t \in (0,1]$. Then, since b is monotonically decreasing in $(0,\infty)$, we should have $b(t)=0$ for any $t>0$.

Therefore, for each \(x, y \) in \(X \), \(x \neq y \), and \(n \geq 3 \), the condition \((F)\) reduces to

\[
d(\mathbf{T}_n X, \mathbf{T}_n Y) \leq a(d(x, y)) \cdot d(x, y) + c(d(x, y)) \cdot [d(x, T_n y) + d(y, T_n x)].
\]

Now for \(x = 0 \) and \(y \in q \mathbb{N} \setminus \{1\} \), we deduce that

\[
q - 1 \leq a(q) \cdot q + c(q) \cdot [q - 1 + q] \leq a(q) \cdot q + 2c(q) \cdot q.
\]

This implies, since \(a \) and \(c \) are monotonically decreasing functions, that

\[
\frac{q - 1}{q} \leq a(1) + 2c(1).
\]

As \(q \to \infty \), we obtain \(1 \leq a(1) + 2c(1) < 1 \), a contradiction which shows that the condition \((F)\) is not satisfied by \(\mathbf{T}_n \) for \(n \geq 3 \).

On the other hand, for any \(n \in \mathbb{N} \) the condition \((G)\) holds if we choose \(b(t) = c(t) = 0 \) for any \(t > 0 \) and \(a(t) = 1 - t/2 \) if \(0 < t \leq 1 \), \(a(t) = 1 - t^2 \) if \(t > 1 \). The condition \((G)\) is obviously satisfied by \(\mathbf{T}_1 \) and \(\mathbf{T}_2 \). For \(n \geq 3 \) and \(x, y \) in \([0,1]\), \(x \neq y \), we get

\[
d(\mathbf{T}_n X, \mathbf{T}_n Y) = |x - y| \cdot \left[1 - \frac{n - 1}{2n - 3} \cdot (x + y) \right]
\]

\[
< |x - y| \cdot \left[1 - \frac{1}{2} (x + y) \right] \leq |x - y| \cdot \left[1 - \frac{1}{2} |x - y| \right]
\]

\[
= c(d(x, y)) \cdot d(x, y).
\]

Furthermore, if one of \(x, y \) lies in \(\mathbb{N} \setminus \{1\} \) with \(x \neq y \) and \(n \geq 3 \), then we have

\[
d(\mathbf{T}_n X, \mathbf{T}_n Y) = \mathbf{T}_n x + \mathbf{T}_n y \leq x + y - 1
\]

\[
= (x + y) \cdot \left[1 - 1/(x + y) \right]
\]

\[
+ c(d(x, y)) \cdot d(x, y).
\]

We now define \(\mathbf{T}(x) = x - x^2/2 \) if \(0 \leq x \leq 1 \), \(\mathbf{T}(x) = x - 1 \) if \(x \) is in \(\mathbb{N} \setminus \{1\} \). Of course, \(z_n = 0 \) are the unique fixed points of \(\mathbf{T} \) and \(\mathbf{T}_n \), respectively and we have

\[
\lim_{n \to \infty} \mathbf{T}_n (x) = \mathbf{T}(x)
\]

for any \(x \) in \(X \). Thus the conclusion of Theorem 2 holds good since the sequence \(\{z_n\} \) converges to \(z \).

The idea of this example appears in [15].

ACKNOWLEDGEMENT. The authors thank an anonymous referee for some useful suggestions.
REFERENCES

Mathematical Problems in Engineering

Special Issue on
Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk