ABSTRACT. When q is an interpolating Blaschke product, we find necessary and sufficient conditions for a subalgebra B of $H^\infty[q]$ to be a maximal subalgebra in terms of the nonanalytic points of the noninvertible interpolating Blaschke products in B. If the set $M(B) \cap Z(q)$ is not open in $Z(q)$, we also find a condition that guarantees the existence of a factor q_0 of q in H^∞ such that B is maximal in $H^\infty[q]$. We also give conditions that show when two arbitrary Douglas algebras A and B, with $A \subseteq B$ have property that A is maximal in B.

KEY WORDS AND PHRASES. Maximal subalgebra, Douglas algebra, interpolating sequence, sparse sequence, Blaschke product, inner functions, open and closed subset, nonanalytic points, support set, Q-C level sets.

1. INTRODUCTION.

Let D be the open unit disk in the complex plane and T be its boundary. Let L^∞ be the space of essentially measurable functions on T with respect to the Lebesgue measure. By H^∞ we mean the family of all bounded analytic functions in D. Via identification with boundary functions, H^∞ can be considered as a uniformly closed subalgebra of L^∞. A uniformly closed subalgebra B between H^∞ and L^∞ is called a Douglas algebra. If we let C be the family of continuous functions on T, then it is well known that $H^\infty + C$ is the smallest Douglas algebra containing H^∞ properly. For any Douglas algebra B, we denote by $M(B)$ the space of nonzero multiplicative linear functionals on B, that is, the set of all maximal ideals in B. An algebra B_0 is said to be a maximal subalgebra of B, if B_1 is another algebra with the property that $B_0 \subseteq B_1 \subseteq B$, then either $B_1 = B_0$ or $B_1 = B$.

An interpolating sequence $\{z_n\}_{n=1}^\infty$ is a sequence in D with the property that for any bounded sequence of complex numbers $\{\lambda_n\}_{n=1}^\infty$, there exists f in H^∞ such that $f(z_n) = \lambda_n$ for all n. A well-known condition states that a sequence $\{z_n\}_{n=1}^\infty$ is interpolating if and only if

$$\inf_{n \neq m} \left| \frac{z_m - z_n}{1 - \overline{z_n} z_m} \right| = \delta > 0.$$ \hspace{1cm} (1.1)
A Blaschke product

\[q(z) = \prod_{n=1}^{\infty} \frac{|z_n|}{z_n} \left(\frac{z - z_n}{1 - \overline{z_n} z} \right) \]

is called an interpolating Blaschke product if its zero set \(\{z_n\}_{n=1}^{\infty} \) is an interpolating sequence (\(|z_n|/z_n \equiv 1 \) is understood whenever \(z_n = 0 \)). A sequence \(\{z_n\}_{n=1}^{\infty} \) is said to be sparse if it is an interpolating sequence and

\[\lim_{n \to \infty} \prod_{n \neq m} \frac{|z_m - z_n|}{1 - \overline{z_n} z_m} = 1. \]

For a function \(q \) in \(H^\infty + C \), we let \(Z(q) = \{m \in M(H^\infty + C) : q(m) = 0\} \) be the zero set of \(\phi \) in \(M(H^\infty + C) \). An inner function is a function in \(H^\infty \) of modulus 1 almost everywhere on \(T \). We denote by \(H^\infty \) the Douglas algebra generated by \(H^\infty \) and the complex conjugate of the inner function \(b \).

We put \(X = M(L^\infty) \). Then \(X \) is the Shilov boundary for every Douglas algebra. For a point in \(M(H^\infty) \), we denote by \(\mu_x \) the representing measure on \(X \) for \(x \) and by \(\text{supp} \mu_x \) the support set for \(\mu_x \).

For a function \(q \) in \(L^\infty \) (in particular if \(q \) is an interpolating Blaschke product), we put \(N(q) \) the closure of the union set of \(\text{supp} \mu_x \) such that \(x \in M(H^\infty + C) \) and \(\overline{q}\mu_X \supseteq H^\infty \text{supp} \mu_x \). Roughly speaking, \(N(q) \) is the set of nonanalytic points of \(q \). Set \(QC = H^\infty + C \cap H^\infty + C \) and for \(x_0 \) in \(X \), let \(Q_{x_0} = \{f(x) = f(x_0) \text{ for } f \in QC\} \).

\(x_0 \) is called the QC-level set for \(x_0 \) [9].

THEOREM 1. If \(q \) is an inner function that is not a finite Blaschke product, then

\[N(q) = \bigcup \{Q_x ; x \in Z(q)\}. \]

In particular, the right side of 1.4 is a closed set. Now assume that \(q \) is an interpolating Blaschke product, and let \(B \) be a Douglas algebra contained in \(H^\infty[q] \). We will always assume that \(M(B) \cap Z(q) \) is not an open set in \(Z(q) \), for Izuchi has shown [6] that if \(B \) is a maximal subalgebra of \(H^\infty[q] \), then \(M(B) \cap Z(q) \) is not open in \(Z(q) \). We will give answers to the following two questions. When is \(B \) a maximal subalgebra of \(H^\infty[q] \) or when is there a factor \(q_0 \) of \(q \) in \(H^\infty[q] \) such that \(B \) is maximal in \(H^\infty[q] \)? These
answers will be in terms of the nonanalytic points of \(q \) and the invertible inner functions of \(H^\infty[q] \) that are not invertible in \(B \).

For a Douglas algebra \(B \), we denote by \(N(B) \) the closure of \(\{\text{supp} \mu_X ; x \in M(H^\infty + C)/M(B)\} \).

In particular \(N(H^\infty[q]) = N(q) \). In general if \(A \) and \(B \) are Douglas algebras such that
A \subseteq B$, we put $N_A^a(B) =$ the closure of $\cup \{\text{supp } \mu_x : x \in M(A)/M(B)\}$ and for any inner function b, $N_A^b(b) =$ the closure of $\cup \{\text{supp } \mu_x : x \in M(A), |b(x)| < 1\}$.

It is shown in [7, Corollary 2.5] that if $B \subseteq H^\infty[\overline{q}]$, then $N(B) \subseteq N(q)$, and it is not hard to show that $N(q)/N(B) \supseteq N_B(q)$ (in a sense the set $N_B(q)$ is generated by the nonanalytic points $M(B)/M(H^\infty[\overline{q}]) \subseteq M(H^\infty + C)/M(H^\infty[\overline{q}])$).

2. OUR MAIN RESULT.

We'll need the following lemma. It shows how small $M(B)/M(H^\infty[\overline{q}])$ must be if B is to be a maximal subalgebra of $H^\infty[\overline{q}]$. Let $\Omega =$ \{b : b is an interpolating Blaschke product $\}$ with $b \subseteq H^\infty[\overline{q}]$, and $\Omega(B) =$ \{b_0 \in \Omega : b_0 \notin B\}.

LEMMA 1. Let q be an interpolating Blaschke product and B be a Douglas algebra contained in $H^\infty[q]$. Suppose for all $b_0 \in \Omega(B)$, we have that $N_B(q) \subseteq N_B(b_0)$. Then B is a maximal subalgebra of $H^\infty[q]$.

PROOF. It suffices to show that if $b \in \Omega(B)$, then $B[b] \subseteq H^\infty[\overline{q}]$. Hence the only Douglas algebra between B and $H^\infty[\overline{q}]$ that contains B properly is $H^\infty[\overline{q}]$. It is clear that $M(H^\infty[\overline{q}]) \subseteq M(B[b])$. We show that $M(B[b]) \subseteq M(H^\infty[\overline{q}])$. Now $M(B[b]) =$ \{m \in M(B) : |b(m)| = 1\}.

It suffices to show that if $m \notin M(H^\infty[\overline{q}])$, then $m \notin M(B[b])$. Let $m \in M(B)$ such that $m \notin M(H^\infty[\overline{q}])$. Then $m \mid \text{supp } \mu_{\infty} \in H^\infty[\overline{q}]$ and since $N_B(q) \subseteq N_B(b)$, we have that $b \mid \text{supp } \mu_{\infty} \in H^\infty[\overline{q}]$. Thus $|b(m)| < 1$ and we get $m \notin M(B[b])$. This shows that $M(B[b]) \subseteq M(H^\infty[\overline{q}])$, and B is maximal in $H^\infty[q]$.

Using Theorem 1 above, it is not hard to show directly that $N(B[b]) = N(q)$. However, by Proposition 4.1 of [7], this condition is not sufficient.

We let $E = N_B(q)$. This can be a very complicated set. For example, it can contain μ_x where x belongs to a trivial Gleason part or a Gleason part where $|q| < 1$, but yet $q \neq 0$ on this part [see 3]. So for B to be maximal in $H^\infty[q]$, E must be as simple as possible. To see how simple, we set $\Lambda(B) =$ \{b \in \Omega(B) : b \subseteq H^\infty[\overline{b}]\} and $\Lambda^*(B) =$ \{a \in \Lambda(B) : a \notin \Lambda(B)\}. Now let $E^* = \cap N(b)$, $E^{**} = \cap N(b_0)$, $E^* = E \cap E$ and $E^{**} = E^{**} \cap E$. Note that if $E^{**} = \emptyset$, then there are interpolating Blaschke products a_0 and a_1 in $\Lambda^*(B)$ such that $N_B(q) \cap N(a_0) \cap N(a_1) = \emptyset$. Thus we get $B \subseteq B[a_0] \subseteq H^\infty[q]$. To see this, just note that both $N_B(q) \cap N(a_0) \neq \emptyset$ and $N_B(q) \cap N(a_1) \neq \emptyset$ since a_0 and a_1 belong to $\Lambda^*(B)$. Since their intersection is empty, there is an $x_1 \in M(B)$ such that $a_0 \mid \text{supp } \mu_{x_1} \in H^\infty[\overline{q}]$. Thus $N_B(a_0)(q) < N(q)$, which implies that $B[a_0] \subseteq H^\infty[q]$. Obviously, $B \subseteq B[a_0]$, so B cannot be maximal in $H^\infty[q]$ unless $E^{**} \neq \emptyset$. We now state.

PROPOSITION 1. Let B be a Douglas algebra properly contained in $H^\infty[q]$, and suppose $E^{**} \neq \emptyset$. Then the following statements are equivalent:

(i) $N(B) = N(q)$;

(ii) B is a maximal subalgebra of $H^\infty[q]$;

(iii) $E^{**} = E^* = E$;

(iv) $E^* = N_B(q)$.

PROOF. We prove the following: (i) + (ii) + (iii) + (iv) + (ii) + (i).

Suppose (i) holds. We will show that $N_B(q) \subseteq N_B(b)$ for all $b \in \Omega(B)$. Using Lemma 1, this will prove that B is a maximal subalgebra of $H^\infty[q]$. Let $b \in \Omega(B)$ and consider the Douglas algebra $B[b]$. We have $B \subseteq B[b] \subseteq H^\infty[q]$, hence $N(B) = N(B[b]) = N(q)$. Now $N(q) = N(B) \cup N_B(q)$, so by the above equality we have that $N_B(q) \subseteq N(B[b])$. Thus, if $x \in M(B)$ such that $\supp \frac{\mu}{x} H^\infty$ implies that $\supp \frac{\mu}{x} \subseteq N(B[b])$. Thus $\supp \frac{\mu}{x} \subseteq N_B(q)$. We have (i) + (ii).

Next suppose that (ii) holds. It is clear that $E_0 \subseteq E_0^{**} = E$. We must show that $E_0^{**} = E$. First, suppose that E_0^{**} is empty. Suppose not. Then there is an $x \in M(B)$ and a $b_0 \in \Lambda(B)$ such that $\supp \frac{\mu}{x} H^\infty$, and $\supp \frac{\mu}{x} \subseteq E_0^{**}$. It is clear by Theorem 1 that $\supp \frac{\mu}{x} \cap N(B_0) = \emptyset$. Consider the algebra $B[b_0]$. Since $b_0 \in \Lambda(B)$, $E \subseteq B[b_0]$. Since $\supp \frac{\mu}{x} \subseteq N(q)$ and $\supp \frac{\mu}{x} \not\subseteq N(B_0)$, we have that $|b_0(x)| = 1$, so we have $\supp \frac{\mu}{x} \subseteq N(q)/N_B[0](q)$. This implies that $B[b_0] \subseteq H^\infty[q]$, which is a contradiction.

Now we show that $E_0 = E$. Again suppose not. Hence there is a $y \in M(B)$ such that $\supp \frac{\mu}{y} \subseteq E$, but $\supp \frac{\mu}{y} \not\subseteq E_0$. There is a $b \in \Lambda(B)$ such that $\supp \frac{\mu}{y} \subseteq N(B[b])$. Again this implies that $\supp \frac{\mu}{y} H^\infty$, so we have that $\supp \frac{\mu}{y} \not\subseteq E_0$. Thus we have that $B \not\subseteq B[b]$ (since $b \in \Lambda(B)$) and $B[b] \subseteq H^\infty[q]$ (since $\supp \frac{\mu}{y} \subseteq N(q)/N_B[0](q)$), which is a contradiction.

So we get $E_0 = E$. This shows that (ii) + (iii).

It is trivial that if (iii) holds, $E_0^{**} = E_0$.

If (iv) holds and b is any interpolating Blaschke product in $\Omega(B)$, then by (iv) $N_B(q) \subseteq N_B(b)$ so by Lemma 1, B is a maximal subalgebra of $H^\infty[q]$.

Finally, suppose (ii) holds. We are going to show that $N(B) = N(q)$. Suppose not. Then $N(B) \not\subseteq N(q)$. By Theorem 1 there is a Q-C level set Q with $N(B) \cap Q = \emptyset$. Put $B_0 = [H^\infty, I]$; I is an interpolating Blaschke product with $I \in H^\infty[q]$ and $I \in I_0 \subseteq H^\infty[q]$. By Proposition 4.1 of [7], we have $B_0 \subseteq H^\infty[q]$ and $N(B_0) = N(q)$. Since $N(B) \cap Q = \emptyset$, we also have $B \subseteq B_0$ (because $N(B) \subseteq N(B_0)$). This implies that B is not a maximal subalgebra of $H^\infty[q]$, which is a contradiction. Thus $N(B) = N(q)$.

Now suppose we have that $E_0^{**} = E_0 \subseteq E$ ($E_0^{**} = \emptyset$ is possible).

When is there a factor q_0 of q in H^∞ such that B is a maximal subalgebra of $H^\infty[q_0]$? To answer this question, let $\Omega_0 = \{q_0 : q_0 \in H^\infty[q_0]\}$, and $\Omega_0(B) = \{q_0 \in \Omega_0 : B \subseteq H^\infty[q_0]\}$.

Set $F = \bigcap_{q_0 \in \Omega_0(B)} N(q_0)$. Suppose $F = N(q_0)$ for some factor q_0 of q in H^∞. Then $B \subseteq H^\infty[q_0]$. So q_0 is our possible candidate. Next, let $\Omega_0 = \{c : c$ is an interpolating Blaschke product with $c \in H^\infty[q_0]\}$,
\(\Omega_q(B) = \Omega \cap \Omega(B), \Lambda_q(B) = \Omega \cap \Lambda(B), \Lambda^*(B) = \Omega \cap \Lambda^*(B), \)

\[F_0 = E \cap N(q_0), \quad F^* = F_0 \cap F, \quad F^{**} = \bigcap_{c \in \Omega_q(B)} N(c), \quad F_0^* = F^* \cap F_0, \quad \text{and finally} \]

\[F_0^{**} = F^{**} \cap F_0. \]

We have the following.

Corollary 1. Let \(q_0 \) be a factor of \(q \) in \(\mathcal{H} \) such that \(F = N(q_0) \) and assume \(F_0^* \neq \emptyset \).

If any of the following conditions hold:

(i) \(F_0 = F = F_0^* \)

(ii) \(F_0^{**} = N_B(H_0), \) where \(H_0 = \bigcap_{q_0 \in \Omega(B)} \mathcal{H} \).

Then \(B \) is a maximal subalgebra of \(H_0 = \mathcal{H}[q_0] \) where \(q_0 \in \Omega(B) \).

The fact that \(F = N(q_0) \) for some \(q_0 \in \Omega(B) \) implies that \(H_0 = \mathcal{H}[q_0] \) and our corollary follows from Proposition 1.

We now consider this question for the general Douglas algebras. Let \(A \) and \(B \) be Douglas algebras such that \(A \subseteq B \) and there is an inner function \(q \) with \(B \subseteq A[q] \).

When this occurs we say that \(A \) is near \(B \). It is well known that if \(B = \mathcal{L}^\infty \) and \(A \) is any Douglas algebra properly contained in \(B \), then \(A \) is not near \(B \); that is, \(B \not\subseteq A[q] \) for any inner function \(q \). In fact \(\mathcal{L}^\infty \) is not countably generated over any Douglas algebra \(A \) [10]. So by the results of C. Sundberg [10] any Douglas algebra \(B \) which is countably generated over \(A \) is also near it.

The following result comes from [2, Lemma 5] and gives equivalent conditions for two Douglas algebras to be near each other [see 11, Theorem 1 for a similar result].

Theorem 2. Let \(A \) and \(B \) be Douglas algebras with \(\mathcal{H} \subset A \subset B \) and \(q \) be an inner function. Then the following statements are equivalent.

(i) \(M(A) = Z_A(q) \cup M(B) \)

(ii) \(\emptyset \not\subseteq A \).

where \(Z_A(q) = Z(q) \cap M(A) \).

Proof. Assume (i) holds; we show that \(\emptyset \not\subseteq A \). Let \(b \) be any interpolating Blaschke product for which \(\overline{b} \) is in \(B \). If \(x \) is in \(Z_A(b) \), we show that \(x \) is also in \(Z_A(q) \). Now \(x \) is in \(M(A) \) and \(b(x) = 0 \) implies that \(x \) is not in \(M(B) \), since \(\overline{b} \) is in \(B \). So by (i) we have that \(x \) must be in \(Z_A(q) \). Thus \(Z_A(b) \subseteq Z_A(q) \), and by Theorem 1 of [4] we have \(\overline{b} \) is in \(A \). Now let \(f \) be any function in \(B \). By the Chang Marshall Theorem [1,8] there is a sequence of functions \(\{h_n\} \) in \(\mathcal{H} \) and a sequence of interpolating Blaschke products \(\{b_n\} \) with \(b_n \neq B \) for all \(n \), such that \(h_n b_n \to f \).

But \(h_n b_n \to f \) belongs to \(A \) since \(b_n \) is in \(A \) for all \(n \). This proves (ii).
Assume (ii) holds. Let \(x \) be in \(M(A) \) but not in \(M(B) \). Then there is an inner function \(b \) which is invertible in \(B \) such that \(|b(x)| < 1 \). For any positive integer \(n \), the function \(f_n = q^n b \) is in \(A \), so

\[
|g(x)| = |b(x)| |f_n(x)| \leq |b(x)|^n.
\]

Letting \(n \to \infty \) we get \((x) = 0 \). This proves (i).

Set \(Z_B(q) = M(B) \cap Z_A(q) \) and \(Z_B^*(q) = Z_A(q)/Z_B(q) \); then \(M(A)/M(B) = \bigcup_{x \in Z_B^*(q)} P_x \), since \(M(A) = M(B) \cup Z_A(q) \).

As we have previously done, let \(\Omega(B,A) \) be the set of interpolating Blaschke products \(b \) such that \(b \in B \) but \(b \notin A \) and set \(\mathcal{W}^* = \bigcap_{b \in \Omega(B,A)} \mathcal{N}_A(b) \). We assume \(\mathcal{W}^* \neq \emptyset \).

Using Proposition 1, Theorem 2 and Lemma 1, we have the following result.

PROPOSITION 2. Let \(A \) and \(B \) be arbitrary Douglas algebras such that \(A \) is near \(B \). Then the following statements are equivalent:

(i) \(N_A(B) \subseteq N_A(\mathcal{W}^*) \) for all \(b \in \Omega(B,A) \);

(ii) \(A \) is a maximal subalgebra of \(B \);

(iii) \(\mathcal{W}^* = \mathcal{N}_A(B) \).

PROOF. Assume that (i) holds. Since \(A \) is near to \(B \), there is an inner function such that \(M(A) = M(B) \cup \{ \bigcup_{x \in Z_B^*(\phi)} P_x \} \). If we set \(\mathcal{A}^* = \bigcup_{x \in Z_B^*(\phi)} P_x \), then it is immediate that

\[
N_A(B) = \text{closure of } \{ \supp \mu_x : x \in \mathcal{A}^* \}.
\]

Let \(b \) be any element in \(\Omega(B,A) \). By (i) we have that \(N_A(B) \subseteq N_A(\mathcal{W}^*) \). As in proof of Lemma 1 we have that \(A[b] = B \). Thus is a maximal in \(B \).

Assume that (ii) holds, and let \(x \in \mathcal{A}^* \). Since \(A \) is near \(B \), we have that \(M(A) = M(B) \cup \mathcal{A}^* \). If \(b \in \Omega(B,A) \), then by our hypothesis \(A[b] = B \), which implies that if \(y \in M(A) \) and \(|b(y)| = 1 \), then \(y \notin M(B) \) (since \(M(A[b]) = \{ g \in M(A) : |b(g)| = 1 \} = M(B) \)). So, if \(\supp \mu_x \subseteq N_A(B) \), the \(\mathcal{L}_x \mathcal{H}^* \supp \mu_x \). Thus \(N_A(B) \subseteq N_A(\mathcal{W}^*) \) for all \(b \in \Omega(B,A) \).

This implies that \(N_A(B) \subseteq \mathcal{W}^* \).

To show what \(\mathcal{W}^* \subseteq N_A(B) \), let \(b \in \Omega(B,A) \). Hence \(b \notin B \); therefore we have

\[
N_A(\mathcal{W}^*) = \text{closure of } \{ \supp \mu_x : x \in M(A), |b(x)| < 1 \} = \text{closure of } \{ \supp \mu_x : x \in M(A)/M(B), |b(x)| < 1 \} \subseteq \text{closure of } \{ \supp \mu_x : x \in M(A)/M(B) \} = N_A(B).
\]
Since this is true for any $b \in \sigma(B,A)$, we have $N_A(B) \supseteq W_A^*$. Thus $W_A^* = N_A(B)$ if A is maximal in B.

It is trivial that if (iii) holds, $N_A(B) \subseteq N_A(b)$ for all $b \in \sigma(B,A)$.

We are done.

In Proposition 4.1 of [7] Izuchi constructed a family of Douglas algebras B contained in $H'[q]$ with the property that $N(B) = N(q)$. By Proposition 1, we have that this family is a family of maximal subalgebras of $H'[q]$.

Finally we close this paper with the following question that I have been unable to answer.

QUESTION 1. Recall that if q is an interpolating Blaschke product, then $N(q) = N(B) \cup N_B(q)$ for any Douglas algebra with $B \subseteq H'[q]$. Does there exist a Douglas algebra $B_0 \subseteq H'[q]$ with $N_{B_0}(q) = N(q)$?

REFERENCES

10. SUNDBERG, C. A Note on Algebras between L^∞ and H^∞ Rocky Mountain J. Math. 11 2 (1981), 333-335.
Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today’s economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Computational methods**: artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning
- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk