1. INTRODUCTION. Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) be analytic in \(|z| < R \). For a non-decreasing sequence of positive numbers \(\{d_n\} \), the Gelfond-Leontev (G-L) derivative of \(f \) is defined as
\[
Df(z) = \sum_{n=1}^{\infty} d_n a_n z^{n-1}.
\]

The \(k \)th iterate \(D^k f \), \(k=1,2,\ldots \), of \(D \) is given by
\[
D^k f(z) = \sum_{n=k}^{\infty} d_n \cdots d_{n-k+1} a_n z^{n-k}
\]
where, \(e_0 = 1 \) and \(e_n = (d_1 d_2 \cdots d_n)^{-1} \), \(n=1,2,\ldots \). If \(d_n \equiv n \), \(Df \) is the ordinary derivative of \(f \); whereas, if \(d_n \equiv 1 \), \(D \) is the shift operator \(L \) which transforms
\[
f(z) = \sum_{n=0}^{\infty} a_n z^n \text{ into } Lf(z) = \sum_{n=1}^{\infty} a_n z^{n-1}.
\]

Let,
\[
\psi(z) = \sum_{n=0}^{\infty} e_n z^n
\]
and have radius of convergence \(R_0 \). From the monotonicity of \(\{d_n\} \), we have
\[
R_0 = \lim_{n \to \infty} d_n = \sup \{d_n\}.
\]
Clearly, \(\psi(0) = 1 \) and \(D\psi(z) = \psi(z) \). Thus, \(\psi(z) \) bears the same relationship to the operator \(D \) that the function \(\exp(z) \) bears to the ordinary differentiation.

For an entire function \(f \), Nachbin used the function \(\psi(z) \) as a comparison function for measuring the growth of maximum modulus of \(f \) on \(|z| = r \). Thus, the
growth parameter ψ-type of f is defined as the infimum of the positive numbers τ such that, for sufficiently large r,

$$|f(z)| < N\psi(\tau r) \quad (1.4)$$

where, $\psi(z)$ is entire and N is a positive constant. We denote ψ-type of f as $\tau_\psi(f)$. It is known [2, p.6] that

$$\tau_\psi(f) = \lim_{n \to \infty} \sup \frac{a_n}{n^{1/n}} \quad (1.5)$$

For $d_n \equiv n$, the ψ-type of an entire function f reduces to its classical exponential type and the formula (1.5) gives its well known coefficient characterisation [3, p. 11].

The comparison function $\psi(z)$ can also be used to define a measure of growth analogous to classical order [3, p.8] of an entire function. Thus, for an entire function f, let the ψ-order $\rho_\psi(f)$ of f be defined as the infimum of positive numbers ρ such that, for sufficiently large r,

$$|f(z)| < K\psi(r^\rho) \quad (1.6)$$

where $\psi(z)$ is entire and K is a positive constant.

Shah and Trimble [4,5] showed that if f is entire then, the assumption that the classical derivatives $f^{(n)}_p$ are univalent in $\Delta = \{z: |z| < 1\}$ for a suitable increasing sequence $\{n_p\}_{p=1}^\infty$ of positive integers affects the growth of the maximum modulus of f. If instead, we assume that the G-L derivatives D_n^pf of an entire function f are univalent in Δ, then it is natural to enquire in what way the ψ-type and ψ-order of f are influenced. The present paper is an attempt in this direction. In Theorem 1, we find that if f is entire, D_n^pf are univalent in Δ and

$$\lim_{p \to \infty} \sup (n_p - n_{p-1}) = \mu, \quad 1 < \mu < \infty,$$

then the ψ-type $\tau_\psi(f)$ of f must satisfy

$$\tau_\psi(f) \leq 2(d(\mu+1)\ldots d(2))^{1/\mu}. \quad (1.7)$$

Further, if $\mu = \infty$, then f need not be of finite ψ-type. Our Theorem 2 shows that if f is entire, D_n^pf are univalent in Δ and $n_p \sim n_{p+1}$ as $p \to \infty$, then

$$\rho_\psi(f) \leq \frac{1}{\log d(n_p-n_{p-1})} \left(1 - \lim_{p \to \infty} \sup \frac{\log d(n_p-n_{p-1})}{\log d(n_p)}\right). \quad (1.8)$$

It is clear that if $0 < \rho_\psi(f) < 1$, then the above inequality gives no relationship between D_n^pf and the ψ-order of an entire function f. In fact, no such relation of this nature exists. This is illustrated in Theorem 3, wherein for any given
growth of entire functions with univalent derivatives

\[\rho, 0 < \rho < 1, \text{ and any given increasing sequence } \{n_p\}_{p=1}^\infty \text{ of positive integers, we} \]

construct an entire function \(h \), of \(\psi \)-order \(\rho \), such that \(D P h \) is univalent in \(\Delta \) if and only if \(n = n_p \).

In the sequel, we shall assume throughout that \(d_n \to \infty \) as \(n \to \infty \).

2. \(\psi \)-type and exponents of univalent G-L derivatives.

Theorem 1. Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) be an entire function and \(\{n_p\}_{p=1}^\infty \) be an increasing sequence of positive integers. Let \(D^n f \) be analytic and univalent in \(\Delta \). Suppose \(\lim_{p \to \infty} \sup_{p} (n_p - n_{p-1}) = \mu, 1 < \mu < \infty \). Then, the \(\psi \)-type \(\tau_{\psi} (f) \) of \(f \) satisfies

\[\tau_{\psi} (f) < 2 (d(\mu + 1) \ldots d(2))^{1/\mu}. \]

Proof. By the hypothesis,

\[D^n f(z) = \sum_{k=0}^{\infty} d(n_k + k) a(n_k + k) z^k \]

are univalent in \(\Delta \). Since, for any function \(G(z) = b_0 + b_1 z + b_2 z^2 + \ldots \), univalent in \(\Delta \), it is known \([6]\) that \(|b_n| < n |b_1| \) for \(n = 2, 3, \ldots \), we get

\[|a(n_k + k)| < k d_k \ldots d_{(k+1)} d(n_{p+1}) \ldots d(2) |a(n_{p+1})| \]

for \(k = 1, 2, \ldots \) and \(p = 2, 3, \ldots \). In particular, putting \(k = n_{p+1} - n_p + 1 \) and inducting upon \(p \), we get, for \(p > 2 \) and \(2 < k < n_{p+1} - n_p + 1 \),

\[|a(n_k + k)| < \frac{d_k \ldots d_{(k+1)}}{d_{n_{p+1}} \ldots d_{(2)}} p (n_{p+1} - n_p + 1) d(n_{p+1} - n_p + 1) \ldots d(2) \]

where \(A = d(n_p + 1) \ldots d(2) |a(n_{p+1})| \). Hence, for sufficiently large \(p \),

\[\frac{a(n_k + k)}{e(n_k + k)} \left(\frac{1}{n_k + k} \right)^{1/\mu} \]

\[< (1 + o(1)) d_k \ldots d_{(k+1)}^{1/\mu} p (n_{p+1} - n_p + 1) d(n_{p+1} - n_p + 1) \ldots d(2) \]

Since, \(d_k \ldots d_{(k+1)} \) is an increasing function of \(k \), and

\[(n_{p+1} - n_p) < \mu', \mu' > \mu \], for sufficiently large \(p \),

\[\frac{1}{n_k + k} \]

\[< \frac{1}{(n_{p+1} - n_p + 1) \ldots d(1)} \left(\frac{1}{n_{p+1} - n_p + 1} + \frac{1}{n_{p+1}} \right) \]

\[< \frac{1}{(n_{p+1} - n_p + 1) \ldots d(1)} (1 + o(1)) \]
Further [7], for \(p > 2 \)
\[
\frac{p}{\prod_{i=2}^{p} (n_i - n_{i-1} + 1)} \frac{1}{p(n+2)} < \left(1 + \frac{n_p}{p}\right) \frac{p}{n} < 2 .
\] (2.5)

Using (2.5) and the preceding inequality in (2.4), we get for sufficiently large \(p \),
\[
\frac{1}{p} \frac{a(n+k)}{e(n+k)} \frac{1}{(np+2)(d(n_1 - n_{1-1} + 1)\ldots d(2))} < 2(1+\alpha(1)) \frac{1}{(np+k)} .
\] (2.6)

Now, if \(a_j > 0, t_j > 0, \Sigma t_j > 0 \) and \(\max_{1 \leq j < N-1} \frac{a_j}{N} < \frac{a_N}{N} \) then clearly,
\[
\sum_{j=1}^{N} a_j t_j < \frac{a_N}{N} .
\] (2.7)

Further, \(\log(d(j+1)\ldots d(2))/j \) is an increasing function of \(j \) for \(1 < j < \mu, \mu = 1,2,\ldots \). Thus, if \(1 < j < \mu \),
\[
\frac{\log(d(j+1)\ldots d(2))}{j} < \log(d(\mu+1)\ldots d(2))
\] (2.8)

Let \(p > p_0, 1 < \gamma < \mu \). Suppose \(t_\gamma \) is the number of \(j_i \)'s in \([p_0,p]\) such that
\[
n_j + n_j = \gamma \text{ for } j = j_i .\text{ Then, by (2.7) and (2.8),}
\]
\[
\sum_{\gamma=1}^{\mu} t_\gamma \log(d(\gamma+1)\ldots d(2)) = \frac{p}{p_0+1} \frac{1}{(n_j - n_{j-1})} \sum_{\gamma=1}^{\mu} t_\gamma (\log(d(\gamma+1)\ldots d(2))
\] (2.9)

The above inequality implies that
\[
\prod_{i=2}^{p} (d(n_i - n_{i-1} + 1)\ldots d(2)) \frac{1}{p} < \exp \left\{ \frac{p}{p_0+1} \frac{1}{(n_j - n_{j-1})} \sum_{\gamma=1}^{\mu} t_\gamma (\log(d(\gamma+1)\ldots d(2))
\] (2.10)

Using the estimate (2.9) in (2.6) and proceeding to limits
\[
\lim_{k+\infty} \frac{a_k}{e_k} = \lim_{k+\infty} \left\{ \frac{a(n+k)}{e(n+k)} \frac{1}{p} : 2 < k < n_{p+1} - n_{p+1}, \ p > 2 \right\} < 2(d(\mu+1)\ldots d(2))^{1/\mu}.
\]

This completes the proof of the theorem.
REMARK 1. In Theorem 1, it is sufficient to take the function \(f \) to be analytic in \(|z| < R \), for some \(R, 0 < R < \infty \), if the sequence \(\{d_n\}_{n=1}^{\infty} \) in the definition of G-L derivative of \(f \) satisfies the condition \(\lim_{m \to \infty} \left(\frac{1}{m} \log d(i)/m \right) = 0 \). In fact, for an analytic function \(f \) in \(|z| < R \), if \(D^p f \) are univalent in \(\Delta \),

\[
\lim_{p \to \infty} \sup_{n \geq p} \left(\frac{n - n_{p-1}}{p} \right) = \mu, \quad 1 < \mu < \infty, \text{ and }
\lim_{m \to \infty} \frac{1}{m} \sum_{i=2}^{m} \log d(i) = 0
\]

holds, then \(f \) is necessarily entire. To see this, we use (2.5) and

\[
(d_k \ldots d_1)^{1/(n+k)} \leq 1 + o(1)
\]

for sufficiently large \(p \) in (2.3) to get

\[
|a(n+k)|^{1/(n+k)} \leq 2(1+o(1)) \exp \left(\frac{1}{n_p} \sum_{i=2}^{n_p} \log(d(n_i - n_{i-1} + 1) \ldots d(2)) \right)
\]

for sufficiently large \(p \). But since, for sufficiently large \(p \), \((n_p - n_{p-1}) < \mu' \), \(\mu' > \mu \),

\[
\sum_{i=2}^{n_p} \log(d(n_i - n_{i-1} + 1) \ldots d(2)) \to 0 \text{ as } p \to \infty.
\]

Thus, by (2.10) and the condition \(\lim_{m \to \infty} \left(\frac{1}{m} \log d(i)/m \right) = 0 \),

\[
\lim_{k \to \infty} \sup_{k \leq n} \left(\frac{1}{k} \right) = \lim_{k \to \infty} \sup_{k \leq n} \left(\frac{1}{k} \right) = 0.
\]

REMARK 2. The inequality (2.1) can be improved by imposing suitable additional restrictions on the sequence \(\{d_n\}_{n=1}^{\infty} \). For example, let the sequence \(\{d_n\}_{n=1}^{\infty} \) be such that

\[
\frac{(d(n+2))^n}{d(n+1) \ldots d(2)} > \frac{2}{3(n+1)}, \ n=1,2,3, \ldots.
\]

Note that (2.11) is satisfied for \(d_n = n^\alpha, \alpha > 1 \).

Because of (2.11), the function \(s(j) \) defined by

\[
s(j) = \frac{\log(d(j+1) \ldots d(2)) + \log(j+1)}{j}
\]

is an increasing function of \(j \) and so for \(j=1,2,3, \ldots; \mu=1,2, \ldots \).
Let t_{γ} be the same as in the proof of Theorem 1. Using (2.7) and (2.12), we get

$$
\frac{\log(d(j+1)\ldots d(2))+\log(j+1)}{\mu} < \frac{\log(d(\gamma+1)\ldots d(2))+\log(\gamma+1)}{\mu}.
$$

(2.12)

Again, we have

$$
\frac{\log(d(n_{i-1}-n_{i-2}+1)d(n_{i-1}-n_{i-2}+1)\ldots d(2))}{\mu} < \exp \left\{ o(1) + \frac{1}{\mu} \log(d(n_{i-1}-n_{i-2}+1)\ldots d(2)) \right\}.
$$

The above inequality, when employed in (2.4), gives

$$
\frac{\log(d(n_{i-1}-n_{i-2}+1)d(n_{i-1}-n_{i-2}+1)\ldots d(2))}{\mu} < \exp \left\{ o(1) + \frac{1}{\mu} \log(d(n_{i-1}-n_{i-2}+1)\ldots d(2)) \right\}.
$$

Now, on proceeding to limits, we get

$$
\tau_{\psi}(f) < \frac{1}{\mu}(d(\mu+1)\ldots d(2))^{1/\mu}.
$$

(2.13)

It is clear that the bound on $\tau_{\psi}(f)$ in (2.13) is better than that in (2.1).

REMARK 3. By taking $\mu=1$, Theorem 1 gives $\tau_{\psi}(f) = 2d(2)$, a result recently proved in [8].

Theorem 1 shows that if $(n_{p+1}-n_{p}) = O(1)$, then f is of finite ψ-type.

We now give an example to show that if $\lim_{p \to \infty} \sup_{p} (n_{p+1}-n_{p}) = \infty$, then f need not be of finite ψ-type.

EXAMPLE. Let $\{n_{p}\}_{p=1}^{\infty}$ be an increasing sequence of positive integers such that $n_{p+1} - n_{p} > 2$ for all p. Further, assume that the sequence $\{d_{n}\}_{n=1}^{\infty}$ is such that

(i) $d_{1} = 1$ and $\log d(n) \sim \log n$ as $n \to \infty$.

(ii) $n_{p} = o(n_{p})$.

(iii) $n_{p} = o(n \log d(n))$.
where, \(n_p = \sum_{i=2}^{p} \log(d(n_i-n_{i-1}+1)...d(2)) \).

Let \(\psi \) be a non-decreasing step function such that \(\psi(n_1) = \psi(n_2) \),

\[
\psi(n_p) = \frac{\exp(n_p)}{2^{p-1}}, \quad p > 2
\]

and

\[
\psi(x) = \psi(n_p) \quad n < x < n_{p+1}.
\]

Let

\[
g_{j+1}(n) = \begin{cases} \frac{\psi(j)}{d(j+1)...d(2)} (j-n_p+p+1) & \text{if } j = n_p \text{ for some } p \\ 0 & \text{otherwise.} \end{cases}
\]

Define

\[
g(z) = \sum_{j=0}^{\infty} g_j z^j
\]

We first show that \(g \) is an entire function. We have

\[
\lim_{k \to \infty} \sup_{1/k} |g_k|^{1/k} = \lim_{p \to \infty} \frac{\psi(n_p)}{d(n_p+1)...d(2)}^{1/n_p+1}
\]

\[
< \limsup_{p \to \infty} \frac{\exp(n_p/n_p)}{(d(n_p+1)...d(2))^{1/n_p+1}}
\]

\[
= \lim_{p \to \infty} \exp(\frac{n_p}{n_p} - \frac{1}{n_p+1} \sum_{i=2}^{n_p} \log d(i))
\]

Since \(\log d(n) \sim \log n \) as \(n \to \infty \), using the condition (iii), we get from the above inequality that

\[
\lim_{k \to \infty} \sup_{1/k} |g_k|^{1/k} = 0.
\]

Hence \(g \) is entire. It is easily seen that \(g \) is of order 1. But, by the condition (ii),

\[
\lim_{k \to \infty} \sup_{1/k} |g_k|^{1/k} = \lim_{p \to \infty} \frac{\psi(n_p)}{\exp(n_p/n_p)} \left(\frac{1}{d(n_p+1)...d(2)}^{1/n_p+1} \right)
\]

Thus, \(f \) is not of finite \(\psi \)-type. It remains to see that

\[
D^n g(z) = \sum_{k=1}^{\infty} d(n_p+k+1)...d(n_p+k-n_p+2) z^{n_{p+k}-n_p+1}
\]

are univalent in \(\Delta \). To this end, it is enough to prove that

\[
\left| \sum_{k=1}^{\infty} \frac{d(n_p+k+1)...d(2)}{d(n_p+k-n_p+1)...d(2)} |a(n_p+k+1)| \right|
\]
or, equivalently to show that
\[
\psi(n^p_{p+k}) \leq \frac{1}{k!} \frac{\exp(n^p_{p+k}-n^p_{p})}{d(n^p_{p+k}-n^p_{p}+1)\ldots d(2)} < \psi(n^p_{p})
\]

Using the definition of \(\psi \), the last inequality reads as
\[
\psi(n^p_{p+k}) \leq \frac{1}{k!} \frac{\exp(n^p_{p+k}-n^p_{p})}{d(n^p_{p+k}-n^p_{p}+1)\ldots d(2)} < 1.
\]

Now, an induction on \(k \), gives, for \(k=1,2,3,\ldots \)
\[
\exp(n^p_{p+k}-n^p_{p}) \leq \prod_{i=1}^{p+k} d(n^p_{p+k}-n^p_{p}+1)\ldots d(2) < d(n^p_{p+k}-n^p_{p}+1)\ldots d(2)
\]

Hence, (2.14) is clearly satisfied.

3. \(\psi \)-ORDER AND EXPONENTS OF UNIVALENT G-L DERIVATIVES.

A function \(S(x) \), continuous on \([1,\infty)\), is said to be Slowly Oscillating (S.O.) if for every positive number \(c > 0 \),
\[
\lim_{x \to \infty} \frac{S(cx)}{S(x)} = 1.
\]

A function \(H(n) \) is said to be the restriction of a Slowly Oscillating function \(S(x) \) if \(S(n) = H(n) \) for every positive integer \(n \). It is known \([9]\) that, as \(k \to \infty \)
\[
L \sum_{i=1}^{k} H(i) \sim kH(k).
\]

THEOREM 2. Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) be an entire function of \(\psi \)-order \(\rho_\psi \) and \(\{n_p\}_{p=1}^{\infty} \) be a strictly increasing sequence of positive integers. Let \(D^{n_p}_p f \) be analytic and univalent in \(\Delta \), such that \(n_p \sim n_{p+1} \) as \(p \to \infty \). If \(\log d(n) \) is the restriction of a slowly oscillating function on integers, then
\[
\rho_\psi(f) \leq \frac{1}{\limsup_{p \to \infty} [\log d(n^p_{p+p-1})]}.
\]

We need the following lemmas.

Lemma 1. Let \(\gamma \) be defined by (1.3). Let \(\gamma_n = \min_{x > 0} \psi(x^a) x^{-n}, a > 0 \).

Then,
\[
\gamma_n \leq e^{-\frac{n(1 - \frac{1}{a})}{a} (\frac{a(n+a)}{a})}
\]

Proof. Since \(\{d^{n-p}_{n}\}_{n=1}^{\infty} \) is increasing, we note that for any pair of integers \(k \) and \(n \), \(e_k \leq d^{n-k}_{n} \). Thus,
Let $0 < w < 1$. Setting $x = w^{1/a}$, we get

$$
\psi(x^n) = e^{\frac{w}{a} x} \leq e^{\frac{1}{a} x} \leq e^{\frac{1}{a} w^{1/a}}.
$$

Choosing $w = (n/n+a)^{1/a}$ to minimize the right-hand side of the above inequality, we have

$$
\psi(x^n) \leq e^{\frac{1}{a} (n/a)} (e(n+a)).
$$

Lemma 2. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be an entire function of ψ-order ρ_ψ, where the sequence $\{d(n)\}$ in Df is such that $\log d(n)$ is the restriction of a slowly oscillating function on positive integers.

Then,

$$
\rho_\psi(f) = \limsup_{n \to \infty} \frac{n \log d(n)}{\log |a_n|}.
$$

Proof. By Cauchy's inequality, we get

$$
|a_n| \leq M(r) r^{-n}, \quad M(r) = \max_{|z| < r} |f(z)|.
$$

Since f is of ψ-order $\rho_\psi(f) = \rho$, for any $\varepsilon > 0$, $|f(z)| < M(r^{\rho+\varepsilon})$.

So that

$$
|a_n| < M(r^{\rho+\varepsilon}) r^{-n}.
$$

Using Lemma 1, we have

$$
|a_n| < M e^{\frac{n(1-a)}{a}} (e(n+a)).
$$

But, since $\log d(n)$ is the restriction of a S.O. function, by (3.1),

$$
\sum_{n=0}^{\infty} \log d(n) = n \log d(n) \text{ as } n \to \infty. \text{ Thus, it follows from (3.5)}
$$

$$
\limsup_{n \to \infty} \frac{n \log d(n)}{-\log |a_n|} < \rho.
$$

To prove that equality holds in (3.4), suppose that

$$
\limsup_{n \to \infty} \frac{n \log d(n)}{-\log |a_n|} < \rho.
$$

Then, there exist $\rho_1 < \rho$ such that $|a_n|^{1/\rho_1} \leq \varepsilon_n$ for $n > n_0$. It now follows that, for $|z| = r$,

$$
|f(z)| < \sum_{n=0}^{n_0} |a_n| r^n + \sum_{n=n_0+1}^{\infty} |a_n| r^n
$$

$$
< 0(1) + \sum_{n=n_0+1}^{\infty} \varepsilon_n^{1/\rho_1} r^n.
$$

\[_]
Choose

\[N(r) = \frac{\log \psi(r)}{\log r} \]

It is easily seen that \(N(r) \to \infty \) as \(r \to \infty \). Since for all values of \(k \) and \(n \),
\[e_n < e_k d_k^{k-n} \]
we have
\[\sum_{n=0}^{\infty} e_n^{1/\rho_1} r^n < \sum_{n=0}^{\infty} e_k d_k^{k-n/\rho_1} r^n \]
\[= \frac{1/\rho_1}{d_k} e_k d_k^{k-n/\rho_1} \left(-\frac{r}{1/\rho_1} \right)^n. \]

Let \(k \) be chosen such that \((r/d_k^{1/\rho_1}) < 1 \). Then,
\[\sum_{n=0}^{\infty} e_n^{1/\rho_1} r^n < \frac{d_k^{k+1/\rho_1}}{1/\rho_1} e_k^{1/\rho_1} \left(\frac{r}{1/\rho_1} - r \right) \]

Since the left hand side of (3.7) is independent of \(k \), letting \(k \to \infty \), we get
\[\sum_{n=0}^{\infty} e_n^{1/\rho_1} r^n < 1. \]

Thus
\[\sum_{n=N(r)}^{\infty} e_n^{1/\rho_1} r^{n-o(1)} = \psi(r^{\rho_1}) \]

Since, \(r^N(r) = \exp(N(r)\log r) = \psi(r^{\rho_1}) \), it now follows from (3.6)
\[|f(z)| < 0(1) + \sum_{n=0}^{N(r)} e_n^{1/\rho_1} r^n + o(1) \]
\[< 0(1) \psi(r^{\rho_1}). \]

Since \(\rho_1 < \rho \) and \(\rho \) is the \(\psi \)-order of \(f \), the above inequality contradicts the definition of \(\psi \)-order. Thus, equality must hold in (3.4). This proves the lemma.

PROOF OF THEOREM 2. Since \(D \) are univalent in \(\Delta \), from (2.2), we get for sufficiently large \(p \) and \(2k<n+1-p \).
\[|a(n+k)|^{1/(n+k)} \leq (1+o(1)) \left(\frac{d_k \ldots d_1}{d_{k+n} \ldots d_1} \right)^{1/(n+k)} \sum_{l=2}^{\infty} \left((n_1-n_1-1)d(n_1-n_1-1)+d(2) \right)^{1/(n+k)} \]

Further, we have
\[
\frac{1}{(n+k)} \leq (\frac{d_{p+1}}{d_1})^{p} < (\frac{d_{n+p}}{d_1})^{p+1}
\]

and

\[
-\frac{1}{(n+k)} \leq (\frac{d_{p+1}}{d_1})^{p} < (\frac{d_{n+p}}{d_1})^{p+2}.
\]

Using these inequalities, (2.5) and (3.8), it follows that, for sufficiently large \(p \),

\[
|a(n+k)|^{\frac{1}{(n+k)}} \leq \frac{2(1+\omega(1))}{1/n} \left(\log \frac{d_{n+p}}{d_1}\right)^{1/n} \frac{n_{n+1}}{n_{n+1}^{p+1}}
\]

Let,

\[M_p = \max \{ \log d_{n_i-n_{i-1}+1}: 2 \leq i \leq p \}. \]

Since \(\log d(n) \) is the restriction of a slowly oscillating function on integers, by (3.1)

\[
\frac{1}{n} \left[\sum_{i=2}^{n_p} (n_i-n_{i-1}) \log d_{n_i-n_{i-1}+1} - \sum_{i=1}^{n_p-1} \log d_i \right]
\]

\[
\leq \frac{n_{p+1}}{n_p} \frac{M_p}{p+1} \log d_{n_p}.
\]

Consequently, for sufficiently large \(p \),

\[
\frac{(n+k) \log d_{n+k}}{\log d_{n+p+1}} < \frac{\log d_{n+p+1}}{-\log |a(n+k)|} \log d_{n_p} - \frac{n_{p+1}}{n_p} \frac{M_p}{p+1} \log 2.
\]

Again, from the definition of S.O. function \(\log d_{n_p} \sim \log d_{n_p+1} \) as \(p \to \infty \).

Hence,

\[
\rho \psi < \frac{1}{1 - \lim \sup_{p \to \infty} \frac{M_p}{\log d_{n_p}}}.
\]

If \(M_p \) is bounded, there is nothing to prove. So, let \(M_p \to \infty \) as \(p \to \infty \).

For \(p > 2 \), let,

\[
A_p = \frac{\log d_{n_p-n_{p-1}+1}}{\log d_{n_p}}
\]

and

\[
B_p = \frac{M_p}{\log d_{n_p}}.
\]

But as \(M_p = \max \{ \log d_{n_i-n_{i-1}+1}: 2 \leq i \leq p \} \), for each \(p > 2 \), there is some
q_p^p, q_p < p such that \(M_p = \log d(n_p - n_{p-1}) \). Hence

\[B < A. \]

Taking \(q_p \rightarrow \infty \),

\[\limsup_{p \to \infty} B < \limsup_{p \to \infty} A. \]

Now (3.2) follows from (3.10).

COROLLARY. Suppose the conditions of Theorem 2 are satisfied. If as \(p \to \infty \),

\[\log d(n_p - n_{p-1}) = o(\log d(n_p)) \]

then,

\[\rho_{\psi}(f) < 1. \]

THEOREM 3. Let \(0 < \rho < 1 \). Let \(\{n_p\}_{p=1}^{\infty} \) be a strictly increasing sequence of non-negative integers. Then, there is an entire function \(h \) of \(\psi \)-order \(\rho \) such that \(D^n h \) is univalent in \(\Delta \) if and only if \(n = n_p \) for some \(p \).

PROOF. Suppose \(\rho > 0 \) and \(\{d_n\}_{n=1}^{\infty} \) is an increasing sequence of positive numbers such that \(\log d(n) \) is the restriction of a slowly oscillating function on integers and \(d_1 = 1 \). Let,

\[h_{j+1} = \begin{cases} \frac{1}{2^p d(n_p + 1) \cdots d(2) (j-n_p + 1)} & \text{if } j = n_p \text{ for some } p \\ 0 & \text{otherwise.} \end{cases} \]

Define, \(h(z) = \sum_{j=0}^{\infty} h_j z^j \). Then, \(h(z) \) is an entire function and

\[\rho_{\psi}(h) = \limsup_{k \to \infty} \frac{k \log d(k)}{-\log |h_k|} = \limsup_{p \to \infty} \frac{(n_p + 1) \log d(n_p + 1)}{p \log 2 + \frac{1}{\rho} \log(d(n_p) \cdots d(2))} = \rho, \]

To show that \(D^n h \) given by

\[D^n h(z) = \sum_{k=0}^{\infty} (n_p + k - n_p + 1) \frac{d(n_p + k + 1) \cdots d(2)}{d(n_p + k - n_p + 1) \cdots d(2)} h(n_p + k + 1) \frac{n_p + k - n_p + 1}{z} \]

is univalent in \(\Delta \), it is enough to prove that

\[\sum_{k=1}^{n_p} (n_p + k - n_p + 1) \frac{d(n_p + k + 1) \cdots d(2)}{d(n_p + k - n_p + 1) \cdots d(2)} |h(n_p + k + 1)| < d(n_p + 1) \cdots d(2) |h(n_p + 1)|. \]
Since $p < 1$,
\[\sum_{k=1}^{m} \frac{d(n_{p+k}+1) \ldots d(2)}{d(n_{p+k} - n_{p}+1) \ldots d(2)} \left| h(n_{p+k}+1) \right| \]
\[\leq \frac{1}{2^p} \sum_{k=1}^{m} \frac{1 - \frac{1}{p}}{d(n_{p+k} - n_{p}+1) \ldots d(2)} \]
\[\leq \frac{1}{2^p} \left(d(n_{p}+1) \ldots d(2) \right) \sum_{k=1}^{m} \frac{1}{2^k} \]
\[= d(n_{p}+1) \ldots d(2) \left| h(n_{p}+1) \right|. \]

As $D^{n+1}h(0) = 0$ unless $n=n_p$ for some p, only $D^n h_p$ are univalent in Δ.

If $p=0$, then take h_{j+1}^{*} defined by
\[h_{j+1}^{*} = \begin{cases} \frac{1}{2^p d(n_{p}+1) \ldots d(2) (j-n_{p}+1)} & \text{if } j=n_p \text{ for some } p, \\ 0 & \text{otherwise}. \end{cases} \]

in place of h_{j+1} in the Taylor series of the function $h(z)$.

REFERENCES

Special Issue on
Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today’s economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Computational methods**: artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning
- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk