A TOPOLOGICAL LATTICE ON THE SET OF MULTIFUNCTIONS

BASIL K. PAPADOPOULOS

Democritus University of Thrace
Department of Mathematics
67100 Xanthi, Greece

(Received March 1, 1988 and in revised form May 10, 1988)

ABSTRACT. Let X be a Wilker space and $M(X,Y)$ the set of continuous multifunctions from X to a topological space Y equipped with the compact-open topology. Assuming that $M(X,Y)$ is equipped with the partial order \preceq, we prove that $(M(X,Y), \preceq)$ is a topological V-semilattice. We also prove that if X is a Wilker normal space and $U(X,Y)$ is the set of point-closed upper semi-continuous multifunctions equipped with the compact-open topology, then $(U(X,Y), \preceq)$ is a topological lattice.

KEY WORDS AND PHRASES. Continuous multifunctions, upper semicontinuous multifunctions, compact-open topology, topological lattice.

1980 AMS SUBJECT CLASSIFICATION CODE. 54C35, 54C60.

1. INTRODUCTION AND DEFINITIONS.

A mapping F from a set X to a set Y which maps each point of X to a subset of Y is called multifunction. For any subset A of X, $F(A) = \bigcup_{x \in A} F(x)$. For any subset B of Y, $F^{+}(B) = \{x \in X : F(x) \subseteq B\}$ and $F^{-}(B) = \{x \in X : F(x) \cap B \neq \emptyset\}$. Let X and Y be topological spaces.

A multifunction F from X to Y is upper semi-continuous (lower semi-continuous) if and only if $F^{+}(P)$ ($F^{-}(P)$) is open for each open subset P of Y (see Smithson [1]).

A multifunction $F:X \to Y$ is continuous if and only if it is both upper and lower semi-continuous [1].

A multifunction $F:X \to Y$ is point-closed [1] if and only if $F(x)$ is a closed subset of Y, for each $x \in X$.

If F_1, F_2 are two multifunctions from X to Y, by $F_1 \vee F_2$, we denote the multifunction from X to Y defined by $(F_1 \vee F_2)(x) = F_1(x) \cup F_2(x)$. Also, by $F_1 \wedge F_2$, we denote the multifunction from X to Y defined by $(F_1 \wedge F_2)(x) = F_1(x) \cap F_2(x)$ in Kuratowski [2].

In the following, by $M(X,Y)$, we denote the set of continuous multifunctions. Also, by $U(X,Y)$, we denote the set of point-closed upper semi-continuous multifunctions.
Let K be a compact subset of X and P an open subset of Y. Let $\langle K, P \rangle = \{ F \in M(X, Y) : F(x) \cap P \neq 0 \text{ for all } x \in K \}$ and $[K, P] = \{ F \in M(X, Y) : F(K) \subseteq P \}$. The topology T_{co} on $M(Y, Z)$ generated by the sets of the form $\langle K, P \rangle$ and $[K, P]$, where K is compact in X and P is open in Y, is called the compact open topology on $M(X, Y)$ [1].

The topology T^*_{co} on $U(X, Y)$ generated by the sets of the form $[K, P] = \{ F \in U(X, Y) : F(K) \subseteq P \}$, where K is compact in X and P open in Y, is called the compact-open topology on $U(X, Y)$.

For simplicity, in what follows, we use the symbols $M(X, Y)$ ($U(X, Y)$) to denote the topological spaces $(M(X, Y), T_{co})$ ($U(X, Y), T^*_{co}$).

We give now the definition of Wilker spaces that we will use in the following: A topological space X satisfies the Wilker's condition (D) for every compact subset $K \subseteq X$ and for every pair of open subsets $A_1, A_2 \subseteq X$ with $K \subseteq A_1 \cup A_2$ there are compact subsets $K_1 \subseteq A_1$ and $K_2 \subseteq A_2$ such that $K \subseteq K_1 \cup K_2$ is called a Wilker space (Wilker [3]). It can be easily proved that the class of Wilker spaces contains properly the class of T_2 spaces and also the class of basic locally compact spaces (i.e., those spaces every point of which has a neighborhood basis consisting of compact sets). In [4] basic locally compact spaces are called locally quasi-compact spaces and in Murdehswar [5] they are called spaces which satisfy condition L_2.

In this paper we prove that if X is a Wilker space, then the \vee-semilattices $(M(X, Y), \vee)$, $(U(X, Y), \vee)$ are topological, i.e., we prove the continuity of the join operation \vee. It is also noticed that if X is a normal space, $(U(X, Y), \vee)$ is a semilattice [4, p.4]. Finally, if X is a Wilker normal space, we prove that the meet operation \wedge is continuous, i.e., $(U(X, Y), \wedge)$ is a topological semilattice [4, p.274].

The worth of the above results relies on the fact that the space $U(X, Y)$ ($M(X, Y)$) can be considered as a topological lattice (topological \vee-semilattice [4, p.4]).

2. MAIN RESULTS.

PROPOSITION 2.1. Let X be a Wilker space. Then the operation $(F_1, F_2) \rightarrow F_1 \vee F_2 : M(X, Y) \times M(X, Y) \rightarrow M(X, Y)$ is continuous. Thus the \vee-semilattice $(M(X, Y), \vee)$ is topological.

PROOF. Let $(F_1, F_2) \in M(X, Y) \times M(X, Y)$ and $F_1 \vee F_2 \in [K, P]$. Then $(F_1 \vee F_2)(K) \subseteq P$, which implies that $F_1(K) \subseteq P$ and $F_2(K) \subseteq P$. Hence $F_1 \in [K, P]$ and $F_2 \in [K, P]$ and it can be easily proved that $(G_1, G_2) \in [K, P] \times [K, P]$ implies that $G_1 \vee G_2 \in [K, P]$.

Let now $F_1 \vee F_2 \in \langle K, P \rangle$. Then $(F_1 \vee F_2)(x) \cap P \neq 0$ for each $x \in K$. So we have $K \subseteq F_1^{-1}(P) \cup F_2^{-1}(P)$. But since X is a Wilker space there are compact subsets K_1, K_2 of X such that $K_i \subseteq F_i^{-1}(P)$, $i = 1, 2$, and $K \subseteq K_1 \cup K_2$. So $F_1 \subseteq \langle K_1, P \rangle$, $F_2 \subseteq \langle K_2, P \rangle$. We prove now that $(G_1, G_2) \subseteq \langle K_1, P \rangle \times \langle K_2, P \rangle$ implies that $G_1 \vee G_2 \subseteq \langle K, P \rangle$.

Let $(G_1, G_2) \subseteq \langle K_1, P \rangle \times \langle K_2, P \rangle$. Then, $K_1 \subseteq G_1^{-1}(P)$, $i = 1, 2$, which implies that $K \subseteq F_1 \cup F_2 \subseteq G_1^{-1}(P) \cup G_2^{-1}(P) = (G_1 \vee G_2)^{-1}(P)$. Therefore $G_1 \vee G_2 \subseteq \langle K, P \rangle$.

The proof of the following Proposition is the same as that of Proposition 2.1 (first part) and it is omitted.

PROPOSITION 2.3. Let X be a Wilker space. Then the operation

$$(F_1, F_2) \mapsto F_1 \vee F_2: U(X,Y) \times U(X,Y) \times U(X,Y)$$

is continuous. Thus, the \vee-semilattice

$(U(X,Y), \subseteq)$

is topological.

LEMMA 2.3. [2, p.179]. Suppose X is a normal space. Let $F_1: X \to Y$, $F_2: X \to Y$ be two point-closed upper semi-continuous multifunctions and P an open set in Y. Then,

$$(F_1 \wedge F_2)^+(P) = \bigcup \{F_1^+(V) \cap F_2^+(W) \}$$

where V,W are open in Y, $V \cap W = P$.

PROPOSITION 2.4. Consider a Wilker normal space X. Let $U(X,Y)$ be the set of point closed upper semi-continuous multifunctions equipped with the compact-open topology. Then $(U(X,Y), \subseteq)$ is a topological lattice.

PROOF. It suffices to prove that $(U(X,Y), \subseteq)$ is a topological similattice, i.e., that the meet operation \wedge is continuous. According to the previous lemma, it is obvious that the function $(F_1,F_2) \mapsto F_1 \wedge F_2: U(X,Y) \times U(X,Y) \times U(X,Y)$ is well defined, i.e. that $(U(X,Y), \subseteq)$ is a semilattice.

We prove now that \wedge continuous.

Let an arbitrary $(F_1,F_2) \in U(X,Y) \times U(X,Y)$ and let $F_1 \wedge F_2 \in [K,P]$, where K is compact in X and P is open in Y. Then by the previous lemma

$$K \subseteq (F_1 \wedge F_2)^+(P) = \bigcup \{F_1^+(V) \cap F_2^+(W) \},$$

where V,W are open in Y, $V \cap W = P$. But since K is compact there are finitely many sets $V_i, W_i, i = 1, \ldots, n$ such that

$$K \subseteq \bigcup_{i=1}^{n} \{F_1^+(V_i) \cap F_2^+(W_i) \}.$$

where V_i, W_i are open in Y, $V_i \cap W_i = P$, $i = 1, \ldots, n$. Moreover since X is a Wilker space there exist compact subsets of X, $K_i, i = 1, \ldots, n$, such that

$$K_i \subseteq F_1^+(V_i) \cap F_2^+(W_i) \text{ and } K \subseteq \bigcup_{i=1}^{n} K_i.$$

Thus, $K_i \subseteq F_1^+(V_i), K_i \subseteq F_2^+(W_i), i = 1, \ldots, n$.

Hence $F_1 \in [K_i, V_i], F_2 \in [K_i, W_i], i = 1, \ldots, n$ and finally

$$(F_1,F_2) \in \prod_{i=1}^{n} [K_i, V_i] \times \prod_{i=1}^{n} [K_i, W_i].$$
It remains to prove that for each

\[(G_1, G_2) \in \bigcap_{i=1}^{n} [K_i, V_i] \times \bigcap_{i=1}^{n} [K_i, W_i], \quad G_1 \wedge G_2 \in [K, P].\]

To prove this consider an arbitrary

\[(G_1, G_2) \in \bigcap_{i=1}^{n} [K_i, V_i] \times \bigcap_{i=1}^{n} [K_i, W_i].\]

It must be shown that \(K (G_1 \wedge G_2)^+(P)\). Let an arbitrary \(x \in K\). Then \(x \in K_i\), for some \(i, 1 \leq i \leq n\). Since \(K_i \subseteq G_1(V_i), K_i \subseteq G_2(W_i)\), we have that \(G_1(x) \subseteq V_i, \quad G_2(x) \subseteq W_i\). So \(G_1(x) \cap G_2(x) = (G_1 \wedge G_2)(x) \subseteq V_i \cap W_i \subseteq P\). Thus, \(x \in (G_1 \wedge G_2)^+(P)\), which completes the proof.

ACKNOWLEDGMENT.

I would like to thank the referee for his useful suggestions.

REFERENCES

Special Issue on
Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today’s economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning
- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk

Hindawi Publishing Corporation
http://www.hindawi.com