SOLVABILITY OF A FOURTH-ORDER BOUNDARY VALUE PROBLEM
WITH PERIODIC BOUNDARY CONDITIONS II

CHAITAN P. GUPTA

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439-4801 U.S.A.

(Received August 1, 1989 and in revised form December 17, 1989)

ABSTRACT. Let \(f : [0,1] \times \mathbb{R}^4 \rightarrow \mathbb{R} \) be a function satisfying Caratheodory's conditions and \(e(x) \in L^1[0,1] \). This paper is concerned with the solvability of the fourth-order fully quasilinear boundary value problem

\[
\frac{d^4u}{dx^4} + f(x,u(x),u'(x),u''(x),u'''(x)) = e(x), \quad 0 < x < 1,
\]

with \(u(0) - u(1) = u'(0) - u'(1) = u''(0) - u''(1) = u'''(0) - u'''(1) = 0 \). This problem was studied earlier by the author in the special case when \(f \) was of the form \(f(x,u(x)) \), i.e., independent of \(u'(x), u''(x), u'''(x) \). It turns out that the earlier methods do not apply in this general case. The conditions need to be related to both of the linear eigenvalue problems \(\frac{d^4u}{dx^4} = \lambda^4 u \) and \(\frac{d^4u}{dx^4} = -\lambda^2 \frac{d^2u}{dx^2} \) with periodic boundary conditions.

KEY WORDS AND PHRASES. fully quasilinear, fourth order boundary value problem, periodic boundary conditions, Leray Schauder continuation theorem, Fredholm operator of index zero, compact perturbation, family of homotopy equations.

AMS(MOS) SUBJECT CLASSIFICATION. 34B15, 34C25

1. INTRODUCTION

Fourth-order boundary value problems arise in the study of the equilibrium of an elastic beam under an external load. There arise several different fourth-order boundary value problems depending on how the beam is supported at the end points [4]. Such problems have been studied extensively in recent times. (See e.g. [1-11].) The purpose of this paper is to study the fourth-order fully quasilinear boundary value problem with periodic boundary conditions

\[
\frac{d^4u}{dx^4} + f(x,u(x),u'(x),u''(x),u'''(x)) = e(x), \quad 0 < x < 1, \tag{1.1}
\]

\[
u(0) - u(1) = u'(0) - u'(1) = u''(0) - u''(1) = u'''(0) - u'''(1) = 0, \tag{1.2}
\]

where \(f : [0,1] \times \mathbb{R}^4 \rightarrow \mathbb{R} \) is a function satisfying Caratheodory's conditions and \(e(x) \in L^1[0,1] \). The boundary value problem (1.1)-(1.2) was studied earlier by the author in [6],[7] in the case where \(f \) in equation (1.1) is independent of \(u', u'', u''' \), that is, \(f \) is of the form \(f(x,u(x),u'(x),u''(x),u'''(x)) = f(x,u(x)) \). However, the methods of [6],[7] do not apply to the more general boundary value problem under consideration in this paper. One needs to show that the set of solutions of the family of homotopy equations for the boundary value problem (1.1)-(1.2) is, a priori, bounded in \(C^3[0,1] \), while the methods of [6],[7] can at
best give *a priori* bounds in \(C^2[0,1] \). It turns out that the conditions on the nonlinearity \(f(x,u,u',u'',u''') \) are related to both of the following linear eigenvalue problems:

\[
\frac{d^4u}{dx^4} = \lambda^4 u, \quad 0 < x < 1, \tag{1.3}
\]

and

\[
\frac{d^4u}{dx^4} = -\lambda^2 \frac{d^2u}{dx^2}, \quad 0 < x < 1, \tag{1.4}
\]

with \(u \) satisfying the periodic boundary conditions (1.2).

We use the classical spaces \(C[0,1], C^k[0,1], \) and \(L^k[0,1] \) of continuous, \(k \)-times continuously differentiable, or measurable real-valued functions, the \(k \)-th power of whose absolute value is Lebesgue integrable. We also use the space \(W^{k,1}(0,1) \) defined by

\[
W^{k,1}(0,1) = \left\{ u : [0,1] \rightarrow \mathbb{R} \left| \frac{d^ju}{dx^j} \text{ absolutely continuous on } [0,1] \text{ for } j = 0, 1, \ldots, k-1 \right. \right\},
\]

with the norm \(\| u \|_{W^{k,1}} \) for \(u \in W^{k,1}(0,1) \) defined by

\[
\| u \|_{W^{k,1}} = \sum_{j=0}^{k} \| u^{(j)} \|_{L^1}.
\]

2. MAIN RESULTS

Let \(X, Y \) denote the Banach spaces \(X = C^3[0,1], Y = L^1(0,1) \) with their usual norms, and let \(H \) denote the Hilbert-space \(L^1(0,1) \). Let \(Y_2 \) be the subspace of \(Y \) defined by

\[
Y_2 = \{ u \in Y \mid u = \text{constant a.e. on } [0,1] \},
\]

and let \(Y_1 \) be the closed subspace of \(Y \) such that \(Y = Y_1 \oplus Y_2 \). (Here and in the following, the symbol \(\oplus \) denotes the direct sum.) We note that for \(u \in Y \) we can write

\[
u(x) = \left(\int_{0}^{x} u(t)dt \right) + \int_{0}^{1} u(t)dt,
\]

for \(x \in [0,1] \). We define the canonical projection operators \(P : Y \rightarrow Y_1, Q : Y \rightarrow Y_2 \) by

\[
P(u) = u(x) - \int_{0}^{1} u(t)dt,
\]

\[
Q(u) = \int_{0}^{1} u(t)dt,
\]

for \(u \in Y \). Clearly, \(Q = I - P \) where \(I \) denotes the identity mapping on \(Y \), and the projection operators \(P, Q \) are continuous. Now let \(X_2 = X \cap Y_2 \). Clearly \(X_2 \) is a closed subspace of \(X \). Let \(X_1 \) be the closed subspace of \(X \) such that \(X = X_1 \oplus X_2 \). We note that \(P \lfloor X : X \rightarrow X_1, Q : X \rightarrow X_2 \) are continuous. Similarly, we obtain \(H = H_1 \oplus H_2 \) and continuous projections \(P \lfloor H : H \rightarrow H_1, Q \lfloor H : H \rightarrow H_2 \). In the following, we shall not distinguish between \(P, P \lfloor X, P \lfloor H \) (respectively, \(Q, Q \lfloor X, Q \lfloor H \)) but depend on the context for the proper meaning.
For $u \in X, v \in Y$, let $(u,v) = \int_0^1 u(x)v(x)dx$ denote the duality pairing between X and Y. We note that for $u \in X, v \in Y$, so $u = Pu + Qu, v = Pv + Qv$, we have

$$(u,v) = (Pu,Pv) + (Qu,Qv).$$

Define a linear operator $L: D(L) \subset X \to Y$ by setting

$$D(L) = \left\{ u \in W^{4,1}(0,1) \mid u(0) = u(1), u'(0) = u'(1), u''(0) = u''(1) \right\}. \quad (2.1)$$

For $u \in D(L)$,

$$Lu = \frac{d^4u}{dx^4}. \quad (2.2)$$

Now, for $u \in D(L)$ we see, using integration by parts, that

$$(Lu,u'') = \int_0^1 \frac{d^4u}{dx^4} u''(x)dx = \int_0^1 (u''''(x))^2 dx. \quad (2.3)$$

For a given $h \in L^1(0,1)$ with $\int_0^1 h(x)dx = 0$, where $h \in Y_1$, we notice that there exists a unique $u \in X \cap D(L)$ such that $Lu = h$. Indeed, the unique u is given by

$$u(x) = C_1 + C_2 x + C_3 x^2 + C_4 x^3 + \frac{1}{6} \int_0^1 (x-t)^3 h(t)dt, \quad (2.4)$$

where C_2, C_3, C_4 are obtained from the following three linearly independent equations:

$$C_2 + C_3 + C_4 = -\frac{1}{6} \int_0^1 (1-t)^3 h(t)dt,$$

$$2C_3 + 3C_4 = -\frac{1}{2} \int_0^1 (1-t)^2 h(t)dt,$$

$$6C_4 = \int_0^1 (1-t) h(t)dt. \quad (2.5)$$

C_1 is computed (uniquely) from the requirement that $u \in X_1$ i.e., $\int_0^1 u(t)dt = 0$. Accordingly, the linear mapping $K: Y_1 \to X_1$ defined, for $h \in Y_1$, by $Kh = u$, where u is given by (2.4)-(2.5), is a bounded mapping. It is easy to see, using the Arzela-Ascoli theorem, that $K: Y_1 \to X_1$ is a compact mapping; i.e., K maps bounded sets in Y_1 into relatively compact sets in X_1. Further for $u \in D(L), Lu \in Y_1$, $KLu = Pu$ and for $h \in Y_1, Kh \in D(L), LKh = h$.

DEFINITION 1. A function $f: [0,1] \times R^k \to R$ is said to satisfy Caratheodory's conditions if the following conditions are satisfied:

(i) for a.e. $x \in [0,1]$, the function $y \in R^k \to f(x,y) \in R$ is continuous;

(ii) for every $y \in R^k$, the function $x \in [0,1] \to f(x,y) \in R$ is measurable;
(iii) for every $r > 0$, there is a real-valued function $g_r(x) \in L^1[0,1]$ such that for a.e. $x \in [0,1]$, $|f(x,y)| \leq g_r(x)$ whenever $|y| \leq r$.

If the function $g_r(x)$ in condition (iii) is required to be in $L^2(0,1)$, we say that the function f satisfies L^2-Carathéodory conditions.

Next, let $f: [0,1] \times \mathbb{R}^4 \to \mathbb{R}$ be a given function satisfying Carathéodory’s conditions. We define a (nonlinear) mapping $N: X \to Y$ by setting

$$
(Nu)(x) = f(x,u(x),u'(x),u''(x),u'''(x)) , \quad x \in [0,1],
$$

for $u \in X$. We see that $KPN: X \to X_1$ is a well-defined compact mapping and $QN: X \to X_2$ is a bounded mapping.

For $e(x) \in Y = L^1(0,1)$, the boundary value problem (1.1), (1.2) reduces to the functional equation

$$
Lu + Nu = e ,
$$

in X with $e \in Y$ given.

Theorem 1. Let $f: [0,1] \times \mathbb{R}^4 \to \mathbb{R}$ satisfy Carathéodory’s conditions. Assume that there exist real numbers a, A, r, R with $a < A$ and $r < 0 < R$ such that

$$
f(x,u,v,w,y) \geq A ,
$$

for a.e. $x \in [0,1]$, all $(v,w,y) \in \mathbb{R}^3$, and all $u \geq R$. Further assume that

$$
f(x,u,v,w,y) \leq a ,
$$

for a.e. $x \in [0,1]$, all $(v,w,y) \in \mathbb{R}^3$, and all $u \leq r$. Suppose that there exist functions $a(x), b(x), c(x), d(x)$ in $L^\infty(0,1)$ and a function $\alpha(x) \in L^1(0,1)$ such that

$$
f(x,u,v,w,y)w \leq a(x)w^2 + b(x)|uw| + c(x)|vw| + d(x)|yw| + \alpha(x)w ,
$$

for a.e. $x \in [0,1]$ and all $(u,v,w,y) \in \mathbb{R}^4$ with

$$
4\pi^2 \sqrt{3} \|a\|_{\infty} + (2\pi + \sqrt{3})\|b\|_{\infty} + 2\pi\sqrt{3} \|c\|_{\infty} + 8\pi^3 \sqrt{3} \|d\|_{\infty} < 16\sqrt{3} \pi^4 .
$$

Suppose, further, there exists an L^2-Carathéodory function $\beta: [0,1] \times \mathbb{R}^3 \to \mathbb{R}$ and a function $\gamma(x) \in L^1(0,1)$ such that

$$
|f(x,u,v,w,y)| \leq \beta(x,u,v,w) |y| + \gamma(x) ,
$$

for all $(u,v,w,y) \in \mathbb{R}^4$ and a.e. $x \in [0,1]$. Then the boundary value problem (1.1)-(1.2) has at least one solution for each given $e(x) \in L^1(0,1)$ with

$$
a \leq \frac{1}{\int_0^1 e(t)dt} \leq A .
$$

Proof. Define $f_1: [0,1] \times \mathbb{R}^4 \to \mathbb{R}$ by

$$
f_1(x,u,v,w,y) = f(x,u,v,w,y) - \frac{1}{2}(A + a) ,
$$

and $e_1 \in L^1(0,1)$ by $e_1(x) = e(x) - \frac{1}{2}(A + a)$ so that for a.e. $x \in [0,1]$ and all $(v,w,y) \in \mathbb{R}^3$, we get, using (2.8), (2.9),

$$
f_1(x,u,v,w,y) \geq \frac{1}{2}(A - a) \geq 0 \text{ if } u \geq R ,
$$

$$
f_1(x,u,v,w,y) \leq \frac{1}{2}(a - A) \leq 0 \text{ if } u \leq r ,
$$

and $e_1(x) = e(x) - \frac{1}{2}(A + a)$ so that for a.e. $x \in [0,1]$ and all $(v,w,y) \in \mathbb{R}^3$, we get, using (2.8), (2.9),

$$
f_1(x,u,v,w,y) \geq \frac{1}{2}(A - a) \geq 0 \text{ if } u \geq R ,
$$

$$
f_1(x,u,v,w,y) \leq \frac{1}{2}(a - A) \leq 0 \text{ if } u \leq r ,
$$
and

\[\frac{1}{2} (a - A) \leq \frac{1}{0} e_1(t) dt \leq \frac{1}{2} (A - a) . \]

(2.16)

Also, \(f_1(x,u,v,w,y) \) satisfies (2.10) with \(\alpha(x) \) replaced by \(\alpha_1(x) = \alpha(x) + \frac{1}{2} A + a \). Clearly, the boundary value problem (1.1),(1.2) is equivalent to

\[\frac{d^4 u}{dx^4} + f_1(x,u(x),u'(x),u''(x),u'''(x)) = e_1(x) , \quad 0 < x < 1 , \]

\[u(0) = u(1), \quad u'(0) = u'(1), \quad u''(0) = u''(1), \quad u'''(0) = u'''(1) . \]

(2.17)

Let \(N : X \to Y \) be defined by

\[(Nu)(x) = f_1(x,u(x),u'(x),u''(x),u'''(x)) , \quad x \in [0,1] , \]

(2.18)

for \(u \in X \). Then \(KPN : X \to X_1 \) is a well-defined compact mapping, \(QN : X \to X_2 \) is bounded, and the boundary value problem (2.17) is equivalent to the functional equation

\[Lu + Nu = e_1 , \]

(2.19)

in \(X \) with \(e_1 \in Y \). Letting \(\tilde{e}_1 = KPe_1, \tilde{e}_1 = Qe_1 \), we see that (2.19) is equivalent to the system of equations

\[Pu + KPNu = \tilde{e}_1 , \]

\[QNu = \tilde{e}_1 , \]

(2.20)

\[u \in X . \]

Now, (2.20) is clearly equivalent to the single equation

\[Pu + QNu + KPNu = \tilde{e}_1 + \tilde{e}_1 , \]

(2.21)

which has the form of a compact perturbation of the Fredholm operator \(P \) of index zero. We can therefore apply the version given in [12] (Theorem 1, Corollary 1), [13] (Theorem IV.4), or [14] of the Leray-Schauder continuation theorem which ensures the existence of a solution for (2.21) if the set of solutions of the family of equations

\[Pu + (1-\lambda)QNu + \lambda KPNu = \lambda \tilde{e}_1 + \lambda \tilde{e}_1 \]

(2.22)

is, \textit{a priori}, bounded in \(X \) by a constant independent of \(\lambda \in (0,1) \). Notice that (2.22) is equivalent to the system of equations

\[Pu + \lambda KPNu = \lambda \tilde{e}_1 , \]

\[(1-\lambda)Qu + \lambda QNu = \lambda \tilde{e}_1 , \quad \lambda \in (0,1). \]

(2.23)

Let \(u \in X \) be a solution for (2.23) for some \(\lambda \in (0,1) \). The second equation in (2.23) can be written as

\[(1-\lambda) \int_0^1 u(t) dt + \lambda \int_0^1 (t, u(t), u'(t), u''(t), u'''(t)) dt = \lambda \int_0^1 e_1(t) dt . \]

Thus, if \(u(t) \geq R \) for \(t \in [0,1] \), then using (2.14),(2.16), we have

\[0 < (1-\lambda) R + \frac{\lambda}{2} (A - a) \leq \frac{\lambda}{2} (A - a) , \]

which implies

\[0 < (1-\lambda) R \leq 0 \]

a contradiction.
Similarly, \(u(t) \leq r \) for \(t \in [0,1] \) also leads to a contradiction. Hence, there must exist a \(\tau \in [0,1] \) such that
\[
r < u(\tau) < R. \tag{2.24}
\]
Now, for \(x \in [0,1] \) we have
\[
u(x) = u(\tau) + \int_{\tau}^{x} u'(t)dt.
\]
It follows that
\[
\|Qu\| = \left| \int_{0}^{\tau} u(x)dx \right| \leq |u(\tau)| + \left| \int_{0}^{x} u'(t)dt \right| dx
\leq \max(R,-r) + \frac{1}{\sqrt{3}} (\tau^{3/2} + (1-\tau)^{3/2}) \|u''\|_{2}
\leq \max(R,-r) + \frac{1}{\sqrt{3}} \|u''\|_{2}
\leq \max(R,-r) + \frac{1}{4\pi^{2}} \|u'''\|_{2}, \tag{2.25}
\]
since \(\max(\tau^{3/2} + (1-\tau)^{3/2} \tau \in [0,1]) = 1 \) and \(\|u''\|_{2} \leq \frac{1}{2\pi} \|u''\|_{2}, \|u'''\|_{2} \leq \frac{1}{2\pi} \|u'''\|_{2} \), in view of the Wirtinger’s inequalities. Next we apply \(L \) to the first equation in (2.23) to get
\[
Lu + \lambda Pu = \lambda Pe_{1}. \tag{2.26}
\]
Adding the second equation in (2.23) to (2.26), we get
\[
Lu + (1-\lambda)Qu + \lambda Nu = \lambda e_{1},
\]
which can be written as
\[
\frac{d^{4}u}{dx^{4}} + (1-\lambda)Qu + \lambda f_{1}(x,u(x),u'(x),u''(x),u'''(x)) = \lambda e_{1}(x), \tag{2.27}
\]
for \(x \in (0,1) \) with \(u \) satisfying the boundary conditions (1.2). Next we multiply (2.27) by \(u''(x) \) and then integrate the resulting equation over \([0,1]\). This gives
\[
0 = \int_{0}^{\frac{1}{2}} \frac{d^{4}u}{dx^{4}} u''(x)dx + \lambda \int_{0}^{1} f_{1}(x,u(x),u'(x),u''(x),u'''(x)) u''(x)dx - \frac{1}{\lambda} \int_{0}^{1} e_{1}(x)u''(x)dx.
\leq - \int_{0}^{1} (u''(x))^{2}dx + \frac{1}{\lambda} \int_{0}^{1} \left[a(x)(u''(x))^{2} + b(x)1u''(x) + c(x)1u'(x)u'(x) \right]
\leq d(x)1u''(x)u''(x) + \alpha_{1}(x)1u''(x)1dx + \frac{1}{\lambda} \int_{0}^{1} e_{1}(x)1u''(x)1dx
\leq - \|u''\|_{2}^{2} + (\|a\|_{\infty} \|u''\|_{2} + \|b\|_{\infty} \|u\|_{2} + \|c\|_{\infty} \|u''\|_{2} + \|d\|_{\infty} \|u''\|_{2}) \|u''\|_{2}
\leq + (\|\alpha_{1}\|_{1} + \|e_{1}\|_{1}) \|u''\|_{\infty}
\begin{equation}
\leq -\|u^{\prime\prime}\|_2^2 + \left[\frac{1}{2\pi} \|a\|_\omega + \frac{1}{8\pi^2} \|b\|_\omega + \frac{1}{4\pi^2} \|c\|_\omega + \|d\|_\omega \right] \frac{1}{2\pi} \|u^{\prime\prime}\|_2^2 \\
+ \|b\|_\omega \|Qu\| \cdot \|u^{\prime\prime}\|_2 + (\|\alpha_1\|_1 + \|e_1\|_1) \|u^{\prime\prime}\|_2
\end{equation}

\begin{equation}
\leq -\|u^{\prime\prime}\|_2^2 + \frac{1}{16\pi^4} \left(4\pi^2 \|a\|_\omega + \|b\|_\omega + 2\pi \|c\|_\omega + \|d\|_\omega \right) \|u^{\prime\prime}\|_2^2 \\
+ \frac{1}{2\pi} \|b\|_\omega \left(\max(R, -r) + \frac{1}{4\pi^2\sqrt{3}} \|u^{\prime\prime\prime}\|_2 \right) \|u^{\prime\prime}\|_2 + (\|\alpha_1\|_1 + \|e_1\|_1) \|u^{\prime\prime\prime}\|_2,
\end{equation}

in view of (2.10), (2.25) and the Wirtinger's inequalities

\begin{equation}
\|Pu\|_2 \leq \frac{1}{2\pi} \|u\|_2, \quad \|u^{\prime\prime}\|_2 \leq \frac{1}{2\pi} \|u^{\prime}\|_2, \quad \|u^{\prime}\|_2 \leq \frac{1}{2\pi} \|u\|_2.
\end{equation}

It follows from (2.26) that there exists a constant \(C\), independent of \(x\) in \(0, 1\), such that

\begin{equation}
\|u^{\prime\prime}\|_2 \leq C.
\end{equation}

It is easy to see from (2.25), (2.28) and from (1.2) that there exists a constant \(C_1\), independent of \(x\) in \(0, 1\) such that

\begin{equation}
\|u\|_{C^2[0,1]} \leq C_1.
\end{equation}

We next use (2.27), (2.12), (2.29), (2.30) to obtain a constant \(C_2\), independent of \(x\) in \(0, 1\), such that

\begin{equation}
\left\| \frac{d^4u}{dx^4} \right\|_1 \leq C_2.
\end{equation}

Finally, since \(u^{\prime\prime}(0) = u^{\prime\prime}(1)\), we see that there must exist a \(\xi \in (0, 1)\) such that \(u^{\prime\prime}(\xi) = 0\). Hence, for \(x \in [0,1]\),

\begin{equation}
\left| u^{\prime\prime}(x) \right| = \left| \int_\xi^x \frac{d^4u}{dx^4} (t) dt \right| \leq \left\| \frac{d^4u}{dx^4} \right\|_1 \leq C_2.
\end{equation}

Thus,

\begin{equation}
\|u^{\prime\prime}\|_\omega \leq C_2.
\end{equation}

It follows from (2.30),(2.31) that the set of all possible solutions of (2.23) is, \textit{a priori}, bounded in \(X = C^3[0,1]\) by a constant independent of \(x\) in \((0, 1)\).

THEOREM 2. Let \(f : [0,1] \times \mathbb{R}^4 \rightarrow \mathbb{R}\) satisfy Caratheodory's conditions. Suppose that \(f\) satisfies conditions (2.8), (2.9), (2.10), and (2.12) of Theorem 1, with \(a(x), b(x), c(x) \in L^1[0,1]\) and \(d(x) \in L^2[0,1]\), and

\begin{equation}
4\pi^2\sqrt{3} \|a\|_1 + 3\sqrt{3} \|b\|_1 + 2\pi \sqrt{3} \|c\|_1 + 24\pi^2 \|d\|_2 \leq 48\pi^2\sqrt{3}.
\end{equation}

Then the boundary value problem (1.1)-(1.2) has at least one solution for each given \(e(x) \in L^1[0,1]\), with

\begin{equation}
a \leq \frac{1}{0} e(t) dt \leq A.
\end{equation}

The proof of Theorem 2 is similar to that of Theorem 1, except now we need to use the following Wirtinger-type inequalities,

\begin{equation}
\|Pu\|_\omega \leq \frac{1}{2\sqrt{3}} \|u\|_2, \quad \|u^{\prime}\|_\omega \leq \frac{1}{2\sqrt{3}} \|u^{\prime}\|_2, \quad \|u^{\prime\prime}\|_\omega \leq \frac{1}{2\sqrt{3}} \|u^{\prime\prime}\|_2
\end{equation}

The proof of Theorem 2 is similar to that of Theorem 1, except now we need to use the following Wirtinger-type inequalities,
along with (2.26) and (2.29). We leave the details for the reader, in the interest of brevity.

Our next theorem concerns the boundary value problem

\[- \frac{d^4u}{dx^4} + f(x,u(x),u'(x),u''(x),u'''(x)) = e(x), \quad 0 < x < 1, \]

with \(u \) satisfying the boundary conditions (1.2),

\[(2.32) \]

where \(e(x) \in L^1(0,1) \) and \(f: [0,1] \times \mathbb{R}^4 \to \mathbb{R} \) satisfies Caratheodory’s conditions.

Theorem 3. Let \(f: [0,1] \times \mathbb{R}^4 \to \mathbb{R} \) satisfy Caratheodory’s conditions. Assume that \(f \) satisfies conditions (2.8), (2.9), (2.12) of Theorem 1.

Suppose that there exist functions \(a(x), b(x), c(x), d(x), \alpha(x) \) and non-negative numbers \(a, m, n, p, q \) with \(b(x) \in C^2[0,1], \ c(x), d(x) \in C^1[0,1], \ \alpha(x) \in L^1[0,1], \ b(0) = b(1), \ b'(0) = b'(1), \ c(0) = c(1), \ d(0) = d(1), \) and \(a(x) \geq -a, \ b(x) \leq m, \ b''(x) \geq -2n, \ c'(x) \leq 2p, \ d'(x) \leq 2q \) such that

\[\begin{align*}
&f(x,u,v,w,y)w \geq a(x)w^2 + b(x)uw + c(x)vw + d(x)wy + \alpha(x)\|w\|, \\
&\text{for almost a.e.} \ x \in [0,1] \text{ and all } (u,v,w,y) \in \mathbb{R}^4.
\end{align*} \]

(2.33)

Then the boundary value problem (2.32) has at least one solution for each given \(e(x) \in L^1(0,1) \), with

\[a \leq \frac{1}{2}e(t)dt \leq A. \]

Proof. Define \(f_1: [0,1] \times \mathbb{R}^4 \to \mathbb{R} \) by \(f_1(x,u,v,w,y) = f(x,u,v,w,y) - \frac{1}{2}(A+a) \) and \(e_1 \in L^1(0,1) \) by \(e_1(x) = e(x) - \frac{1}{2}(A+a) \) as in the proof of Theorem 1, so that (2.14), (2.15), (2.16) hold and \(f_1 \) satisfies (2.33) with \(\alpha(x) \) replaced by \(\alpha_1(x) = \alpha(x) - \frac{1}{2}A+a \). Further, the boundary value problem (2.32) is equivalent to

\[- \frac{d^4u}{dx^4} + f_1(x,u(x),u'(x),u''(x),u'''(x)) = e_1(x), \quad 0 < x < 1, \]

with \(u \) satisfying the boundary conditions (1.2).

\[(2.35) \]

Define \(L: D(L) \subset Y \) by \(Lu = -Lu = -\frac{d^4u}{dx^4} \), where \(L \) is defined by (2.1), (2.2). Take \(K: Y_1 \to X_1 \) as \(K = -K \), where \(K \) is the linear mapping defined earlier, so that for \(u \in D(L), L_1 u \in Y_1, KL_1 u = Pu \) and for \(h \in Y_1, Kh \in D(L), KLh = h \). Again, define \(N: X \to Y \) by

\[(Nu)(x) = f_1(x,u(x),u'(x),u''(x),u'''(x)), \quad x \in [0,1], \]

for \(u \in X \), as in the proof of Theorem 1. Proceeding, as in the proof of Theorem 1, it suffices to show that the set of solutions of the family of equations

\[Pu + (1-\lambda)Qu + \lambda QNu + \lambda \bar{K}Pu = \lambda \bar{e}_1 + \lambda \bar{e}_1, \]

is, a priori, bounded in \(X \) by a constant independent of \(\lambda \in (0,1) \), where \(\bar{e}_1 = \bar{K}Pe_1, \bar{e}_1 = Qe_1 \). We notice that (2.36) is equivalent to the system of equations

\[Pu + \lambda \bar{K}Pu = \lambda \bar{e}_1, \]

\[(1-\lambda)Qu + \lambda QNu = \lambda \bar{e}_1, \quad \lambda \in (0,1). \]

(2.37)

It follows from the second equation in (2.37), as in the proof of Theorem 1, that
Next we get, as in the proof of Theorem 1,
\[- \frac{d^4 u}{dx^4} + (1-\lambda)Qu + \lambda f_1(x,u(x),u'(x),u''(x),u'''(x)) = \lambda e_1(x),\]
with \(u\) satisfying the boundary conditions (1.2), (2.39) for \(x \in (0,1)\), using (2.37). Now we multiply the equation in (2.39) by \(u''(x)\) and integrate the resulting equation over \([0,1]\) to obtain
\[0 \geq \int_0^1 (u''''(x))^2 \, dx + \lambda \int_0^1 [a(x)(u''(x))^2 + b(x)u(x)u''(x) + c(x)u'(x)u''(x) + d(x)u''(x)u'''(x) + e(x)u''(x)] \, dx \leq \lambda \int_0^1 e_1(x)u''(x) \, dx.
\]

where we have used the Wirtinger's inequalities (2.28) and the estimate (2.38). It follows from (2.34) that there exists a constant \(C\), independent of \(\lambda \in (0,1)\), such that
\[\|u''\|_2 < C.
\]
Finally, there exists a constant \(C_1\), independent of \(\lambda \in (0,1)\), such that
\[\|u\|_X = \|u\|_{C^3[0,1]} \leq C_1,
\]
as in the proof of Theorem 1. We have thus verified that the set of solutions of (2.36) is, a priori, bounded in \(X = C^3[0,1]\) by a constant independent of \(\lambda \in (0,1)\).

Remark 1. If \(f : [0,1] \times \mathbb{R}^4 \to \mathbb{R}\) in Theorem 1 (resp., Theorem 2 and Theorem 3) is independent of \(y\) (i.e., \(f(x,u,v,w,y) = g(x,u,v,w)\) for some \(g : [0,1] \times \mathbb{R}^3 \to \mathbb{R}\), then we do not need the assumption (2.12) in Theorem 1 (resp., Theorem 2 and Theorem 3). We remark that assumption (2.12) is needed to obtain an \(a\)
priori bound for $\left\| \frac{d^4 u}{dx^4} \right\|_1$ once an a priori bound for $\| u \|_{L^1[0,1]}$ has been obtained. So (2.12) can be replaced by any other assumption that accomplishes this task.

Remark 2. We note that for any given continuous function $g: \mathbb{R} \to \mathbb{R}$ and any $u \in W^{4,1}(0,1)$ with $u''(0) = u''(1), \int_0^1 g(u)u''dx$ and $\int_0^1 g(u')u''dx$, both vanish. Accordingly, we can add the term $g(u')u''$ to the equations studied in Theorems 1, 2, and 3 and obtain existence of solutions of the modified boundary value problems, namely,

$$\pm \frac{d^4 u}{dx^4} + g(u')u'' + f(x,u(x),u'(x),u''(x)) = e(x),$$

with u satisfying the periodic boundary conditions (1.2).

Remark 3. Suppose that $a(x) = -a$, $b(x) = m$, $c(x) = c$, $d(x) = d$, where c and d are some constants in Theorem 3, so that $n = p = q = 0$. Then the conclusion of Theorem 3 remains valid if $4\pi^2 a + m < 16\pi^4$.

Remark 4. We refer the reader to [15] for Wirtinger inequalities used in this paper.

Finally, we remark that the theorems of this paper clearly apply to a wider class of boundary value problems than the theorems studied by the author in [6],[7]. But it is easy to find situations where the results of [6] and [7] apply and the results of this paper do not apply. Accordingly, the results of this paper complement the results of [6] and [7].

ACKNOWLEDGMENTS

This work was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38 under the Faculty Research Leave Program at Argonne National Laboratory. The author’s permanent address is: Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115.

The author thanks the referee for his kind suggestions.

REFERENCES

Special Issue on
Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Computational methods**: artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning
- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk