ON THE DEGREE OF APPROXIMATION OF THE HERMITE AND HERMITE-FEJER INTERPOLATION

J. PRASAD
Department of Mathematics
California State University
Los Angeles, California 90032 U.S.A.

(Received January 25, 1991 and in revised form May 22, 1991)

ABSTRACT. Here we find the order of convergence of the Hermite and Hermite-Fejér interpolation polynomials constructed on the zeros of \((1 - x^2)P_n(x)\) where \(P_n(x)\) is the Legendre polynomial of degree \(n\) with normalization \(P_n(1) = 1\).

KEY WORDS AND PHRASES. Zeros, modulus of continuity, interior points, interpolation process, best approximation.

1980 AMS SUBJECT CLASSIFICATION CODE. 41A25.

1. INTRODUCTION.

Let

\[-1 = x_{n+1} < x_n < \ldots < x_1 < x_0 = 1\tag{1.1}\]

be the \(n + 2\) distinct zeros of \((1 - x^2)P_n(x)\) where \(P_n(x)\) is the Legendre polynomial of degree \(n\) with normalization \(P_n(1) = 1\). Let \(f\) be a given function on \([-1, 1]\). Let \(Q_n(f, x)\) be the unique polynomial of degree \(\leq 2n + 1\) such that

\[Q_n(f, x_k) = f(x_k), \quad Q_n(f, \pm 1) = f(\pm 1), \quad Q_n'(f, x_k) = 0, \quad k = 1, 2, \ldots, n.\tag{1.2}\]

Then it is known [11] that

\[Q_n(f, x) = f(-1) \frac{1+x}{2} P_n^2(x) + f(1) \frac{1-x}{2} P_n^2(x) + \sum_{k=1}^{n} f(x_k) \frac{1-x^2}{1-x_k^2} 1_k^2(x)\tag{1.3}\]

where

\[1_k(x) = \frac{P_n(x)}{(x-x_k)P_n'(x_k)}\tag{1.4}\]

is the fundamental polynomial of the Lagrange interpolation. According to a well-known result of Szasz [11]

\[\lim_{n \to \infty} Q_n(f, x) = f(x),\]
uniformly on \([-1,1]\), for every \(f\) continuous there. A quantitative version of Szasz's result was given by Prasad and Saxena [8] who showed that

\[
|Q_n(f, x) - f(x)| \leq c_1 n^{-1} \sum_{k=1}^{n} w_f \left(\frac{1 - x^2}{k} + \frac{1}{k^2} \right)
\]

where \(w_f\) is the modulus of continuity of \(f\) on \([-1,1]\) on \(c_1\) (later on \(c_2, c_3 \ldots\) is a positive absolute constant). Prasad and Varma [9] further improved (1.5) by proving that

\[
|Q_n(f, x) - f(x)| \leq c_2 n^{-1} \sum_{k=1}^{n} w_f \left(\frac{1 - x^2}{k} \right)
\]

Our aim is here to consider the interpolation process which requires that the derivative of the polynomial vanishes not only at the interior points \(x_k, k = 1, 2, \ldots, n\), but also at the end points \(-1\) and \(1\). As we will see, the situation is quite different in this case. Let us denote by \(R_n(f, x)\) the unique polynomial of degree \(\leq 2n + 3\) satisfying the conditions

\[
R_n(f, x_k) = f(x_k), \quad R_n(f, \pm 1) = f(\pm 1), \quad R'_n(f, x_k) = 0, \quad R'_n(f, \pm 1) = 0, \quad k = 1, 2, \ldots, n.
\]

Then from (1.2), (1.3) and (1.7) it follows that

\[
R_n(f, x) = Q_n(f, x) + (1 - x) \left[\frac{(1 + x)P_n(x)}{2} \right]^2 Q'_n(f, 1) - (1 + x) \left[\frac{(1 - x)P_n(x)}{2} \right]^2 Q'_n(f, -1).
\]

Bojanic, Varma and Vertesi [3] proved the following:

THEOREM A. Let \(f \in C[-1,1]\). In the case when \(\alpha \in \left[-\frac{1}{2}, \frac{1}{2}\right]\) the necessary and sufficient conditions for

\[
\lim_{n \to \infty} \|R_n^{(\alpha, \alpha)}(f, x) - f(x)\| = 0
\]

is given by

\[
\lim_{n \to \infty} \int_{-1}^{1} \left(R_n^{(\alpha, \alpha)}(f, x) - f(x) \right) dx = 0
\]

and

\[
\lim_{n \to \infty} \int_{-1}^{1} x \left(R_n^{(\alpha, \alpha)}(f, x) - f(x) \right) dx = 0.
\]

If \(\alpha \in \left[\frac{1}{2}, 2\right]\), (1.9) holds true for arbitrary \(f \in C[-1,1]\) (i.e., no conditions are needed).

In the case \(\alpha \in [p-1, p]\), \(p \geq 3\) (\(p\) integer) the necessary and sufficient conditions for the validity of (1.9) is given by

\[
\left[R_n^{(\alpha, \alpha)}(f, x) \right]_{x = \pm 1}^{(r)} = o(n^{2r}), \quad r = 1, 2, \ldots, p - 1.
\]

Here \(R_n^{(\alpha, \alpha)}(f, x)\) is the polynomial of degree \(\leq 2n + 3\) satisfying the interpolatory conditions (1.7) on the zeros of ultraspherical polynomial.

For \(R_n(f, x)\) satisfying the interpolatory conditions (1.7) on the zeros of \((1 - x^2)P_n(x)\) we prove the following:
THEOREM 1. Let \(f \in C[-1,1] \) and let \(R_n(f,x) \) be the Hermite-Fejér interpolation polynomial of degree \(\leq 2n + 3 \) defined by (1.7). Then for all \(x \in [-1,1] \)

\[
|R_n(f,x) - f(x)| \leq c_3 \sum_{k=1}^{n} w_f \left(\frac{1-x^2}{k} \right) + c_4 \left[\frac{1}{1-x^2} + \sum_{k=1}^{n} w_f \left(\frac{1}{k^2} \right) \right]. \tag{1.10}
\]

From (1.10) it is evident that the sequence \(\{R_n(f,x)\} \) converges to \(f(x) \) at the end points \(-1 \) and \(1 \). Also, if \(f \in \text{Lip}_\sigma, 1/2 < \sigma < 1 \), then from (1.10) it follows that

\[
|R_n(f,x) - f(x)| \leq c_5 \sum_{k=1}^{n} \left(\frac{1-x^2 \sigma/2}{k^\sigma} \right) + c_6 \left[\frac{1}{1-x^2} + \frac{1}{n^{1-2\sigma}} \right].
\]

Thus, \(\{R_n(f,x)\} \) converges to \(f(x) \) for \(-1 \leq x \leq 1 \) if \(f \in \text{Lip}_\sigma, \frac{1}{2} < \sigma < 1 \). Next, we show that there is a \(f \in C[-1,1] \) for which \(\{R_n(f,x)\} \) diverges at \(x = 0 \). More precisely we prove the following:

THEOREM 2. The Hermite-Fejér interpolation process \(\{R_n(f,x)\} \) for the function \(f(x) = (1-x^2)^\sigma, 0 < \sigma \leq \frac{1}{2} \) with the nodes (1.1) diverges at the point \(x = 0 \).

This result is similar to a result of Berman [1] who proved that the Hermite-Fejér interpolation process \(\{H_n(f,x)\} \) constructed for \(f(x) = |x| \) with

\[
x_k = \cos \frac{2k-1}{2n} \pi, \quad k = 1,2,...,n, \quad x_0 = 1, \quad x_{n+1} = -1, \quad n = 1,2,...,
\]

diverges at \(x = 0 \).

Let \(F_n(f,x) \) be the unique polynomial of degree \(\leq 2n + 1 \) satisfying the conditions

\[
F_n(f,-1) = f(-1), \quad F_n(f,1) = f(1),
\]

\[
F_n(f,x_k) = f(x_k), \quad F'_n(f,x_k) = f'(x_k), \quad k = 1,2,...,n,
\]

where \(x_k's \) are given by (1.1). Then we see that

\[
F_n(f,x) = Q_n(f,x) + \sum_{k=1}^{n} f'(x_k) h_k(x) + \sum_{k=1}^{n} f(x_k) \sigma_k(x)
\]

(1.12)

where

\[
h_0(x) = \frac{1+x}{2}, \quad h_n(x) = \frac{1-x}{2}, \quad Q_n(x)
\]

(1.13)

and

\[
h_k(x) = \frac{1-x^2}{1-x^2_k} \prod_{j=1}^{k} (x-x_j), \quad \sigma_k(x) = (x-x_k) h_k(x), \quad k = 1,2,...,n.
\]

(1.14)

For the polynomials \(F_n(f,x) \) we prove the following:
THEOREM 3. Let f be defined and have a continuous derivative f' on $[-1,1]$. Then for the Hermite interpolation polynomial $F_n(f,x)$ of degree $\leq 2n+1$ defined by (1.11) we have for all $x \in [-1,1]$,

$$|F_n(f,x) - f(x)| \leq c_n \frac{\log n}{n} E_{2n}(f')$$

where $E_{2n}(f')$ is the best approximation of $f'(x)$ by polynomials of degree at most $2n$.

Now, if we compare the zeros of $(1-x^2)P_n(x)$ with the zeros of $(1-x^2)T_n(x)$, the nth degree Tchebycheff polynomial of the first kind, we find that they are equally good as far as the convergence and the order of convergence of the Hermite and the Hermite Fejér interpolation is concerned.

2. PRELIMINARIES. In this section we state a few known results which we shall use later on.

From [5] we have for $-1 \leq x \leq 1$,

$$P_n^2(x) + \sum_{k=1}^{n} h_k(x) = 1. \quad (2.1)$$

Further, due to Fejér [7] we know that

$$\sum_{k=1}^{n} \frac{1}{(1-x_k^2)(P'_n(x_k))^2} = 1. \quad (2.2)$$

Also, from Szegő [12] we have

$$\begin{align*}
(1-x^2)^{1/4} |P_n(x)| &\leq \left(\frac{2}{3}\right)^{1/2} n^{-1/2}, \quad -1 \leq x \leq 1, \quad (2.3) \\
(1-x^2)^{2} (k-\frac{3}{2})^2 (n+\frac{3}{2})^{-2}, \quad k = 1, 2, \cdots, \left[\frac{n}{2}\right], \quad (2.4) \\
(1-x_k^2)^{2} (n-k+\frac{3}{2})^2 (n+\frac{3}{2})^{-2}, \quad k = \left[\frac{n}{2}\right] + 1, \cdots, n, \quad (2.5) \\
|P_n(x_k)| &\sim k^{-3/2} n^2, \quad k = 1, 2, \cdots, \left[\frac{n}{2}\right], \quad (2.6) \\
|P_n(x_k)| &\sim (n+1-k)^{-3/2} n^2, \quad k = \left[\frac{n}{2}\right] + 1, \cdots, n, \quad (2.7) \\
|P_n(0)| &= \frac{1 \cdot 3 \cdots (n-1)(n-2)}{2 \cdot 4 \cdots (n-2)n} \quad (2.8)
\end{align*}$$

and

$$\frac{(k-1/2)\pi}{n+1/2} < \Theta_k < \frac{k\pi}{n+1/2}, \quad k = 1, 2, \cdots, n, \quad x = \cos \Theta \text{ and } x_k = \cos \Theta_k. \quad (2.9)$$

Further, from [9] we also have for $-1 \leq x \leq 1$ and $k = 1, 2, \cdots, n$,

$$\begin{align*}
(1-x^2)^{1/4} |P_n(x)| &\leq c_{10} n, \quad n \geq 2, \quad (2.10) \\
(1-x_k^2)^{3/4} |P'_n(x_k)| &\leq c_{11}. \quad (2.11)
\end{align*}$$
Next, from [6] it follows that for \(-1 \leq x \leq 1\),

\[
|l_k(x)| \leq c_{12}, \quad k = 1, 2, \ldots, n. \tag{2.12}
\]

3. SOME LEMMAS. In this section we state and prove a few lemmas which will enable us to prove the theorems.

First, we assume \(x_j\) to be that zero of \(P_n(x)\) which is nearest to \(x\). From (2.9) and using the fact that \(x_j\) is the nearest zero to \(x\) we get

\[
\sin \left(\frac{\Theta_j}{2} \right) \leq 2n+1, \quad k \neq j, \quad k = j \pm i. \tag{3.1}
\]

Also, we note that

\[
\sin \Theta \leq \sin \Theta + \sin \Theta_k \leq 2 \sin \left(\frac{\Theta + \Theta_k}{2} \right). \tag{3.2}
\]

LEMMA 1. If the polynomials \(Q_n(f, x)\) and \(R_n(f, x)\) are defined by (1.2) and (1.7), respectively, then

\[
R_n(f, x) = Q_n(f, x) + \frac{x(1-x^2)}{4} P_n^2(x) [f(1) - f(-1)]
\]

\[
+ \frac{1}{4} P_2^2(1-x^2)(1+x) \sum_{k=1}^{n} \frac{[f(1) - f(x_k)]}{(1-x_k^2)(1-x_k^2)[P_n'(x_k)]^2}
\]

\[
+ \frac{1}{2} [f(-1) - f(x) - x^2(1-x) P_{n-1}(1-x)] P_{n-1}(1-x^2) [P_n'(x)]^2.
\]

PROOF. From (2.1) it follows that

\[
P_n'(1) = \sum_{k=1}^{n} \frac{1}{(1-x_k^2)(1-x_k^2)[P_n'(x_k)]^2}.
\]

Also, it is easy to see that

\[
P_n(-1) = -P_n'(1). \tag{3.4}
\]

Consequently, from (1.3, (3.3) and (3.4) we obtain

\[
Q_n'(f, 1) = \frac{1}{2} [f(1) - f(-1)] + 2 \sum_{k=1}^{n} \frac{[f(1) - f(x_k)]}{(1-x_k^2)(1-x_k^2)[P_n'(x_k)]^2}.
\]

and

\[
Q_n'(f, -1) = \frac{1}{2} [f(1) - f(1)] - 2 \sum_{k=1}^{n} \frac{[f(-1) - f(x_k)]}{(1-x_k^2)(1+x_k^2)[P_n'(x_k)]^2}.
\]

Substitution into (1.8) yields the desired result.

LEMMA 2. Let \(f\) be a continuous function on \([-1,1]\) and let \(x_k, k = 1, 2, \ldots, n\), be the zeros of \(P_n(x)\), the \(n^{th}\) degree Legendre polynomial, then

\[
\left| \sum_{k=1}^{n} \frac{[f(\pm 1) - f(x_k)]}{(1-x_k^2)(1+x_k^2)[P_n'(x_k)]^2} \right| \leq c_{13} n \sum_{k=1}^{n} w f \left(\frac{1}{k^2} \right).
\]

PROOF. It is clearly sufficient to consider one choice of signs. Let us put \(m = \left[\frac{n}{2} \right] \) and
consider

\[
| \Delta_n(f) | = \left| \sum_{k=1}^{n} \frac{f(1) - f(x_k)}{(1-x_k^2)(1-x_k^2)[P_n'(x_k)]^2} \right|
\]

\[
\leq \sum_{k=1}^{m} \frac{|f(1) - f(x_k)|}{(1-x_k^2)(1-x_k^2)[P_n'(x_k)]^2} + \sum_{k=m+1}^{n} \frac{|f(1) - f(x_k)|}{(1-x_k^2)(1-x_k^2)[P_n'(x_k)]^2}
\]

\[= I_1 + I_2.\]

First, we estimate \(I_2\). On using (2.2) we obtain

\[
I_2 \leq w_f(2) \sum_{k=m+1}^{n} \frac{1}{(1-x_k^2)[P_n'(x_k)]^2} \leq w_f(2) \sum_{k=1}^{n} \frac{1}{(1-x_k^2)[P_n'(x_k)]^2} \leq w_f(2).
\]

Next, we consider

\[
I_1 = \sum_{k=1}^{m} \frac{w_f(1-x_k)}{(1-x_k^2)[P_n'(x_k)]^2} \leq \sum_{k=1}^{m} \frac{w_f(1-x_k)}{\left[\frac{1}{1-x_k} P_n'(x_k)\right]^2}.
\]

Since

\[1-x_k = 1-\cos \Theta_k = 2\sin^2 \frac{\Theta_k}{2},\]

hence on using (2.9) we see that

\[
\frac{k^2}{2(n+1)^2} \leq 1-x_k \leq \frac{20k^2}{(n+1)^2}.
\]

Thus from (3.9), (3.10), (2.4) and (2.6) it follows that

\[
I_1 \leq c_{14} \sum_{k=1}^{n} \frac{1}{k^3} w_f \left(\frac{k^2}{(n+1)^2} \right).
\]

Consequently, from (3.7), (3.8) and (3.11) we obtain

\[
| \Delta_n(f) | \leq c_{15} \sum_{k=1}^{n} \frac{1}{k^3} w_f \left(\frac{k^2}{(n+1)^2} \right).
\]

Now following the same lines as in [3] we get

\[
\sum_{k=1}^{n} \frac{1}{k^3} w_f \left(\frac{k^2}{(n+1)^2} \right) \leq \frac{2}{n+1} \sum_{k=1}^{n} w_f \left(\frac{1}{k^2} \right).
\]
Hence from (3.12) and (3.13) we conclude that
\[
| \triangle_n(f) | \leq c_{16} n \sum_{k=1}^{n} w_f \left(\frac{1}{x_k^2} \right).
\]

LEMMA 3. If \(-1 < x \leq 1\) then
\[
\sum_{k=1}^{n} \frac{\sigma_k(x)}{\sqrt{1-x_k^2}} \leq c_{17} \log n.
\]

PROOF. From (1.14) we have
\[
(1-x^2)^{1/2} \left| x - x_j \right| \leq c_{18}.
\]

Now from (2.10), (2.11), (2.12) and (3.15) it follows that
\[
\frac{(1-x^2)^{1/2}}{(1-x_j^2)^{1/2}} \leq c_{18}.
\]

Next, on using (2.10), (3.2) and (3.1) we obtain
\[
J_2 = \sum_{k \neq j} \frac{(1-x^2)^{1/2}}{(1-x_k^2)^{3/2}} \left| x - x_k \right| \leq c_{20} \log n.
\]

Consequently from (3.14), (3.16) and (3.17) it follows that
\[
\sum_{k=1}^{n} \frac{\sigma_k(x)}{\sqrt{1-x_k^2}} \leq c_{22} \frac{\log n}{n},
\]
which yields the lemma.
4. PROOF OF THEOREM 1. Theorem 1 is now a simple consequence of Lemma 1 and Lemma 2. Due to Lemma 1 we have for $-1 < x \leq 1$,

$$|R_n(f, x) - f(x)| \leq |Q_n(f, x) - f(x)| + (1 - x^2)P_n^2(x)\left[|f(1)| + |f(-1)|\right]$$

$$+ (1 - x^2)P_n^2(x)\left|\sum_{k=1}^{n} \frac{|f(x_k) - f(x)|}{(1 - x_k^2)(1 + x_k^2) [P_n'(x_k)]^2}\right|$$

Using (1.6), the inequality (2.3), and Lemma 2, we find that

$$|R_n(f, x) - f(x)| \leq c_{23} \sum_{k=1}^{n} \frac{1}{k^2}$$

and Theorem 1 follows.

5. PROOF OF THEOREM 2. Let $f(x) = -(1 - x^2)\sigma$, $0 < \sigma \leq 1/2$, then we get from (1.3) for $-1 < x \leq 1$,

$$Q_n(f, x) = \sum_{k=1}^{n} f(x_k) \frac{1 - x_k^2}{1 - x_k^2} \left[\frac{1}{P_n(x_k)} P_n'(x_k)\right]^2$$

Since f is even and x_k are symmetrically situated around 0, $Q_n(f, x)$ is even. Thus $Q_n(f, x)$ is odd so that $Q_n(f, -1) = -Q_n(f, 1)$ and we have

$$R_n(f, x) = Q_n(f, x) + 1/2 (1 - x^2) P_n^2(x) Q_n'(f, 1).$$

But

$$Q_n'(f, 1) = 2 \sum_{k=1}^{n} (1 - x_k^2)^{-1} \left[\frac{1}{P_n(x_k)}\right]^2$$

$$\geq 2 \sum_{k=1}^{m} (1 - x_k^2)^{-1} \left[\frac{1}{P_n'(x_k)}\right]^2,$$

where $m = \lfloor \frac{n}{2} \rfloor$.

For $k = 1, 2, ... , m$, $0 < \Theta_k < \frac{\pi}{2}$, Thus, $1 - x_k^2 = \sin^2 \Theta_k \sim \Theta_k^2 \sim k^2/n^2$. Hence on using (2.6) we have from (5.2),

$$Q_n'(f, 1) \geq c_{24} n^{2 - 2\sigma} \sum_{k=1}^{m} \frac{1}{k^{2 - 2\sigma}} \geq c_{24} n^{2\sigma - 2}.$$ (5.3)

Consequently from (5.1), (5.3) and (2.8) we obtain

$$\limsup_{n \to \infty} |R_n(f, 0) - Q_n(f, 0)| \geq c_{24} \limsup_{n \to \infty} n^{1 - 2\sigma}.$$

Since $Q_n(f, 0) \to f(0) = 1$, $R_n(0) \nRightarrow f(0)$ if $0 < \sigma \leq 1/2$.

6. PROOF OF THEOREM 3. One can easily see that

\[F_n(f, x) - f(x) = F_n(f, x) - F_n(G_{2n+1}, x) + G_{2n+1}(x) - f(x), \]

(6.1)

where \(G_{2n+1}(x) \) is the polynomial of the best approximation of \(f(x) \) and \(F_n(f, x) \) is given by (1.12). Thus from (6.1) we obtain

\[|F_n(f, x) - f(x)| \leq |F_n(f, x) - F_n(G_{2n+1}, x)| + |G_{2n+1}(x) - f(x)| = v_1 + u_2. \]

(6.2)

Now, from the definition of \(G_{2n+1}(x) \) it follows that for \(-1 \leq x \leq 1\),

\[|G_{2n+1}(f, x) - f(x)| \leq E_{2n+1}(f), \]

(6.3)

where \(E_{2n+1}(f) \) is the best approximation of \(f(x) \). So owing to (6.3) we have for \(-1 \leq x \leq 1\),

\[u_2 \leq E_{2n+1}(f). \]

(6.4)

Next, we consider

\[u_1 = |F_n(f, x) - F_n(G_{2n+1}, x)| \]

\[\leq \sum_{k=0}^{n+1} |f(x_k) - G_{2n+1}(x_k)| h_k(x) \]

\[+ \sum_{k=1}^{n} |f'(x_k) - G'_{2n+1}(x_k)| |\sigma_k(x)| \]

\[= u_1^* + u_2^*. \]

(6.5)

Again due to (6.3) and (2.1) we have for \(-1 \leq x \leq 1\),

\[u_1^* \leq E_{2n+1}(f) \sum_{k=0}^{n+1} h_k(x) \]

\[\leq E_{2n+1}(f). \]

(6.6)

Further, on using a theorem of J. Czipszer and G. Freud [4] and Corollary 1.44 of T.J. Rivlin [10], p. 23, it follows that

\[\sqrt{1 - x_k^2} |f'(x_k) - G'_{2n+1}(x_k)| \leq 40E_{2n}(f'). \]

(6.7)

Hence (6.7) and Lemma 3 yield

\[u_2^* \leq 40E_{2n}(f') \sum_{k=1}^{n} \frac{|\sigma_k(x)|}{\sqrt{1 - x_k^2}} \]

\[\leq c_{25} \log \frac{n}{E_{2n}(f')} . \]

(6.8)

Consequently from (6.2), (6.4), (6.5), (6.6) and (6.8) we obtain for \(-1 \leq x \leq 1\),

\[|F_n(f, x) - f(x)| \leq 2E_{2n+1}(f) + c_{25} \log \frac{n}{E_{2n}(f')} . \]

(6.9)

But due to Rivlin [10], p.23, we have

\[E_{2n+1}(f) \leq \frac{6}{2n+1} E_{2n}(f') . \]

(6.10)

Hence, from (6.9) and (6.10) the theorem follows.
REFERENCES

3. BOJANIC, R., VARMA, A.K. and VÉRTESI, P., Necessary and Sufficient conditions for uniform convergence of Quasi Hermite and extended Hermite-Fejér interpolation, Accepted for publication in Studia Math. Hung.

10. RIVLIN, T.J., Introduction to the approximation of functions, Ginn (Blaisdell), Boston, 1969.

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk