THE RADIUS OF STARLIKENESS FOR CONVEX FUNCTIONS OF COMPLEX ORDER

YAŞAR POLATOĞLU, METIN BOLCAL, and ARZU ŞEN

Received 4 November 2003

We will give the relation between the class of Janowski starlike functions of complex order and the class of Janowski convex functions of complex order. As a corollary of this relation, we obtain the radius of starlikeness for the class of Janowski convex functions of complex order.

2000 Mathematics Subject Classification: 30C45.

1. Introduction. Let F be the class of analytic functions in $D = \{z \mid |z| < 1\}$, and let S denote those functions in F that are univalent and normalized by $f(0) = 0, f'(0) = 1$. Furthermore, let Ω be the family of functions $\omega(z)$ regular in D and satisfying $\omega(0) = 0, |\omega(z)| < 1$ for $z \in D$.

For arbitrary fixed numbers $-1 \leq B < A \leq 1$, denoted by $P(A,B)$, the family of functions

$$p(z) = 1 + p_1 z + p_2 z^2 + \cdots,$$

(1.1)

which is regular in D on the condition such that

$$p(z) = \frac{1 + A \omega(z)}{1 + B \omega(z)}$$

(1.2)

for some functions $\omega(z) \in \Omega$ and every $z \in D$. This class was introduced by Janowski [7].

Moreover, let $S^*(A,B,b)$ be denoted by the family of functions $f(z) \in S$ such that $f(z)$ is in $S^*(A,B,b)$ if and only if $f(z)/z \neq 0$,

$$1 + \frac{1}{b} \left(z \cdot \frac{f'(z)}{f(z)} - 1 \right) = p(z), \quad (b \neq 0, \text{ complex})$$

(1.3)

for some functions $p(z) \in P(A,B)$ and every $z \in D$.

Finally, let $C(A,B,b)$ denote the family of functions which are regular:

$$1 + \frac{1}{b} \cdot z \cdot \frac{f''(z)}{f'(z)} = p(z), \quad (b \neq 0, \text{ complex})$$

(1.4)

for some functions $p(z) \in P(A,B)$ and every $z \in D$.

We note that $P(-1,1)$ is the class of Carathéodory functions, and therefore the class $C(A,B,b)$ contains the following classes. $b = 1$, $C(1,-1,1) = C$ is the well-known class of convex functions [2], and $C(1,-1,b) = C(b)$ is the class of convex functions of complex order [7, 8]. $C(1,1,1 - \beta)$, $0 \leq \beta < 1$ is the class of convex functions of order β [9]. For $A = 1$, $B = -1$, $b = e^{-i\lambda} \cdot \cos \lambda$, $|\lambda| < \pi/2$ is the class of functions for which $zf'(z)$ is λ-spirallike [3, 6, 11, 12, 13, 14]. For $A = 1$, $B = -1$, $b = (1 - \beta)e^{-i\lambda} \cdot \cos \lambda$, $0 \leq \beta < 1$, $|\lambda| < \pi/2$ is the class of functions for which $zf'(z)$ is λ-spirallike of order β [3, 6, 11, 12, 13, 14].

2. Representation theorem for the class $S^*(A,B,b)$. The following lemma, well known as Jack’s lemma, is required in our investigation.

Lemma 2.1 [4, 5]. Let $w(z)$ be a nonconstant and analytic function in the unit disc D with $w(0) = 0$. If $|w(z)|$ attains its maximum value on the circle $|z| = r$ at the point z_0, then $z_0 w'(z_0) = kw(z_0)$ and $k \geq 1$.

Lemma 2.2. $e^{-i\alpha} f(e^{i\alpha}z)$, $\alpha \in [0,2\pi)$ is in $C(A,B,b)$ whenever $f(z)$ is in $C(A,B,b)$.

Proof. If $f(z) \in C(A,B,b)$, then

$$g(z) = e^{-i\alpha} f(e^{i\alpha}z) \Rightarrow 1 + \frac{1}{b} z \frac{g'(z)}{g(z)} = 1 + \frac{1}{b} (e^{i\alpha}z) \frac{f'(e^{i\alpha}z)}{f(e^{i\alpha}z)}. \quad (2.1)$$

We note that similarly the class $S^*(A,B,b)$ is invariant under the rotation so that $e^{-i\alpha} f(e^{i\alpha}z)$, $\alpha \in [0,2\pi)$ is in $S^*(A,B,b)$ whenever $f(z)$ is in $S^*(A,B,b)$.

Lemma 2.3. If $g(z) \in S^*(A,B,b)$, then

$$g(z) = \begin{cases} z(1 + Bw(z))^{b(A-B)/B}, & B \neq 0, \ k = 1, \\ ze^{bAw(z)}, & B = 0, \ k = 1, \end{cases} \quad (2.2)$$

for some $w(z) \in \Omega$ and for all z in D, and conversely.

Proof. The proof of this lemma is completed in four steps, and we have used Nicola Tuneski’s technique for the special case of $k = 1$ [15].

First Step. If $B \neq 0$ and

$$g(z) = z(1 + Bw(z))^{b(A-B)/B}, \quad (2.3)$$

then by taking logarithmic derivative of (2.3) followed by a brief computation using Jack’s lemma and the definition of subordination, we obtain

$$1 + \frac{1}{b} \left(z \frac{g'(z)}{g(z)} - 1 \right) = \frac{1 + Aw(z)}{1 + Bw(z)}, \quad \text{for } k = 1, \quad (2.4)$$

and so from the definition of $S^*(A,B,b)$ it follows that $g(z) \in S^*(A,B,b)$. (See [10].)
SECOND STEP. If $B = 0$, then we have $g(z) = ze^{bAw(z)}$. Similarly, we get

$$1 + \frac{1}{b} \left(zg'(z) \cdot g'(z) - 1 \right) = 1 + Aw(z), \quad \text{for } k = 1. \quad (2.5)$$

The equality shows that $g(z) \in S^*(A,B,b)$.

THIRD STEP. Conversely, if $g(z) \in S^*(A,B,b)$ and $B \neq 0$, then we have

$$1 + \frac{1}{b} \left(zg'(z) \cdot g'(z) - 1 \right) = \frac{1 + Aw(z)}{1 + Bw(z)}. \quad (2.6)$$

Equation (2.6) can be written in the form

$$\frac{g'(z)}{g(z)} = \frac{b(A-B)(w(z)/z)}{1 + Bw(z)} + \frac{1}{z}. \quad (2.7)$$

If we use Jack’s lemma in (2.7) for $k = 1$, we obtain

$$\frac{g'(z)}{g(z)} = \frac{b(A-B)w'(z)}{1 + Bw(z)} + \frac{1}{z}. \quad (2.8)$$

Integrating both sides of equality (2.8), we get (2.3).

FOURTH STEP. Again, conversely, if $g(z) \in S^*(A,B,b)$ and $B = 0$, then in the same way we obtain $g(z) = ze^{bAw(z)}$ which completes the proof.

LEMMA 2.4. Let $f(z)$ be regular and analytic in D, and normalized so that $f(0) = 0$, $f'(0) = 1$. A necessary and sufficient condition for $f(z) \in C(A,B,b)$ is that for each member $g(z) = z + b_1 z + b_2 z^2 + \cdots$ of $S^*(A,B,b)$ the following equation holds:

$$g(z,\zeta) = z \left(\frac{f(z) - f(\zeta)}{z - \zeta} \right)^2, \quad \zeta, z \in D, \zeta \neq z, \zeta = nz, |n| \leq 1. \quad (2.9)$$

PROOF. If $f(z) \in C(A,B,b)$, then this function is analytic, regular, and continuous in the unit disc. Therefore, equality (2.9) can be written in the form

$$g(z) = z(f'(z))^2. \quad (2.10)$$

If we take the logarithmic derivative of equality (2.10) followed by simple calculations, we get

$$1 + \frac{1}{2b} \left(zg'(z) \cdot g'(z) - 1 \right) = 1 + \frac{1}{b} z^2 f''(z) = \frac{1 + Aw(z)}{1 + Bw(z)}. \quad (2.11)$$

On the other hand, b is a complex number and $b \neq 0$. Therefore, $b_1 = 2b$ is a complex number and $2b \neq 0$, thus (2.11) can be written in the form

$$1 + \frac{1}{b_1} \left(zg'(z) \cdot g'(z) - 1 \right) = 1 + \frac{1}{b_1} z^2 f''(z). \quad (2.12)$$
Considering equality (2.12), the definition of \(C(A,B,b) \), and the definition of \(S^*(A,B,b) \), we obtain \(g(z) \in S^*(A,B,2b) \).

Conversely, if \(g(z) \in S^*(A,B,b) \), and \(g(z) = z\left((f(z) - f(\zeta))/(z - \zeta)\right) \) holds, then from Lemma 2.3 we get

\[
g(z) = z\left(\frac{f(z) - f(\zeta)}{z - \zeta}\right)^2 = \begin{cases} z\left(1 + Bw(z)\right)^{b(A-B)/B}, & B \neq 0, \\ ze^{bAw(z)}, & B = 0. \end{cases} \tag{2.13}
\]

If we take the logarithmic derivative with respect to \(z \) of (2.13) followed by simple calculations, we get

\[
1 + \frac{1}{b}\left(z\frac{g'(z)}{g(z)} - 1\right) = \frac{1}{b}\left[\frac{2zf'(z)}{f(z) - f(\zeta)} - \frac{z + \zeta}{z - \zeta}\right] + 1 - \frac{1}{b} = \frac{1 + Aw(z)}{1 + Bw(z)}, \quad B \neq 0,
\]

\[
1 + \frac{1}{b}\left(z\frac{g'(z)}{g(z)} - 1\right) = \frac{1}{b}\left[\frac{2zf''(z)}{f(z) - f(\zeta)} - \frac{z + \zeta}{z - \zeta}\right] + 1 - \frac{1}{b} = 1 + Aw(z), \quad B = 0.
\tag{2.14}
\]

Furthermore, if we write \(F(z,\zeta) = (1/b)[2zf'(z)/(f(z) - f(\zeta)) - (z + \zeta)/(z - \zeta)] + 1 - 1/b \), then we have

\[
\lim_{\zeta \to z} F(z,\zeta) = 1 + \frac{1}{b}z\frac{f''(z)}{f'(z)}. \tag{2.15}
\]

Considering relations (2.14) and (2.15) together, we obtain \(f(z) \in C(A,B,b) \).

COROLLARY 2.5. If \(f(z) \in C(A,B,b) \), then

\[
2\left[1 + \frac{1}{b}\left(z\frac{f'(z)}{f(z)} - 1\right)\right] - 1 = p(z) = \frac{1 + Aw(z)}{1 + Bw(z)}. \tag{2.16}
\]

PROOF. If we take \(\zeta = 0 \) in \(F(z,\zeta) \), we obtain the desired result of this corollary. \(\Box \)

3. The radius of starlikeness for the class \(C(A,B,b) \)

LEMMA 3.1. If \(f(z) \in C(A,B,b) \), then

\[
\left|z\frac{f'(z)}{f(z)} - 2 - \frac{B^2 - b(2B^2 - AB)r^2}{(1-B^2)r^2}\right| \leq \frac{|b|(A-B)r}{2(1-B^2)r^2}. \tag{3.1}
\]

PROOF. If \(p(z) \in P(A,B) \), then

\[
\left|p(z) - \frac{1 - ABr^2}{1-B^2r^2}\right| \leq \frac{(A-B)r}{1-B^2r^2}. \tag{3.2}
\]
The inequality (3.2) was proved by Janowski [7]. Considering Corollary 2.5 and inequality (3.1), then we get

\[
\left| 2 \left[1 + \frac{1}{b} \left(z f'(z) - 1 \right) - 1 \right] \right| \leq \frac{(A-B)r}{1-B^2r^2}.
\]

(3.3)

After brief calculations from (3.3), we obtain (3.1). \(\square\)

Theorem 3.2. The radius of starlikeness for the class \(C(A,B,b)\) is

\[
r_s = \frac{4}{|b|(A-B) + \sqrt{|b|^2(A-B)^2 + 8[2B^2 + (AB-B^2)\text{Re} b]}}.
\]

(3.4)

This radius is sharp, because the extremal function is

\[
f_*(z) = \begin{cases}
\int_0^z (1 + B\zeta)^{b(A-B)/B} d\zeta, & B \neq 0, \\
\int_0^z e^{Ab\zeta} d\zeta, & B = 0.
\end{cases}
\]

(3.5)

Proof. After the brief calculations from inequality (3.1), we get

\[
\text{Re} \left(z^2 \frac{f'(z)}{f(z)} \right) \geq \frac{2 - |b|(A-B)r - [2B^2 + (AB - B^2)\text{Re} b]r^2}{1 - B^2r^2}.
\]

(3.6)

Hence for \(r < r_s\), the right-hand side of inequality (3.6) is positive. This implies that (3.4) holds.

Also note that inequality (3.6) becomes an equality for the function \(f_*(z)\). It follows that (3.4) holds. \(\square\)

Corollary 3.3. If \(A = 1, B = -1, b = 1\), then \(r_s = 1\). This is the radius of starlikeness of convex functions which is well known (see [1, Volume II, page 88]).

References

Yaşar Polatoglu: Department of Mathematics and Computer Science, Faculty of Science and Letters, Kültür University, Istanbul 34191, Turkey

E-mail address: y.polatoglu@iku.edu.tr

Metin Bolcal: Department of Mathematics and Computer Science, Faculty of Science and Letters, Kültür University, Istanbul 34191, Turkey

E-mail address: m.bolcal@iku.edu.tr

Arzu Şen: Department of Mathematics and Computer Science, Faculty of Science and Letters, Kültür University, Istanbul 34191, Turkey

E-mail address: a.sen@iku.edu.tr
Mathematical Problems in Engineering

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation
http://www.hindawi.com