ON SANDWICH THEOREMS FOR SOME CLASSES OF ANALYTIC FUNCTIONS

T. N. SHANMUGAM, S. SIVASUBRAMANIAN, AND H. SILVERMAN

Received 20 April 2006; Revised 31 July 2006; Accepted 5 September 2006

The purpose of this present paper is to derive some subordination and superordination results for certain normalized analytic functions in the open unit disk. Relevant connections of the results, which are presented in the paper, with various known results are also considered.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let \(\mathcal{H} \) be the class of functions analytic in \(\Delta := \{ z : |z| < 1 \} \), and \(\mathcal{H}[a,n] \) be the subclass of \(\mathcal{H} \) consisting of functions of the form \(f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots \). Let \(\mathcal{A} \) be the subclass of \(\mathcal{H} \) consisting of functions of the form \(f(z) = z + a_2 z^2 + \cdots \). With a view to recalling the principle of subordination between analytic functions, let the functions \(f \) and \(g \) be analytic in \(\Delta \). Then we say that the function \(f \) is subordinate to \(g \) if there exists a Schwarz function \(\omega(z) \), analytic in \(\Delta \) with

\[
\omega(0) = 0, \quad |\omega(z)| < 1 \quad (z \in \Delta),
\]

such that

\[
f(z) = g(\omega(z)) \quad (z \in \Delta).
\]

We denote this subordination by

\[
f \prec g \quad \text{or} \quad f(z) \prec g(z) \quad (z \in \Delta).
\]

In particular, if the function \(g \) is univalent in \(\Delta \), the above subordination is equivalent to

\[
f(0) = g(0), \quad f(\Delta) \subset g(\Delta).
\]
Let \(p, h \in \mathcal{H} \) and let \(\phi(r,s,t;z) : \mathbb{C}^3 \times \Delta \rightarrow \mathbb{C} \). If \(p \) and \(\phi(p(z),zp'(z),z^2p''(z);z) \) are univalent and if \(p \) satisfies the second-order superordination
\[
h(z) < \phi(p(z),zp'(z),z^2p''(z);z),
\]
then \(p \) is a solution of the differential superordination (1.5). (If \(f \) is subordinate to \(F \), then \(F \) is superordinate to \(f \).) An analytic function \(q \) is called a subordinant if \(q \prec p \) for all \(p \) satisfying (1.5). A univalent subordinant \(\tilde{q} \) that satisfies \(q \prec \tilde{q} \) for all subordinants \(q \) of (1.5) is said to be the best subordinant. Recently Miller and Mocanu [5] obtained conditions on \(h, q, \) and \(\phi \) for which the following implication holds:
\[
h(z) \prec \phi(p(z),zp'(z),z^2p''(z);z) \Rightarrow q(z) < p(z).
\]
(1.6)

Using the results of Miller and Mocanu [5], Bulboacă [3] considered certain classes of first-order differential superordinations as well as superordination-preserving integral operators [2]. Ali et al. [1] have used the results of Bulboacă [3] and obtained sufficient conditions for certain normalized analytic functions \(f(z) \) to satisfy
\[
q_1(z) < \frac{zf''(z)}{f(z)} < q_2(z),
\]
where \(q_1 \) and \(q_2 \) are given univalent functions in \(\Delta \) with \(q_1(0) = 1 \) and \(q_2(0) = 1 \). Shanmugam et al. [8] obtained sufficient conditions for normalized analytic functions \(f(z) \) to satisfy
\[
q_1(z) < \frac{f(z)}{zf'(z)} < q_2(z),
\]
\[
q_1(z) < \frac{z^2f'(z)}{\{f(z)\}^2} < q_2(z),
\]
where \(q_1 \) and \(q_2 \) are given univalent functions in \(\Delta \) with \(q_1(0) = 1 \) and \(q_2(0) = 1 \), while Obradović and Owa [7] obtained subordination results with the quantity \((f(z)/z)^\mu \) (see also [10]).

Obradović [6] introduced a class of functions \(f \in \mathcal{A} \) such that for \(0 < \alpha < 1 \),
\[
\Re \left\{ f'(z) \left(\frac{z}{f(z)} \right)^\alpha \right\} > 0, \quad z \in \Delta.
\]
(1.9)

He called this class of function “non-Bazilević” type. Tuneski and Darus [11] obtained Fekete-Szegő inequality for the non-Bazilević class of functions. Using this non-Bazilević class, Wang et al. [12] studied many subordination results for the class \(N(\alpha,\lambda,A,B) \) defined as
\[
N(\alpha,\lambda,A,B) := \left\{ f \in \mathcal{A} : (1 + \lambda) \left(\frac{z}{f(z)} \right)^\alpha - \lambda f'(z) \left(\frac{z}{f(z)} \right)^{1+\alpha} \prec \frac{1 + Az}{1 + Bz} \right\},
\]
(1.10)

where \(\lambda \in \mathbb{C}, -1 \leq B \leq 1, A \neq B, 0 < \alpha < 1 \).
The main object of the present sequel to the aforementioned works is to apply a method based on the differential subordination in order to derive several subordination results. Furthermore, we obtain the previous results of Srivastava and Lashin [10], Singh [9] and Obradović and Owa [7] as special cases of some of the results presented here.

2. Preliminaries

In our present investigation, we will need the following definition and results.

Definition 2.1 (see [5, Definition 2, page 817]). Denote by Q the set of all functions $f(z)$ that are analytic and injective on $\Delta - E(f)$, where

$$E(f) = \{ \zeta \in \partial \Delta : \lim_{z \to \zeta} f(z) = \infty \}, \quad (2.1)$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial \Delta - E(f)$.

Theorem 2.2 (see [4, Theorem 3.4h, page 132]). Let $q(z)$ be univalent in the unit disk Δ and let θ and ϕ be analytic in a domain D containing $q(\Delta)$ with $\phi(w) \neq 0$ when $w \in q(\Delta)$. Set $Q(z) = zq'(z)\phi(q(z))$, $h(z) = \theta(q(z)) + Q(z)$. Suppose that

1. $Q(z)$ is starlike univalent in Δ;
2. $\Re(zh'(z))/Q(z) > 0$ for $z \in \Delta$.

If

$$\theta(p(z)) + zp'(z)\phi(p(z)) < \theta(q(z)) + zq'(z)\phi(q(z)), \quad (2.2)$$

then $p(z) < q(z)$ and $q(z)$ is the best dominant.

Lemma 2.3 (see [8]). Let q be a convex univalent function in Δ and let $\psi, \gamma \in \mathbb{C}$ with $\Re(1 + (zq''(z)/q'(z))) > \max\{0, -\Re(\psi/\gamma)\}$. If $p(z)$ is analytic in Δ and

$$\psi p(z) + \gamma zp'(z) < \psi q(z) + \gamma zq'(z), \quad (2.3)$$

then $p(z) < q(z)$ and $q(z)$ is the best dominant.

Lemma 2.4 (see [4, Corollary 3.4h.1, page 135]). Let $q(z)$ be univalent in Δ and let $\varphi(z)$ be analytic in a domain containing $q(\Delta)$. If $zq'(z)\varphi(q(z))$ is starlike, and

$$zp'(z)\varphi(p(z)) < zq'(z)\varphi(q(z)), \quad (2.4)$$

then $p(z) < q(z)$ and $q(z)$ is the best dominant.

Theorem 2.5 (see [3]). Let $q(z)$ be convex univalent in the unit disk Δ and let θ and φ be analytic in a domain D containing $q(\Delta)$. Suppose that

1. $\Re[\theta'(q(z))/\varphi(q(z))] > 0$ for $z \in \Delta$;
2. $zq'(z)\varphi(q(z))$ is starlike univalent in Δ.
If \(p(z) \in H[q(0),1] \cap Q \), with \(p(\Delta) \subseteq D \), and \(\theta(p(z)) + zp'(z)\varphi(p(z)) \) is univalent in \(\Delta \), and
\[
\theta(q(z)) + zq'(z)\varphi(q(z)) \prec \theta(p(z)) + zp'(z)\varphi(p(z)),
\]
then \(q(z) \prec p(z) \) and \(q \) is the best subordinant.

Lemma 2.6 (see [5, Theorem 8, page 822]). Let \(q \) be convex univalent in \(\Delta \) and \(\gamma \in \mathbb{C} \). Further assume that \(\Re[\gamma] > 0 \). If \(p(z) \in H[q(0),1] \cap Q \), and \(p(z) + \gamma z p'(z) \) is univalent in \(\Delta \), then
\[
q(z) + \gamma zq'(z) \prec p(z) + \gamma z p'(z)
\]
implies \(q(z) \prec p(z) \) and \(q \) is the best subordinant.

3. Subordination for analytic functions

By using Lemma 2.3, we first prove the following.

Theorem 3.1. Let \(q \) be univalent in \(\Delta \), \(\lambda \in \mathbb{C} \), and \(0 < \alpha < 1 \). Suppose \(q \) satisfies
\[
\Re \left(1 + \frac{zq''(z)}{q'(z)} \right) > \max \left\{ 0, -\Re \left\{ \frac{\lambda}{\alpha} \right\} \right\}.
\]
(3.1)
If \(f \in A \) satisfies the subordination
\[
(1 + \lambda) \left(\frac{z}{f(z)} \right)^\alpha - \lambda f'(z) \left(\frac{z}{f(z)} \right)^{1+\alpha} \prec q(z) + \frac{\lambda z q'(z)}{\alpha},
\]
then
\[
\left(\frac{z}{f(z)} \right)^\alpha \prec q(z)
\]
(3.3)
and \(q \) is the best dominant.

Proof. Define the function \(p(z) \) by
\[
p(z) := \left(\frac{z}{f(z)} \right)^\alpha.
\]
(3.4)
Then
\[
\frac{zp'(z)}{p(z)} = \alpha \left[1 - \frac{zf'(z)}{f(z)} \right],
\]
(3.5)
which, in light of hypothesis (3.2) of Theorem 3.1, yields the following subordination:
\[
p(z) + \frac{\lambda z p'(z)}{\alpha} \prec q(z) + \frac{\lambda z q'(z)}{\alpha}.
\]
(3.6)
The assertion of Theorem 3.1 now follows by an application of Lemma 2.3 with \(\gamma = \lambda/\alpha \) and \(\psi = 1 \). \(\square \)
Taking \(q(z) = (1 + Az)/(1 + Bz) \) in Theorem 3.1, we have the following corollary.

Corollary 3.2. Let \(-1 \leq B < A \leq 1\) and (3.1) hold. If \(f \in \mathcal{A} \), and

\[
(1 + \lambda) \left(\frac{z}{f(z)} \right)^\alpha - \lambda f'(z) \left(\frac{z}{f(z)} \right)^{1+\alpha} < \frac{\lambda (A - B) z}{\alpha (1 + Bz)^2} + \frac{1 + Az}{1 + Bz},
\]

then

\[
\left(\frac{z}{f(z)} \right)^\alpha < \frac{1 + Az}{1 + Bz}
\]

and \((1 + Az)/(1 + Bz)\) is the best dominant.

Theorem 3.1 for the choice of \(q(z) = (1 + z)/(1 - z) \) reduces to the following.

Corollary 3.3. Let (3.1) hold. If \(f \in \mathcal{A} \), and

\[
(1 + \lambda) \left(\frac{z}{f(z)} \right)^\alpha - \lambda f''(z) \left(\frac{z}{f(z)} \right)^{1+\alpha} < \frac{2\lambda z}{\alpha (1 - z)^2} + \frac{1 + z}{1 - z},
\]

then

\[
\left(\frac{z}{f(z)} \right)^\alpha < \frac{1 + z}{1 - z}
\]

and \((1 + z)/(1 - z)\) is the best dominant.

Theorem 3.4. Let \(q \) be univalent in \(\Delta \), \(\gamma, \mu \neq 0 \in \mathbb{C} \), and \(0 \leq \beta \leq 1 \). Let \(f \in \mathcal{A} \). Suppose \(q \) satisfies

\[
\Re \left\{ 1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} \right\} > 0.
\]

If

\[
1 + \gamma \mu \left\{ \frac{zf'(z) + \beta z^2 f''(z)}{(1 - \beta) f(z) + \beta z f'(z)} - 1 \right\} < 1 + \gamma \frac{zq'(z)}{q(z)},
\]

then

\[
\left[\frac{(1 - \beta) f(z) + \beta z f'(z)}{z} \right]^\mu < q(z)
\]

and \(q \) is the best dominant.

Proof. Define the function \(p(z) \) by

\[
p(z) := \left[\frac{(1 - \beta) f(z) + \beta z f'(z)}{z} \right]^\mu, \quad z \neq 0.
\]
On sandwich theorems

Then a computation shows that

$$\mu \left\{ \frac{zf'(z) + \beta z^2 f''(z)}{(1 - \beta)f(z) + \beta zf'(z)} - 1 \right\} = \frac{zp'(z)}{p(z)}. \quad (3.15)$$

By setting

$$\theta(\omega) := 1, \quad \phi(\omega) := \frac{\gamma}{\omega}, \quad (3.16)$$

it can be easily observed that \(\theta(\omega) \) is analytic in \(\mathbb{C} \), \(\phi(\omega) \) is analytic in \(\mathbb{C} \setminus \{0\} \), and that

$$\phi(\omega) \neq 0 \quad (\omega \in \mathbb{C} \setminus \{0\}). \quad (3.17)$$

Also, we let

$$Q(z) = zq'(z)\phi(q(z)) = y\frac{zq'(z)}{q(z)},$$

$$h(z) = \theta[q(z)] + Q(z) = 1 + y\frac{zq'(z)}{q(z)}. \quad (3.18)$$

From (3.11), we find that \(Q(z) \) is starlike univalent in \(\Delta \) and that

$$\Re \left(\frac{zh'(z)}{Q(z)} \right) = \Re \left\{ 1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} \right\} > 0 \quad (3.19)$$

by the hypothesis (3.11) of Theorem 3.4. Thus, by applying Theorem 2.2, our proof of Theorem 3.4 is completed. \(\square \)

For a special case when \(q(z) = 1/(1 - z)^{2b} \) \((b \in \mathbb{C} \setminus \{0\})\), \(\beta = 0 \), \(y = 1/b \), and \(\mu = 1 \), Theorem 3.4 reduces at once to the following known result obtained by Srivastava and Lashin [10].

Corollary 3.5. Let \(b \) be a nonzero complex number. If \(f \in \mathcal{A} \), and

$$1 + \frac{1}{b} \left[\frac{zf'(z)}{f(z)} - 1 \right] < \frac{1 + z}{1 - z}, \quad (3.20)$$

then

$$\frac{f(z)}{z} < \frac{1}{(1 - z)^{2b}} \quad (3.21)$$

and \(1/(1 - z)^{2b} \) is the best dominant.

For a special case when \(q(z) = 1/(1 - z)^{2b} \) \((b \in \mathbb{C} \setminus \{0\})\), \(\beta = 1 \), \(y = 1/b \), and \(\mu = 1 \) Theorem 3.4 reduces at once to another known result obtained by Srivastava and Lashin [10].
Corollary 3.6. Let b be a nonzero complex number. If $f \in \mathcal{A}$, and

$$1 + \frac{zf''(z)}{b - f'(z)} < \frac{1+z}{1-z},$$

then

$$f'(z) < \frac{1}{(1-z)^{2b}}$$

and $1/(1 - z)^{2b}$ is the best dominant.

For $q(z) = (1 + Bz)^{\mu(A - B)/B}$, $\gamma = 1/\mu$, and $\beta = 0$ in Theorem 3.4, we get the following known result obtained by Obradović and Owa [7].

Corollary 3.7. Let $-1 \leq B < A \leq 1$. If $f \in \mathcal{A}$, and

$$zf'(z) < \frac{1 + Az}{1 + Bz},$$

then

$$\left(\frac{f(z)}{z}\right)^{\mu} < (1 + Bz)^{\mu(A - B)/B} \quad (z \in \Delta; \ z \neq 0; \ \mu \in \mathbb{C}; \ \mu \neq 0)$$

and $(1 + Bz)^{\mu(A - B)/B}$ is the best dominant.

We remark here that $q(z) = (1 + Bz)^{\mu(A - B)/B}$ is univalent if and only if $|\mu(A - B)/B| \leq 1$ or $|\mu(A - B)/B| + 1 \leq 1$.

For $q(z) = e^{\mu Az}$, $\gamma = 1/\mu$, and $\beta = 0$ in Theorem 3.4, we get the following known result obtained by Obradović and Owa [7].

Corollary 3.8. If $f \in \mathcal{A}$, and

$$zf'(z) < 1 + Az,$$

then

$$\left(\frac{f(z)}{z}\right)^{\mu} < e^{\mu Az} \quad (z \in \Delta; \ z \neq 0; \ \mu \in \mathbb{C}; \ \mu \neq 0)$$

and $e^{\mu Az}$ is the best dominant.

Similar to the previous corollary, the function $q(z) = e^{\mu Az}$ is univalent if and only if $|\mu A| < \pi$.

Theorem 3.9. Let q be univalent in Δ, $\gamma \neq 0$, $\delta, \alpha \in \mathbb{C}$, and let $0 \leq \beta \leq 1$. Let $f \in \mathcal{A}$. Suppose q satisfies

$$\Re\left\{\frac{\alpha}{\gamma} + 1 + \frac{zq''(z)}{q'(z)}\right\} > 0,$$
On sandwich theorems

and also $\Re(\alpha/\gamma) > 0$. Let

$$\Psi(z) := \left[\frac{(1 - \beta)f(z) + \beta zf'(z)}{z} \right]^\mu \left\{ \alpha + \gamma \mu \left\{ \frac{zf'(z) + \beta z^2 f''(z)}{(1 - \beta)f(z) + \beta zf'(z)} - 1 \right\} \right\} + \delta.$$ (3.29)

If

$$\Psi(z) < \alpha q(z) + \delta + \gamma zq'(z),$$ (3.30)

then

$$\left[\frac{(1 - \beta)f(z) + \beta zf'(z)}{z} \right]^\mu < q(z)$$ (3.31)

and q is the best dominant.

Proof. Define the function $p(z)$ by

$$p(z) := \left[\frac{(1 - \beta)f(z) + \beta zf'(z)}{z} \right]^\mu.$$ (3.32)

Then a computation shows that

$$\mu \left\{ \frac{zf'(z) + \beta z^2 f''(z)}{(1 - \beta)f(z) + \beta zf'(z)} - 1 \right\} = \frac{zp'(z)}{p(z)},$$ (3.33)

and hence

$$\mu p(z) \left\{ \frac{zf'(z) + \beta z^2 f''(z)}{(1 - \beta)f(z) + \beta zf'(z)} - 1 \right\} = zp'(z).$$ (3.34)

By setting

$$\theta(\omega) := \alpha \omega + \delta, \quad \phi(\omega) := \gamma,$$ (3.35)

it can be easily observed that $\theta(\omega)$ and $\phi(\omega)$ are analytic in \mathbb{C}. Also, we let

$$Q(z) = zq'(z)\phi(q(z)) = \gamma zq'(z),$$

$$h(z) = \theta[q(z)] + Q(z) = \alpha q(z) + \delta + \gamma zq'(z).$$ (3.36)

From (3.28), we find that $Q(z)$ is starlike univalent in Δ, and that

$$\Re \left(\frac{zh'(z)}{Q(z)} \right) = \Re \left\{ \frac{\alpha}{\gamma} + 1 + \frac{zq''(z)}{q'(z)} \right\} > 0$$ (3.37)

by the hypothesis (3.28) of Theorem 3.9. Thus, by applying Theorem 2.2, our proof of Theorem 3.9 is completed. \qed
For $\beta = 1$, $\delta = -\alpha$, $\gamma = 1$, we get the following corollary.

Corollary 3.10. Let q be univalent in Δ. Let $f \in \mathcal{U}$ and $1 + \alpha > 0$. Suppose f satisfies

$$\Re\left\{\alpha + 1 + \frac{zq''(z)}{q'(z)}\right\} > 0. \quad (3.38)$$

If

$$\alpha\left\{(f'(z))^\mu - 1\right\} + \mu\left\{\frac{zf''(z)}{f'(z)}(f'(z))^\mu\right\} < \alpha q(z) - \alpha + zq'(z), \quad (3.39)$$

then

$$[f'(z)]^\mu < q(z) \quad (3.40)$$

and q is the best dominant.

Taking $q(z) = 1 + \lambda/(1 + \alpha)z$, we obtain a recent result of Singh [9, Theorem 1(ii), page 571].

4. Superordination for analytic functions

Theorem 4.1. Let q be convex univalent in Δ, $\lambda \in \mathbb{C}$, and $0 < \alpha < 1$. Suppose q satisfies

$$\Re\{\lambda\} > 0 \quad (4.1)$$

and $(z/f(z))^\alpha \in \mathcal{H}[q(0), 1] \cap Q$. Let

$$(1 + \lambda)\left(\frac{z}{f(z)}\right)^\alpha - \lambda f'(z)\left(\frac{z}{f(z)}\right)^{1+\alpha} \quad (4.2)$$

be univalent in Δ. If

$$q(z) + \frac{\lambda zq'(z)}{\alpha} < (1 + \lambda)\left(\frac{z}{f(z)}\right)^\alpha - \lambda f'(z)\left(\frac{z}{f(z)}\right)^{1+\alpha}, \quad (4.3)$$

then

$$q(z) < \left(\frac{z}{f(z)}\right)^\alpha \quad (4.4)$$

and q is the best subordinant.

Proof. Define the function $p(z)$ by

$$p(z) := \left(\frac{z}{f(z)}\right)^\alpha. \quad (4.5)$$
On sandwich theorems

Then a computation shows that

\[p(z) + \frac{\lambda}{\alpha} z p'(z) = (1 + \lambda) \left(\frac{z}{f(z)} \right)^\alpha - \lambda f''(z) \left(\frac{z}{f(z)} \right)^{1+\alpha}. \] (4.6)

Theorem 4.1 follows as an application of Lemma 2.6. □

Taking \(q(z) = (1 + Az)/(1 + Bz) \) in Theorem 4.1, we get the following corollary.

Corollary 4.2. Let \(-1 \leq B < A \leq 1\). Let \(q \) be convex univalent in \(\Delta \). Suppose \(q \) satisfies \(\Re(\lambda) > 0 \) and \((z/f(z))^\alpha \in \mathcal{H}[q(0), 1] \cap Q\). Let

\[(1 + \lambda) \left(\frac{z}{f(z)} \right)^\alpha - \lambda f''(z) \left(\frac{z}{f(z)} \right)^{1+\alpha}, \] (4.7)

be univalent in \(\Delta \). If

\[\frac{\lambda(A-B)z + 1 + Az}{\alpha(1+Bz)^2} + \frac{1 + Az}{1 + Bz} < (1 + \lambda) \left(\frac{z}{f(z)} \right)^\alpha - \lambda f''(z) \left(\frac{z}{f(z)} \right)^{1+\alpha}, \] (4.8)

then

\[\frac{1 + Az}{1 + Bz} < \left(\frac{z}{f(z)} \right)^\alpha \] (4.9)

and \((1 + Az)/(1 + Bz)\) is the best subordinant.

Since the proof of Theorem 5.2 is similar to the proof of Theorem 4.1, we state the theorem without proof.

Theorem 4.3. Let \(q \) be convex univalent in \(\Delta \), \(\gamma \in \mathbb{C} \), \(0 \leq \beta \leq 1 \), and \(f \in \mathcal{A} \). Suppose \([((1-\beta)f(z) + \beta zf'(z))/z]^\mu \in \mathcal{H}[q(0), 1] \cap Q\), and

\[1 + \gamma \mu \left\{ \frac{zf'(z) + \beta z^2 f''(z)}{(1-\beta)f(z) + \beta zf'(z)} - 1 \right\} \] (4.10)

is univalent in \(\Delta \). If

\[1 + \gamma \frac{zq'(z)}{q(z)} < 1 + \gamma \mu \left\{ \frac{zf'(z) + \beta z^2 f''(z)}{(1-\beta)f(z) + \beta zf'(z)} - 1 \right\}, \] (4.11)

then

\[q(z) < \left[\frac{(1-\beta)f(z) + \beta zf'(z)}{z} \right]^\mu \] (4.12)

and \(q \) is the best subordinant.

Theorem 4.4. Let \(q \) be convex univalent in \(\Delta \), \(\gamma \neq 0 \), \(\delta, \alpha \in \mathbb{C} \), and let \(0 \leq \beta \leq 1 \). Let \(f \in \mathcal{A} \). Suppose \(q \) satisfies

\[\Re \left\{ \frac{\alpha}{\gamma} q'(z) \right\} > 0. \] (4.13)
If

$$\alpha q(z) + \delta + \gamma q'(z) \prec \left[\frac{(1-\beta) f(z) + \beta z f'(z)}{z} \right]^{\mu} \{ \alpha + \gamma \mu \left\{ \frac{z f'(z) + \beta z^2 f''(z)}{(1-\beta) f(z) + \beta z f'(z)} - 1 \right\} + \delta, \right.$$

(4.14)

then

$$q(z) \prec \left[\frac{(1-\beta) f(z) + \beta z f'(z)}{z} \right]^{\mu}$$

(4.15)

and q is the best subordinant.

Proof. Define the function $p(z)$ by

$$p(z) := \left[\frac{(1-\beta) f(z) + \beta z f'(z)}{z} \right]^{\mu}. \right.$$

(4.16)

Then a computation shows that

$$\mu \left\{ \frac{z f'(z) + \beta z^2 f''(z)}{(1-\beta) f(z) + \beta z f'(z)} - 1 \right\} = z p'(z) \frac{p(z)}{p(z)},$$

(4.17)

and hence

$$\mu p(z) \left\{ \frac{z f'(z) + \beta z^2 f''(z)}{(1-\beta) f(z) + \beta z f'(z)} - 1 \right\} = z p'(z).$$

(4.18)

By setting

$$\theta(\omega) := \alpha \omega + \delta, \quad \phi(\omega) := \gamma,$$

(4.19)

it can be easily observed that both $\theta(\omega)$ and $\phi(\omega)$ are analytic in \mathbb{C}. Now,

$$\Re \left\{ \frac{\theta'(q(z))}{\phi(q(z))} \right\} = \Re \left\{ \frac{\alpha q'(z)}{\gamma} \right\} > 0,$$

(4.20)

by the hypothesis (4.13) of Theorem 4.4. Thus, by applying Theorem 2.5, our proof of Theorem 4.4 is completed. \square

5. Sandwich results

Combining the results of differential subordination and superordination, we state the following “sandwich results.”

Theorem 5.1. Let q_1 be convex univalent and let q_2 be univalent in Δ, $\lambda \in \mathbb{C}$, and $0 < \alpha < 1$. Suppose q_1 satisfies (4.1) and q_2 satisfies (3.1). If $0 \neq (z/f(z))^\alpha \in \mathcal{H}(q(0),1) \cap Q$, $(1+\lambda)(z/f(z))^\alpha - \lambda f''(z)/f'(z)^{1+\alpha}$ is univalent in Δ, and

$$q_1(z) + \frac{\lambda}{\alpha} z q_1'(z) \prec (1+\lambda) \left(\frac{z}{f(z)} \right)^\alpha - \lambda f''(z) \left(\frac{z}{f(z)} \right)^{1+\alpha} \prec q_2(z) + \frac{\lambda}{\alpha} z q_2'(z),$$

(5.1)
then
\[q_1(z) < \left(\frac{z}{f(z)} \right)^\alpha < q_2(z) \] (5.2)
and \(q_1 \) and \(q_2 \) are, respectively, the best subordinant and best dominant.

Theorem 5.2. Let \(q_1 \) be convex univalent and let \(q_2 \) be univalent in \(\Delta \), \(\gamma \neq 0 \in \mathbb{C}, \mu \neq 0 \in \mathbb{C}, 0 \leq \beta \leq 1 \), and \(q_2 \) satisfies (3.11). Let \(f \in \mathcal{A} \). Suppose \(0 \neq \left(\left(1 - \beta \right) f(z) + \beta z f'(z)/z \right)^\mu \in \mathcal{H}[q(0),1] \cap Q \),

\[
1 + \gamma \mu \left\{ \frac{zf'(z) + \beta z^2 f''(z)}{(1 - \beta) f(z) + \beta z f'(z)} - 1 \right\}
\] (5.3)
is univalent in \(\Delta \). If

\[
1 + \gamma \frac{zq_1'(z)}{q_1(z)} < 1 + \gamma \mu \left\{ \frac{zf'(z) + \beta z^2 f''(z)}{(1 - \beta) f(z) + \beta z f'(z)} - 1 \right\} < 1 + \gamma \frac{zq_2'(z)}{q_2(z)},
\] (5.4)
then
\[q_1(z) < \left[\frac{(1 - \beta) f(z) + \beta z f'(z)}{z} \right]^\mu < q_2(z) \] (5.5)
and \(q_1 \) and \(q_2 \) are, respectively, the best subordinant and the best dominant.

Theorem 5.3. Let \(q_1 \) be convex univalent and let \(q_2 \) be univalent in \(\Delta \), \(\gamma \neq 0 \in \mathbb{C}, \mu \neq 0 \in \mathbb{C} \) and \(0 \leq \beta \leq 1 \). Suppose \(q_1 \) satisfies (4.13), \(q_2 \) satisfies (3.28), and \(\left(\left(1 - \beta \right) f(z) + \beta z f'(z)/z \right)^\mu \in \mathcal{H}[q(0),1] \cap Q \). Let

\[
\left[\frac{(1 - \beta) f(z) + \beta z f'(z)}{z} \right]^\mu \left\{ \alpha + \gamma \mu \left\{ \frac{zf'(z) + \beta z^2 f''(z)}{(1 - \beta) f(z) + \beta z f'(z)} - 1 \right\} \right\} + \delta
\] (5.6)
be univalent in \(\Delta \). If

\[
\alpha q_1(z) + \delta + \gamma z q_1'(z)
\]

\[
< \left[\frac{(1 - \beta) f(z) + \beta z f'(z)}{z} \right]^\mu \left\{ \alpha + \gamma \mu \left\{ \frac{zf'(z) + \beta z^2 f''(z)}{(1 - \beta) f(z) + \beta z f'(z)} - 1 \right\} \right\} + \delta
\] (5.7)
\[
< \alpha q_2(z) + \delta + \gamma z q_2'(z),
\]
then
\[q_1(z) < \left[\frac{(1 - \beta) f(z) + \beta z f'(z)}{z} \right]^\mu < q_2(z) \] (5.8)
and \(q_1 \) and \(q_2 \) are, respectively, the best subordinant and the best dominant.
References

T. N. Shanmugam: Department of Mathematics, College of Engineering, Anna University, Chennai 600 025, India
E-mail address: shan@annauniv.edu

S. Sivasubramanian: Department of Mathematics, Easwari Engineering College, Ramapuram, Chennai 600 089, India
E-mail address: sivasaisastha@rediffmail.com

H. Silverman: College of Charleston, Charleston, SC 29424, USA
E-mail address: silvermanh@cofc.edu
Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk