EXISTENCE AND BIFURCATION FOR SOME ELLIPTIC PROBLEMS ON EXTERIOR STRIP DOMAINS

TSING-SAN HSU

Received 21 December 2005; Revised 18 July 2006; Accepted 19 July 2006

We consider the semilinear elliptic problem

\[-\Delta u + u = \lambda K(x)u^p + f(x) \text{ in } \Omega, \quad u > 0 \text{ in } \Omega, \quad u \in H^1_0(\Omega),\]

where \(\lambda \geq 0\), \(N \geq 3\), \(1 < p < (N+2)/(N-2)\), and \(\Omega\) is an exterior strip domain in \(\mathbb{R}^N\). Under some suitable conditions on \(K(x)\) and \(f(x)\), we show that there exists a positive constant \(\lambda^*\) such that the above semilinear elliptic problem has at least two solutions if \(\lambda \in (0, \lambda^*)\), a unique positive solution if \(\lambda = \lambda^*\), and no solution if \(\lambda > \lambda^*\).

We also obtain some bifurcation results of the solutions at \(\lambda = \lambda^*\).

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

In this paper, we consider the semilinear elliptic problem

\[-\Delta u + u = \lambda K(x)u^p + f(x) \quad \text{in } \Omega, \quad u > 0 \quad \text{in } \Omega, \quad u \in H^1_0(\Omega),\]

where \(\lambda \geq 0\), \(N = m + n \geq 3\), \(m \geq 2\), \(n \geq 1\), \(1 < p < (N+2)/(N-2)\), \(\omega \subseteq \mathbb{R}^m\) is a bounded smooth domain, \(S = \omega \times \mathbb{R}^n\) is a strip domain, \(D\) is a bounded smooth domain in \(\mathbb{R}^N\) such that \(D \subset \subset S\), \(\Omega = S \setminus \overline{D}\) is an exterior strip domain, \(0 \neq f(x) \geq 0\) in \(\Omega\), \(f(x) \in L^2(\Omega) \cap L^{q_0}(\Omega)\) for some \(q_0 > N/2\) if \(N \geq 4\), \(q_0 = 2\) if \(N = 3\), and \(K(x)\) is a positive, bounded, and continuous function on \(\overline{\Omega}\). Moreover \(K(x)\) satisfies the following conditions:

(k1) \(\lim_{|z| \to \infty} K(y, z) = K_{\infty} > 0\) uniformly for \(y \in \omega\);

(k2) there exist some constants \(K_{\infty} > 0\), \(\gamma > (n-1)/2\), and \(\vartheta > 0\) such that

\[K(y, z) \geq K_{\infty} - \vartheta \exp \left(-\frac{p+1}{p} \sqrt{1 + \mu \cdot |z|} \right) |z|^{-\gamma} \quad \text{as } |z| \to \infty, \text{ uniformly for } y \in \omega,\]

where \(\mu\) is the first eigenvalue of the Dirichlet problem \(-\Delta\) in \(\omega\).

If \(\Omega\) is bounded (\(n = 0\) in our case), then \((1.1)_\lambda\) has been studied by many authors: see for instance Bahri and Lions [4] and the references therein. We only consider that \(\Omega\)
is unbounded \((n \geq 1\) in our case). If \(\Omega\) is an exterior domain \((m = 0\) in our case\), Zhu and Zhou \([18]\) and Zhu \([17]\) established the existence of multiple positive solutions of equations with structure unlike that here. If \(\Omega\) is an exterior strip domain, Hsu and Wang \([12]\) have investigated the following problem:

\[
-\Delta u + u = u^p + f(x) \quad \text{in } \Omega, \quad u > 0 \quad \text{in } \Omega, \quad u \in H^1_0(\Omega),
\]

where \(1 < p < (N + 2)/(N - 2)\) and \(N \geq 4\). Hsu and Wang \([12]\) have proved that (1.3) has at least two positive solutions if \(f\) is nonzero positive \(L^2\) function with the \(L^2\) norm small enough and the decay fast enough.

Throughout this paper, let \(x = (y, z)\) be the generic point of \(\mathbb{R}^N\) with \(y \in \mathbb{R}^m, z \in \mathbb{R}^n\), \(N = m + n \geq 3, m \geq 2, n \geq 1, 1 < p < (N + 2)/(N - 2)\), \(S\) is a smooth strip domain in \(\mathbb{R}^N\), \(\Omega\) is a smooth exterior strip domain in \(\mathbb{R}^N\), \(u_0\) is the unique positive solution of (1.1) \(0\), and we denote by \(c\) and \(c_i\) \((i = 1, 2, \ldots)\) the universal constants, unless otherwise specified.

We set

\[
\|u\| = \left(\int_{\Omega} (|\nabla u|^2 + |u|^2) \, dx\right)^{1/2},
\]

\[
\|u\|_{L^q(\Omega)} = \left(\int_{\Omega} |u|^q \, dx\right)^{1/q}, \quad 2 \leq q < \infty,
\]

\[
\|u\|_{L^\infty(\Omega)} = \sup_{x \in \Omega} |u(x)|,
\]

\[
M = \inf \left\{ \int_{S} (|\nabla u|^2 + |u|^2) \, dx : \int_{S} |u|^{p+1} \, dx = 1 \right\}.
\]

Now, we state our main results in the following.

Theorem 1.1. Suppose \(f(x) \geq 0, f(x) \neq 0\) in \(\Omega\), \(f(x) \in L^2(\Omega) \cap L^{q_0}(\Omega)\) for some \(q_0 > N/2\) if \(N \geq 4, q_0 = 2\) if \(N = 3\), \(K(x)\) is a positive, bounded, and continuous function on \(\overline{\Omega}\) and \(K(x)\) satisfies conditions \((k1)\) and \((k2)\). Then there is a \(\lambda^* > 0, \lambda^*\) depending on \(K\) and \(f\), such that

(i) equation (1.1)\(\lambda\) has at least two solutions \(u_\lambda, U_\lambda\) and \(u_\lambda < U_\lambda\) if \(\lambda \in (0, \lambda^*)\);

(ii) equation (1.1)\(\lambda^*\) has a unique solution \(u_{\lambda^*}\);

(iii) equation (1.1)\(\lambda\) has no positive solutions if \(\lambda > \lambda^*\).

Furthermore,

\[
\lambda_1 \equiv \frac{(p + 1)(p - 1)^{p-1}M^{(p+1)/2}}{(2p)^p \|K\|_{L^\infty(\Omega)} \|f\|_{L^2(\Omega)}^{p-1}} \leq \lambda^* \leq \inf_{w \in H^1_0(\Omega) \setminus \{0\}} \left(\frac{\|w\|^2}{p \int_{\Omega} K u_0^{p-1} w^2 \, dx} \right) \equiv \lambda_2 \leq \frac{p \|f\|_{L^2(\Omega)}^2}{(p - 1)^2 \int_{\Omega} K u_0^{p+1} \, dx} \equiv \lambda_3.
\]
where $u_λ$ is the minimal solution of $(1.1)_λ$ and $U_λ$ is the second solution of $(1.1)_λ$ constructed in Section 5.

Theorem 1.2. Under the assumptions of Theorem 1.1,

(i) $u_λ$ is strictly increasing with respect to $λ$, $u_λ$ is uniformly bounded in $L^∞(Ω) \cap H^1_0(Ω)$ for all $λ \in [0,λ^⋆]$, and

$$u_λ \rightarrow u_0 \quad \text{in} \quad L^∞(Ω) \cap H^1_0(Ω) \quad \text{as} \quad λ \rightarrow 0^+; \quad (1.6)$$

(ii) $U_λ$ is unbounded in $L^∞(Ω) \cap H^1_0(Ω)$, that is,

$$\lim_{λ \rightarrow 0^+} \|U_λ\| = \lim_{λ \rightarrow 0^+} \|U_λ\|_{L^∞(Ω)} = \infty; \quad (1.7)$$

(iii) moreover, assume that $K(x)$ and $f(x)$ are in $C^α(Ω) \cap L^2(Ω)$, then all solutions of $(1.1)_λ$ are in $C^2,α(Ω) \cap H^2(Ω)$, and $(λ^⋆,u_λ^⋆)$ is a bifurcation point for $(1.1)_λ$, and

$$u_λ \rightarrow u_0 \quad \text{in} \quad C^2,α(Ω) \cap H^2(Ω) \quad \text{as} \quad λ \rightarrow 0^+. \quad (1.8)$$

This paper is organized as follows. In Section 2, we give some notations and preliminary results. In Section 3, we assert that there exists a positive constant $λ^⋆$, depending on K and f, such that $(1.1)_λ$ has a minimal solution for $λ \in [0,λ^⋆]$. In Section 4, we establish several lemmas for the regularity and asymptotic behaviors of the solution of $(1.1)_λ$. In Section 5, we establish the existence of a second solution $U_λ$ for $λ \in (0,λ^⋆)$. In Section 6, we analyze the set of solutions.

2. Preliminaries

In this section, we give some notations and some known results. In order to get the existence of positive solutions of $(1.1)_λ$, we consider the energy functional $I_λ : H^1_0(Ω) \rightarrow \mathbb{R}$ defined by

$$I_λ(u) = \int_Ω \left[\frac{1}{2} (|\nabla u|^2 + |u|^2) - \frac{λ}{p+1} K(x)(u^+)^{p+1} - f(x)u \right] dx, \quad (2.1)$$

where $u^±(x) = \max\{±u(x),0\}$.

Then the critical points of $I_λ$ are the positive solutions of $(1.1)_λ$.

Consider the equation

$$-\Delta u + u = λK_∞u^p \quad \text{in} \quad S, \quad u > 0 \quad \text{in} \quad S, \quad u \in H^1_0(S), \quad (2.1)_λ$$

and its associated energy functional $I_λ^∞$ defined by

$$I_λ^∞(u) = \int_S \left[\frac{1}{2} (|\nabla u|^2 + |u|^2) - \frac{λ}{p+1} K_∞(u^+)^{p+1} \right] dx, \quad u \in H^1_0(S). \quad (2.2)$$
4 Elliptic problems on exterior strip domains

By Esteban [8] and Lien et al. [14], (2.1) has a ground state solution \(u_\lambda \) such that
\[
M_\lambda^\infty = I_\lambda^\infty (\overline{u}_\lambda) = \sup_{t > 0} I_\lambda^\infty (t\overline{u}_\lambda),
\]
and we also have
\[
M = \inf \left\{ \int_\Sigma (|\nabla u|^2 + |u|^2) : \int_\Sigma |u|^{p+1} = 1 \right\} = \inf \left\{ \int_\Omega (|\nabla u|^2 + |u|^2) : \int_\Omega |u|^{p+1} = 1 \right\}.
\]

Now, we quote here a precise asymptotic behavior result of Hsu [10] for positive solutions of (2.1) at infinity.

Proposition 2.1. Let \(u \) be a positive solution of (2.1) in an unbounded strip \(\Sigma = \omega \times \mathbb{R}^n \subseteq \mathbb{R}^{m+n}, m \geq 2, n \geq 1 \), and let \(\psi \) be the first positive eigenfunction of the Dirichlet problem \(-\Delta \psi = \mu_1 \psi\) in \(\omega \), then for any \(\varepsilon > 0 \), there exist constants \(c_\varepsilon, \tilde{c}_\varepsilon > 0 \) such that
\[
u(x) \leq c_\varepsilon \psi(y) \exp \left(-\sqrt{1+\mu_1} |z| \right) |z|^{-(n-1)/2+\varepsilon} \] as \(|z| \to \infty \), \(y \in \Omega \). (2.5)

3. Existence of minimal solution

In this section, by the standard barrier method, we will establish the existence of minimal positive solution \(u_\lambda \) for all \(\lambda \) in some finite interval \([0, \lambda^\ast]\) (i.e., for any positive solution \(u \) of (1.1) in \(\Omega \)), then \(u \geq u_\lambda \).

Lemma 3.1. Let condition (k1) hold. Then (1.1) has a solution \(u_\lambda \) if \(0 \leq \lambda < \lambda_1 \), where \(\lambda_1 \) is given by (1.5).

Proof. For \(\lambda = 0 \), the existence question is equivalent to the existence of \(u_0 \in H_0^1(\Omega) \) such that
\[
\int_\Omega \nabla u_0 \cdot \nabla \phi + u_0 \phi = \int_\Omega f \phi \] (3.1)
for all \(\phi \in H_0^1(\Omega) \) since
\[
\left| \int_\Omega f \phi \right| \leq \| f \|_{L^2(\Omega)} \| \phi \|_{L^2(\Omega)} \leq \| f \|_{L^2(\Omega)} \| \phi \| \] (3.2)
for all \(\phi \in H_0^1(\Omega) \). According to the Lax-Milgram theorem, there exists a unique \(u_0 \in H_0^1(\Omega) \) that satisfies (3.1). Since \(0 \neq f \geq 0 \) in \(\Omega \), by strong maximum principle (see Gilbarg and Trudinger [9]), we conclude that \(u_0 > 0 \) in \(\Omega \).

We consider next the case \(\lambda > 0 \). We show first that for sufficiently small \(\lambda \), say \(\lambda = \lambda_0 \), there exists \(t = t_0(\lambda_0) > 0 \) such that \(I_{\lambda_0}(u) > 0 \) for \(\| u \| = t_0 \). From the definitions of \(I_{\lambda} \) and \(M \) we have for any \(u \in H_0^1(\Omega) \),
\[
I_{\lambda}(u) \geq \frac{1}{2} \| u \|^2 - \frac{\lambda}{p+1} \| K \|^2 L^\infty(\Omega) M^{-(p+1)/2} \| u \|^{p+1} - \| f \|_{L^2(\Omega)} \| u \|. \] (3.3)
Set
\[h(t) = \frac{1}{2} t - \lambda c_1 t^p - c_2, \]
where \(c_1 = \frac{1}{(p + 1)} \| K \|_{L^\infty(\Omega)} M^{-\frac{(p+1)/2}{p}} \) and \(c_2 = \| f \|_{L^2(\Omega)} \).

It then follows that \(h(t) \) achieves a maximum at \(t_\lambda = \frac{(2 p \lambda c_1)^{-(p-1)^{-1}}}{(p+1)} \). Set \(B_{t_\lambda} = \{ u \in H^1_0(\Omega) : \| u \| < t_\lambda \} \). Then for all \(u \in \partial B_{t_\lambda} = \{ u \in H^1_0(\Omega) : \| u \| = t_\lambda \} \),
\[
I_\lambda(u) \geq t_\lambda h(t_\lambda) \geq t_\lambda \left[\frac{t_\lambda(p-1)}{2p - c_2} \right] > 0
\]
provided that \(c_2 < t_\lambda(p-1)/2p \), which is satisfied for \(\lambda \in (0, \lambda_1) \). Fix a \(\lambda_0 \in (0, \lambda_1) \), and set \(t_0 = t_{\lambda_0} \). Let \(0 \neq \phi \geq 0, \phi \in C^\infty_0(\Omega) \), such that \(\int_\Omega f \phi dx > 0 \). Then
\[
I_{\lambda_0}(t\phi) = \frac{t^2}{2} \| \phi \|^2 - \frac{\lambda_0}{p+1} t^{p+1} \int_\Omega K \phi^{p+1} - t \int_\Omega f \phi < 0
\]
for sufficiently small \(t > 0 \), and it is easy to see that \(I_{\lambda_0} \) is bounded below on \(B_{t_0} \). Set \(\alpha_0 = \inf \{ I_{\lambda_0}(u) | u \in B_{t_0} \} \). Then \(\alpha_0 < 0 \), and since \(I_{\lambda_0}(u) > 0 \) on \(\partial B_{t_0} \), the continuity of \(I_{\lambda_0} \) on \(H^1_0(\Omega) \) implies that there exists \(0 < t_1 < t_0 \) such that \(I_{\lambda_0}(u) > \alpha_0 \) for all \(u \in H^1_0(\Omega) \) and \(t_1 \leq \| u \| \leq t_0 \). By the Ekeland variational principle \([7]\), there exists a sequence \(\{ u_k \}_{k=1}^\infty \subset B_{t_1} \) such that \(I_{\lambda_0}(u_k) = \alpha_0 + o(1) \) and \(I'_{\lambda_0}(u_k) = o(1) \) strongly in \(H^{-1}(\Omega) \), as \(k \to \infty \). It is easy to see that \(\{ u_k \} \) is bounded in \(H^1_0(\Omega) \). Hence, there exist a subsequence \(\{ u_k \} \) and \(\overline{u} \) in \(\overline{B}_{t_1} \) such that
\[
\begin{align*}
&u_k \rightharpoonup \overline{u} \quad \text{weakly in } H^1_0(\Omega), \\
u_k \to \overline{u} \quad \text{strongly in } L^q_{\text{loc}}(\Omega) \quad \text{for } 2 \leq q < \frac{2N}{N-2} \quad \text{as } k \to \infty \quad (3.7) \quad \text{weakly in } \Omega.
\end{align*}
\]
For \(\phi \in C^\infty_0(\Omega) \), we get
\[
\begin{align*}
\int_\Omega \nabla u_k \cdot \nabla \phi &\to \int_\Omega \nabla \overline{u} \cdot \nabla \phi, \\
\int_\Omega u_k \phi &\to \int_\Omega \overline{u} \phi, \\
\int_\Omega K(u_k^+) \phi &\to \int_\Omega K(\overline{u}^+) \phi
\end{align*}
\]
as \(k \to \infty \). Since \(\langle I'_{\lambda_0}(u_k), \phi \rangle = o(1) \) as \(k \to \infty \), \(I'_{\lambda_0}(\overline{u}) = 0 \) in \(H^{-1}(\Omega) \). Therefore \(\overline{u} \) is a weak positive solution of \((1.1)_{\lambda_0}\). \(\square \)

Denote
\[
\lambda^* = \sup \{ \lambda \geq 0 : (1.1)_{\lambda} \text{ has a positive solution} \}.
\]

Now, by the standard barrier method, we get the following lemma.
Lemma 3.2. Let condition (k1) hold, then there exists $\lambda^* > 0$ such that for each $\lambda \in [0, \lambda^*)$, problem (1.1)$_\lambda$ has a minimal positive solution u_λ and u_λ is strictly increasing in λ.

Proof. By Lemma 3.1 and the definition of λ^*, we deduce that $\lambda^* \geq \lambda_1 > 0$. Now, consider $\lambda \in [0, \lambda^*)$. By the definition of λ^*, we know that there exists $\lambda' > \lambda$ such that $\lambda' < \lambda^*$ and (1.1)$_{\lambda'}$ has a positive solution $u_{\lambda'} > 0$, that is,

$$-\Delta u_{\lambda'} + u_{\lambda'} = \lambda'K(x)u_{\lambda'}^p + f(x)$$

$$> \lambda K(x)u_{\lambda'}^p + f(x).$$

(3.10)

Then $u_{\lambda'}$ is a supersolution of (1.1)$_\lambda$. From $f(x) \geq 0$ and $f(x) \not\equiv 0$, it is easily verified that 0 is a subsolution of (1.1)$_\lambda$. By the standard barrier method, there exists a solution u_λ of (1.1)$_\lambda$ such that $0 \leq u_\lambda \leq u_{\lambda'}$. Since 0 is not a solution of (1.1)$_\lambda$ and $\lambda' > \lambda$, the maximum principle implies that $0 < u_\lambda < u_{\lambda'}$. Again using a result of Amann [2], we can choose a minimum positive solution u_λ of (1.1)$_\lambda$. This completes the proof of Lemma 3.2. □

Now, we consider a solution u of (1.1)$_\lambda$. Let $\sigma_\lambda(u)$ be defined by

$$\sigma_\lambda(u) = \inf \left\{ \int_\Omega (|\nabla w|^2 + |w|^2) \, dx : w \in H^1_0(\Omega), \int_\Omega pKu^{p-1}w^2 \, dx = 1 \right\}. \quad (3.11)$$

By the standard direct minimization procedure, we can show that $\sigma_\lambda(u)$ is attained by a function $\varphi_\lambda > 0$, $\varphi_\lambda \in H^1_0(\Omega)$, satisfying

$$-\Delta \varphi_\lambda + \varphi_\lambda = \sigma_\lambda(u)pKu^{p-1}\varphi_\lambda \quad \text{in} \ \Omega. \quad (3.12)$$

Lemma 3.3. Assume condition (k1) holds. For $\lambda \in [0, \lambda^*)$, let u_λ be the minimal solution of (1.1)$_\lambda$ and let $\sigma_\lambda(u_\lambda)$ be the corresponding number given by (3.11). Then

(i) $\sigma_\lambda(u_\lambda) > \lambda$ and is strictly decreasing in λ, $\lambda \in [0, \lambda^*)$;

(ii) $\lambda^* < \infty$, and (1.1)$_{\lambda^*}$ has a minimal solution u_{λ^*}.

Proof. Consider $u_{\lambda'}$, u_{λ}, where $\lambda^* > \lambda' > \lambda \geq 0$. Let φ_λ be a minimizer of $\sigma_\lambda(u_\lambda)$, then by Lemma 3.2, we obtain

$$\int_\Omega pKu_{\lambda'}^{p-1}\varphi_\lambda^2 \, dx > \int_\Omega pKu_{\lambda}^{p-1}\varphi_\lambda^2 \, dx = 1,$n

(3.13)

and there is t, $0 < t < 1$, such that

$$\int_\Omega pKu_{\lambda'}^{p-1}(t\varphi_\lambda)^2 = 1. \quad (3.14)$$

Therefore,

$$\sigma_{\lambda'}(u_{\lambda'}) \leq t^2||\varphi_\lambda||^2 < ||\varphi_\lambda||^2 = \sigma_\lambda(u_\lambda), \quad (3.15)$$

showing the monotonicity of $\sigma_\lambda(u_\lambda)$, $\lambda \in [0, \lambda^*)$.

Consider now $\lambda \in (0, \lambda^*)$. Let $\lambda < \lambda' < \lambda^*$. From (3.12) and the monotonicity of u_λ, we get

\[
\sigma_\lambda (u_\lambda) p \int_\Omega (u_{\lambda'} - u_\lambda) K u_\lambda^{p-1} \varphi_\lambda dx = \int_\Omega \nabla (u_{\lambda'} - u_\lambda) \cdot \nabla \varphi_\lambda dx + \int_\Omega (u_{\lambda'} - u_\lambda) \varphi_\lambda dx
\]

\[
= (\lambda' - \lambda) \int_\Omega K u_\lambda^{p} \varphi_\lambda dx + \lambda \int_\Omega K (u_{\lambda'}^{p} - u_\lambda^{p}) \varphi_\lambda dx
\]

\[
> \lambda p \int_\Omega K \phi_\lambda \int_{u_{\lambda'}}^{u_\lambda} t^{p-1} dt dx
\]

\[
\geq \lambda p \int_\Omega K u_\lambda^{p-1} (u_{\lambda'} - u_\lambda) \varphi_\lambda dx,
\]

which implies that $\sigma_\lambda (u_\lambda) > \lambda$, $\lambda \in (0, \lambda^*)$. This completes the proof of (i).

We show next that $\lambda^* < \infty$. Let $\lambda_0 \in (0, \lambda^*)$ be fixed. For any $\lambda \geq \lambda_0$, (3.15) and (3.16) imply

\[
\sigma_{\lambda_0} (u_{\lambda_0}) \geq \sigma_\lambda (u_\lambda) > \lambda \quad (3.17)
\]

for all $\lambda \in [\lambda_0, \lambda^*)$. Thus, $\lambda^* < \infty$.

By (3.11) and $\sigma_\lambda (u_\lambda) > \lambda$, we have

\[
\int_\Omega (|\nabla u_\lambda|^2 + |u_\lambda|^2) dx - \lambda p \int_\Omega K u_\lambda^{p+1} dx > 0,
\]

\[
\int_\Omega (|\nabla u_\lambda|^2 + |u_\lambda|^2) dx - \int_\Omega \lambda K u_\lambda^{p+1} dx - \int_\Omega f u_\lambda = 0. \quad (3.18)
\]

Thus

\[
\int_\Omega (|\nabla u_\lambda|^2 + |u_\lambda|^2) dx = \int_\Omega \lambda K u_\lambda^{p+1} dx + \int_\Omega f u_\lambda dx
\]

\[
< \frac{1}{p} \int_\Omega (|\nabla u_\lambda|^2 + |u_\lambda|^2) dx + \|f\|_{L^2(\Omega)} \|u_\lambda\|
\]

\[
< \left(\frac{1}{p} + \delta \right) \|u_\lambda\|^2 + \frac{1}{2\delta} \|f\|_{L^2(\Omega)}^2 \quad (3.19)
\]

for any $\delta > 0$. Since $p > 1$, we can obtain $\|u_\lambda\| \leq c < +\infty$ for all $\lambda \in (0, \lambda^*)$ by taking δ small enough. By Lemma 3.2, the solution u_λ is strictly increasing with respect to λ; we may suppose that

\[
u_\lambda \rightharpoonup u_{\lambda^*} \quad \text{weakly in } H^1_0(\Omega),
\]

\[
u_\lambda \longrightarrow u_{\lambda^*} \quad \text{strongly in } L^q_{\text{loc}}(\Omega) \text{ for } 2 \leq q < \frac{2N}{N-2} \text{ as } \lambda \longrightarrow \lambda^*, \quad (3.20)
\]

\[
u_\lambda \longrightarrow u_{\lambda^*} \quad \text{a.e. in } \Omega,
\]
For \(\phi \in C^\infty_0(\Omega) \), we get
\[
\int_\Omega \nabla u_\lambda \nabla \phi \rightarrow \int_\Omega \nabla u_\lambda^* \nabla \phi, \quad \int_\Omega u_\lambda \phi \rightarrow \int_\Omega u_\lambda^* \phi, \quad \lambda \int_\Omega Ku_\lambda^p \phi \rightarrow \lambda^* \int_\Omega Ku_\lambda^p \phi,
\] (3.21)
as \(\lambda \rightarrow \lambda^* \). From \(\langle I'(u_\lambda), \phi \rangle = 0 \) and letting \(\lambda \rightarrow \lambda^* \), we deduce \(I'(u_\lambda^*) = 0 \) in \(H^{-1}(\Omega) \).

Hence \(u_\lambda^* \) is a positive solution of (1.1)\(_{\lambda^*}\).

Let \(u \) be any positive solution of (1.1)\(_{\lambda^*}\). By adopting the argument as in Lemma 3.1, we have \(u \geq u_\lambda \) in \(\Omega \) for \(\lambda \in (0, \lambda^*) \), where \(u_\lambda \) is the minimal solution of (1.1)\(_{\lambda}\). Therefore \(u \geq u_\lambda^* \) in \(\Omega \). This implies that \(u_\lambda^* \) is a minimal solution of (1.1)\(_{\lambda^*}\). \(\square \)

In the following lemma, we give an estimate of \(\lambda^* \).

Lemma 3.4. If condition (k1) holds, then \(\lambda_1 \leq \lambda^* \leq \lambda_2 \leq \lambda_3 \), where \(\lambda_1, \lambda_2, \) and \(\lambda_3 \) are given by \((1.5) \).

Proof. By Lemma 3.1 and the definition of \(\lambda^* \), we conclude that \(\lambda^* \geq \lambda_1 \).

As in Lemma 3.3, we have \(\sigma_\lambda(u_\lambda) > \lambda \) for all \(\lambda \in (0, \lambda^*) \), so for any \(w \in H^1_0(\Omega) \setminus \{0\} \), we have
\[
\int_\Omega (|\nabla w + |w|^2) dx > \lambda p \int_\Omega Ku_\lambda^{p-1} w^2 dx. \tag{3.22}
\]

Let \(u_0 \) be the unique solution of (1.1)\(_0\), then by (3.22) and \(u_\lambda > u_0 \) for all \(\lambda \in (0, \lambda^*) \), we obtain that
\[
\int_\Omega (|\nabla w + |w|^2) dx > \lambda p \int_\Omega Ku_0^{p-1} w^2 dx, \tag{3.23}
\]
that is,
\[
\lambda \leq \inf_{w \in H^1_0(\Omega) \setminus \{0\}} \left(\frac{\|w\|^2}{p \int_\Omega Ku_0^{p-1} w^2 dx} \right) = \lambda_2. \tag{3.24}
\]
This implies that \(\lambda^* \leq \lambda_2 \).

For all \(\lambda \in [0, \lambda^*] \), let \(u_\lambda \) be a minimal solution of (1.1)\(_\lambda\) and take \(w = u_\lambda \) in (3.22), then we have
\[
\|u_\lambda\|^2 = \lambda \int_\Omega Ku_\lambda^{p+1} dx + \int_\Omega f u_\lambda dx
\[
\leq \frac{1}{p} \|u_\lambda\|^2 + \|f\|_{L^2(\Omega)} \|u_\lambda\|. \tag{3.25}
\]
This implies that
\[
\|u_\lambda\| \leq \frac{p}{p-1} \|f\|_{L^2(\Omega)}. \tag{3.26}
\]
Take \(w = u_{\lambda} \) in (3.24), and by (3.26) and the monotonicity of \(u_{\lambda} \), we get

\[
\lambda_2 \leq \frac{\| u_{\lambda} \|^2}{p \int_{\Omega} K u_0^{p-1} u_{\lambda}^2 dx} \leq \frac{p \| f \|^2_{L^2(\Omega)}}{(p-1)^2 \int_{\Omega} K u_0^{p+1} dx} = \lambda_3.
\]

(3.27)

\[\square \]

4. Asymptotic behaviors of solutions

In this section, we will prove that a solution of (1.1) \(\lambda \) belongs to \(C_b(\Omega) \) and derive several precise estimates on its behavior at infinity. Now, let \(\mathbb{N} \) be all natural numbers, let \(\mathbb{X} \) be a smooth domain in \(\mathbb{R}^N \), and hence we have the extension lemma, embedding lemma, interpolation lemma (see Adams [1] for the proof), and for regularity Lemmas 4.1–4.7.

Lemma 4.1 (extension). There is a positive constant \(c = c(\ell, q) \) such that for any \(u \in W^{\ell,q}(\mathbb{X}) \), \(\ell \in \mathbb{N} \), \(1 < q < \infty \), there exists some \(\widetilde{u} \in W^{\ell,q}(\mathbb{R}^N) \) such that \(\widetilde{u} = u \) a.e. in \(\mathbb{X} \) and \(\| \widetilde{u} \|_{W^{\ell,q}(\mathbb{R}^N)} \leq \| u \|_{W^{\ell,q}(\mathbb{X})} \).

Lemma 4.2 (embedding). There exists the following continuous embedding:

\[
W^{j+\ell,q}(\mathbb{X}) \longrightarrow C^j,\alpha(\Omega), \quad 0 \leq \alpha \leq \ell - \frac{N}{q}, \quad (4.1)
\]

provided \((\ell - 1)q < N < \ell q \) and \(j \in \mathbb{N} \cup \{0\} \).

Lemma 4.3 (interpolation). Given \(\ell \in \mathbb{N} \), \(1 < q < \infty \), there exists a positive constant \(c = c(\ell, q, N) \) such that for any \(0 < \varepsilon < 1 \), \(0 \leq j \leq \ell - 1 \), and any \(u \in W^{\ell,q}(\mathbb{X}) \),

\[
\| u \|_{W^{j,q}(\mathbb{X})} \leq c \varepsilon \| u \|_{W^{\ell,q}(\mathbb{X})} + \frac{c}{\varepsilon^{j/(\ell-j)}} \| u \|_{W^{0,q}(\mathbb{X})}. \quad (4.2)
\]

Lemma 4.4 (regularity Lemma 1). Let \(g : \mathbb{X} \times \mathbb{R} \rightarrow \mathbb{R} \) be a Carathéodory function such that for almost every \(x \in \mathbb{X} \), there holds

\[
| g(x,u) | \leq c(|u| + |u|^p) \quad \text{uniformly in } x \in \mathbb{X}, \quad (4.3)
\]

where \(c, \ p \) are some positive constants, \(N \geq 3 \), and \(1 < p < (N + 2)/(N - 2) \). Also, let \(u \in H^1_0(\mathbb{X}) \) be a weak solution of equation \(-\Delta u = g(x,u) + f(x) \) in \(\mathbb{X} \), where \(f \in L^N/2(\mathbb{X}) \cap L^2(\mathbb{X}) \). Then \(u \in L^q(\mathbb{X}) \) for \(q \in [2, \infty) \).

Now, we quote regularity Lemmas 4.5–4.7 (see Gilbarg and Trudinger [9, Theorems 8.8, 9.11, 9.16] for the proof).
Lemma 4.5 (regularity Lemma 2). Let $\mathbb{X} \subset \mathbb{R}^N$ be a domain, let $g \in L^2(\mathbb{X})$, and let $u \in H^1(\mathbb{X})$ be a weak solution of the equation $-\Delta u + u = g$ in \mathbb{X}. Then for any subdomain $\mathbb{X}' \subset \subset \mathbb{X}$ with $d' = \text{dist}(\mathbb{X}', \partial \mathbb{X}) > 0$, $u \in H^2(\mathbb{X}')$ and

$$
\|u\|_{H^2(\mathbb{X}')} \leq c(\|u\|_{H^1(\mathbb{X})} + \|g\|_{L^2(\mathbb{X})})
$$

(4.4)

for some $c = c(N, d')$. Furthermore u satisfies the equation $-\Delta u + u = g$ a.e. in \mathbb{X}.

Lemma 4.6 (regularity Lemma 3). Let $g \in L^2(\mathbb{X})$ and let $u \in H^1_0(\mathbb{X})$ be a weak solution of the equation $-\Delta u + u = g$. Then $u \in H^2_0(\mathbb{X})$ satisfies

$$
\|u\|_{H^2(\mathbb{X})} \leq c\|g\|_{L^2(\mathbb{X})},
$$

(4.5)

where $c = c(N, d\mathbb{X})$.

Lemma 4.7 (regularity Lemma 4). Let $g \in L^2(\mathbb{X}) \cap L^q(\mathbb{X})$ for some $q \in [2, \infty)$ and let $u \in H^1_0(\mathbb{X})$ be a weak solution of the equation $-\Delta u + u = g$. Then $u \in W^{2,q}(\mathbb{X})$ and u satisfies

$$
\|u\|_{W^{2,q}(\mathbb{X})} \leq c(\|u\|_{L^2(\mathbb{X})} + \|g\|_{L^q(\mathbb{X})}),
$$

(4.6)

where $c = c(N, q, d\mathbb{X})$.

By Lemma 4.7, we obtain the first asymptotic behavior of solution of (1.1)$_h$.

Lemma 4.8 (asymptotic Lemma 1). Let condition (k1) hold. If u is a weak solution of (1.1)$_h$, then $u(y, z) \to 0$ as $|z| \to \infty$ uniformly for $y \in \omega$.

Proof. Let u satisfy

$$
-\Delta u + u = \lambda K(x)u^p + f(x) \quad \text{in } H^{-1}(\Omega),
$$

(4.7)

since K is bounded in Ω and $f \in L^2(\Omega) \cap L^p(\Omega)$ for some $q_0 > N/2$. Hence $f \in L^{N/2}(\Omega)$ and by Lemma 4.4, we have $u \in L^q(\Omega)$ for $q \in [2, \infty)$. Hence $\lambda K(x)u^p + f(x) \in L^2(\Omega) \cap L^{q_0}(\Omega)$ for some $q_0 > N/2$. Then by Lemma 4.7, we have $u \in W^{2,q_0}(\Omega)$ for some $q_0 > N/2$. By Lemma 4.2, $u \in C_0(\overline{\Omega})$ and there exists a constant $c > 0$, such that for any $r > 1$,

$$
\|u\|_{L^q(\overline{\Omega}_r^c)} \leq c\|u\|_{W^{2,q_0}(\overline{\Omega})},
$$

(4.8)

where $\overline{B}_r = \{x = (y, z) \in \Omega : |z| > r\}$. Hence $\lim_{|z| \to \infty} u(y, z) = 0$ uniformly for $y \in \omega$. □

Lemma 4.9 (asymptotic Lemma 2). Let u be a positive solution of (1.1)$_h$ for $\lambda \in [0, \lambda^*]$ and let ψ be the first positive eigenfunction of the Dirichlet problem $-\Delta \psi = \mu_1 \psi$ in ω, then there exists a positive constant c such that

$$
u(x) \geq c\psi(y) \exp \left(-\sqrt{1 + \mu_1}|z| \right) |z|^{-(n-1)/2} \quad \text{as } |z| \to \infty, \quad y \in \omega.
$$

(4.9)

Proof. Let $\Phi(x) = (1 + 1/|z|)\psi(y) \exp(-\lambda \psi(0) + 1/|z|) |z|^{-(n-1)/2}$ for $x = (y, z) \in \overline{\Omega}$ and $|z| > 0$. It is very easy to show that there is a $R_0 > 0$ such that

$$
-\Delta \Phi + \Phi \leq 0, \quad \forall |z| \leq R_0.
$$

(4.10)
Tsing-San Hsu

Let \(u_\lambda \) be the minimal solution of \((1.1)\), let \(q = (q_y, q_z) \), \(q_y, q_z \in \partial \omega \), \(|q_z| = R_0 \), and \(B \) a small ball in \(\Omega \) such that \(q \in \partial B \). Since \(\psi(y) > 0 \) for \(x = (y, z) \in B \), \(\psi(q_y) = 0, u(x) > 0 \) for \(x \in B \), \(u_\lambda(q) = 0 \), by the strongly maximum principle \((\partial \psi/\partial y)(q_y) < 0 \), \((\partial u_\lambda/\partial x)(q) < 0 \). Thus

\[
\lim_{z \to q} \frac{u_\lambda(x)}{\psi(y)} = \frac{(\partial u_\lambda/\partial x)(q)}{(\partial \psi/\partial y)(q_y)} > 0. \tag{4.11}
\]

Note that \(u_\lambda(x)\psi^{-1}(y) > 0 \) for \(x = (y, z), y \in \omega, |z| = R_0 \). Thus \(u_\lambda(x)\psi^{-1}(y) > 0 \) for \(x = (y, z), y \in \omega, |z| = R_0 \).

Since \(\Phi(x) \) and \(u_\lambda(x) \) are \(C^1(\omega \times \partial B_{R_0}(0)) \), if we set

\[
\alpha = \inf_{y \in \omega, |z| = R_0} (u_\lambda(x)\Phi^{-1}(x)), \tag{4.12}
\]

then \(\alpha > 0 \) and

\[
\alpha \Phi(x) \leq u_\lambda(x) \quad \text{for } y \in \omega, \quad |z| = R_0. \tag{4.13}
\]

For \(|z| \geq R_0 \), we have

\[
-\Delta(\alpha \Phi(x) + (u_\lambda - \alpha \Phi)(x)) = \lambda K(x)u^p_\lambda(x) + f(x) + \alpha(\Delta \Phi + \Phi)(x) \geq 0. \tag{4.14}
\]

By the maximum principle, we obtain

\[
u_\lambda(x) \geq \alpha \Phi(x) \quad \text{for } y \in \omega, \quad |z| \geq R_0. \tag{4.15}
\]

Let \(c = \alpha > 0 \), we get

\[
u_\lambda(x) \geq c\psi(y) \exp \left(-\sqrt{1 + \mu_1} |z| \right) |z|^{-(n-1)/2} \quad \text{for } y \in \omega, \quad |z| \geq R_0. \tag{4.16}
\]

This implies that (4.9) holds for \(u_\lambda \) and hence for arbitrary positive solution \(u \). \(\square \)

5. Existence of second solution

The existence of a second solution of \((1.1)\), \(\lambda \in (0, \lambda^*) \), will be established via the mountain pass theorem. When \(0 < \lambda < \lambda^* \), we have known that \((1.1)\) has a minimal positive solution \(u_\lambda \) by Lemma 3.2, then we need only to prove that \((1.1)\) has another positive solution in the form of \(U_\lambda = u_\lambda + v_\lambda \), where \(v_\lambda \) is a solution of the following problem:

\[-\Delta v + v = \lambda K[(v + u_\lambda)^p - u^p_\lambda] \quad \text{in } \Omega, \quad v \in H^1_0(\Omega), \quad v > 0 \quad \text{in } \Omega. \tag{5.1}_\lambda\]

The corresponding variational functional of \((5.1)\) is

\[
J_\lambda(v) = \frac{1}{2} \int_{\Omega} (|\nabla v|^2 + v^2) - \lambda \int_{\Omega} \int_0^v K[(s + u_\lambda)^p - u^p_\lambda] ds dx, \quad v \in H^1_0(\Omega). \tag{5.1}
\]

To verify the conditions of the mountain pass theorem, we need the following lemmas.
Lemma 5.1. For any $\epsilon > 0$, there is a positive constant c_ϵ such that

$$(\xi + s)^p - \xi^p - p\xi^{p-1}s \leq \epsilon\xi^{p-1}s + c_\epsilon s^p, \quad \forall s \geq 0, \xi > 0. \quad (5.2)$$

Proof. From the fact

$$\lim_{t \to 0^+} \frac{(1 + t)^p - 1 - pt}{t} = 0, \quad \lim_{s \to \infty} \frac{(1 + t)^p - 1 - pt}{t^p} = 1, \quad (5.3)$$

we obtain that for any $\epsilon > 0$, there is a positive constant c_ϵ such that

$$(1 + t)^p - 1 - pt \leq \epsilon t + c_\epsilon t^p, \quad \forall t \geq 0. \quad (5.4)$$

Let $\xi > 0$, $s \geq 0$, and take $t = s/\xi$ in (5.4), we can deduce that

$$(\xi + s)^p - \xi^p - p\xi^{p-1}s \leq \epsilon\xi^{p-1}s + c_\epsilon s^p. \quad (5.5)$$

□

Lemma 5.2. There exist positive constants ρ and α, such that

$$J_\lambda(v) \geq \alpha > 0, \quad v \in H^1_0(\Omega), \quad \|v\| = \rho. \quad (5.6)$$

Proof. For any $\epsilon > 0$ there is by Lemma 5.1 (with $\xi = u_\lambda$) a positive constant c_ϵ such that

$$J_\lambda(v) = \frac{1}{2} \int_\Omega (|\nabla v|^2 + v^2) \, dx - \frac{1}{2} \lambda p \int_\Omega K u_\lambda^{p-1} (v^+)^2 \, dx$$

$$- \lambda \int_0^{v^+} \int_\Omega K [(u_\lambda + s)^p - u_\lambda^p - pu_\lambda^{p-1} s] \, ds \, dx$$

$$\geq \frac{1}{2} \left[\int_\Omega (|\nabla v|^2 + v^2) \, dx - \lambda p \int_\Omega K u_\lambda^{p-1} (v^+)^2 \, dx \right]$$

$$- \lambda \int_\Omega K \left[\frac{\epsilon}{2} u_\lambda^{p-1} (v^+)^2 + c_e \frac{(v^+)^{p+1}}{p+1} \right] \, dx. \quad (5.7)$$

Furthermore, from the definition $\sigma_\lambda(u_\lambda)$ in (3.11), we have

$$\int_\Omega (|\nabla v|^2 + v^2) \, dx \geq \sigma_\lambda(u_\lambda) p \int_\Omega K u_\lambda^{p-1} (v^+)^2 \, dx, \quad (5.8)$$

and, therefore, by (5.7) we obtain

$$J_\lambda(v) \geq \frac{1}{2} \sigma_\lambda(u_\lambda)^{-1} \left(\sigma_\lambda(u_\lambda) - \lambda - \frac{\xi}{2 \lambda} \right) \|v\|^2 - \lambda c_e (p + 1)^{-1} \int_\Omega K (v^+)^{p+1} \, dx. \quad (5.9)$$
Since $\sigma_1(u_\lambda) > \lambda$, by property (ii) in Lemma 3.3, the boundedness of K and the Sobolev inequality imply that for small $\epsilon > 0$,

$$J_\lambda(v) \geq \frac{1}{4} \sigma_1(u_\lambda)^{-1}(\sigma_1(u_\lambda) - \lambda) \|v\|^2 - \lambda c \|v\|^{p+1},$$

and the conclusion in Lemma 5.2 follows. □

Now, we give the following decomposition lemma for later use.

Lemma 5.3. Assume condition (k1) holds. Let $\{v_k\}$ be a $(PS)_c$ sequence of J_λ in $H^1_0(\Omega)$:

$$J_\lambda(v_k) = c + o(1) \quad \text{as} \quad k \to \infty,$$

$$J'_\lambda(v_k) = o(1) \quad \text{strongly in} \quad H^{-1}(\Omega).$$

Then there exists a subsequence (still denoted by) $\{v_k\}$ for which the following holds: there exist an integer $l \geq 0$, sequence $\{x^i_k\} \subset \mathbb{R}^N$ of the form $(0, z^i_k) \in S$ for $1 \leq i \leq l$, a solution v_λ of (5.1)$_\lambda$, and solutions \tilde{v}^i_λ of (2.1)$_\lambda$ for $1 \leq i \leq l$, such that as $k \to \infty$

$$v_k \rightharpoonup v_\lambda \quad \text{weakly in} \quad H^1_0(\Omega);$$

$$v_k - \left[v_\lambda + \sum_{i=1}^{l} \tilde{v}^i_\lambda (\cdot - x^i_k) \right] \to 0 \quad \text{strongly in} \quad H^1_0(\Omega);$$

$$J_\lambda(v_k) = J_\lambda(v_\lambda) + \sum_{i=1}^{l} I_\infty(\tilde{v}^i_\lambda) + o(1),$$

where its agreed upon that in the case $l = 0$, the above holds without $\tilde{v}^i_\lambda, \{x^i_k\}$.

Proof. The proof can be obtained by using the arguments in Bahri and Lions [5] (also see [15, 16]). We omit it. □

Now, let δ be small enough, D^δ a δ-tubular neighborhood of D such that $D^\delta \subset \subset S$. Let $\eta(x) : S \to [0, 1]$ be a C^∞ cutoff function such that $0 \leq \eta \leq 1$ and

$$\eta(x) = \begin{cases}
0 & \text{if} \ x \in D; \\
1 & \text{if} \ x \in \Omega \setminus D^\delta.
\end{cases}$$

Let $e_N = (0, 0, \ldots, 0, 1) \in \mathbb{R}^N$, denote

$$\tau_0 = 2 \sup_{x \in D^\delta} |x| + 1,$$

$$\tilde{u}_\tau(x) = \eta(x)\tilde{u}_\lambda(x - \tau e_N), \quad \tau \in [0, \infty),$$

where \tilde{u}_λ is a ground state solution of (2.1)$_\lambda$.

Lemma 5.4. Assume condition (k1) holds, then there exist some constants $t_0 > 0$, $\tau_* \geq \tau_0$ such that $J_\lambda(t \tilde{u}_\tau) < 0$ for all $\tau \geq \tau_*$, $t \geq t_0$.

Proof. By the inequality \((a + b)^p \geq a^p + b^p\) for all \(a \geq 0, b \geq 0, p > 1\) and \(\bar{u}_\lambda\) is a ground state solution of (2.1)_\lambda, denote \(\eta_\tau(x) = \eta(x + \tau e_N)\), then we have

\[
J_\lambda(t\tilde{u}_\tau) = \frac{1}{2} t^2 \int_\Omega \left(|\nabla \tilde{u}_\tau|^2 + |\tilde{u}_\tau|^2 \right) dx - \frac{1}{p+1} t^{p+1} \int_\Omega \lambda K(x) \bar{u}_\lambda^{p+1} dx
\]

\[-\int_0^t \int_\Omega \lambda K(x) [(s + u_\lambda)^p - u_\lambda^p - s^p] ds dx \]

\[
\leq \frac{1}{2} t^2 \int_\Sigma (-\Delta \bar{u}_\lambda + \bar{u}_\lambda) (\eta_\tau^2 \bar{u}_\lambda) dx + \frac{1}{2} t^2 \int_\Sigma |\nabla \eta_\tau|^2 |\bar{u}_\lambda|^2 dx
\]

\[-\frac{1}{p+1} t^{p+1} \int_\Sigma \lambda K(x) \eta_\tau^{p+1}(x) \bar{u}_\lambda^{p+1}(x - \tau e_N) dx \]

\[
\leq \frac{1}{2} t^2 \int_\Sigma \lambda K_\infty \bar{u}_\lambda^{p+1} dx + \frac{1}{2} t^2 \left(\max_{x \in \Sigma} |\nabla \eta_\tau|^2 \right) \int_\Sigma |\bar{u}_\lambda|^2 dx
\]

\[-\frac{t^{p+1}}{p+1} \int_\Sigma \lambda K(x) \eta_\tau^{p+1}(x) \bar{u}_\lambda^{p+1}(x - \tau e_N) dx. \tag{5.15}\]

Set \(B_1(\tau e_N) = \{x = (y, z) : y \in \omega, |z - \tau e_N| < 1\}\). By condition (k1), there exists \(\tau_* \geq \tau_0\) such that \(K(x) \geq K_\infty / 2\) for \(x \in B_1(\tau e_N)\) for all \(\tau \geq \tau_*\) and note that \(\eta(x) \equiv 1\) on \(B_1(\tau e_N)\) for \(\tau \geq \tau_*\), then we obtain that

\[
\int_\Sigma \lambda K(x) \eta_\tau^{p+1}(x) \bar{u}_\lambda^{p+1}(x - \tau e_N) dx
\]

\[
\geq \int_{B_1(\tau e_N)} \frac{\lambda}{2} K_\infty \bar{u}_\lambda^{p+1}(x - \tau e_N) dx \tag{5.16}\]

\[
= \int_{\{x = (y, z) \in \Sigma : y \in \omega, |z| \leq 1\}} \frac{\lambda}{2} K_\infty \bar{u}_\lambda^{p+1}(x) dx = c > 0,
\]

where \(c\) is independent of \(\tau\). Combining (5.15) and (5.16), there exist some positive constants \(c_1, c_2\), independent of \(\tau\), such that

\[
J_\lambda(t\tilde{u}_\tau) \leq c_1 t^2 - c_2 t^{p+1} \quad \forall \tau \geq \tau_* \tag{5.17}
\]

From (5.17), we conclude the result. \(\square\)

Lemma 5.5. Assume conditions (k1) and (k2) hold, then there exists a constant \(\tau^* > 0\), such that the following inequality holds for \(\tau \geq \tau^*\):

\[
0 < \sup_{t \geq 0} J_\lambda(t\tilde{u}_\tau) < I^\infty_\lambda(\bar{u}_\lambda) = M^\infty_\lambda. \tag{5.18}
\]
Proof. From (5.6), we easily see that the left-hand of (5.18) holds and we need only to show that the right-hand side of (5.18) holds. By Lemma 5.4, we have that there exists a constant $t_2 > 0$ such that

$$\sup_{t \geq 0} J_\lambda(t\tilde{u}_\tau) = \sup_{0 \leq s \leq t_2} J_\lambda(t\tilde{u}_\tau) \quad \text{for any } \tau \geq \tau_*.$$ \hfill (5.19)

Since J is continuous in $H^1_0(\Omega)$ and $J(0) = 0$, there exists a constant $t_1 > 0$ such that

$$J_\lambda(t\tilde{u}_\tau) < M_\lambda^\infty \quad \text{for any } \tau \in (0, \infty), \ 0 \leq t < t_1.$$ \hfill (5.20)

Then, to prove (5.18) we now need only to prove the following inequality:

$$\sup_{t_1 \leq t \leq t_2} J_\lambda(t\tilde{u}_\tau) < M_\lambda^\infty \quad \text{for } \tau \text{ large enough.}$$ \hfill (5.21)

By the definition of J_λ, we get

$$J_\lambda(t\tilde{u}_\tau) = \frac{t^2}{2} \int_{\Omega} (|\nabla \tilde{u}_\tau|^2 + \tilde{u}_\tau^2) \, dx - \frac{tp+1}{p+1} \int_{\Omega} \lambda K_{\infty} \tilde{u}_\tau^{p+1} \, dx$$

$$+ \frac{tp+1}{p+1} \int_{\Omega} \lambda (K_{\infty} - K(x)) \tilde{u}_\tau^{p+1} \, dx$$

$$- \int_{\Omega} \int_{0}^{t\tilde{u}_\tau} \lambda K(x) [(s + u_{\lambda})^p - u_{\lambda}^p - sp] \, ds \, dx.$$ \hfill (5.22)

Since \overline{u}_λ is a ground state solution of (2.1), denote $\eta_\tau(x) = \eta(x + \tau e_N)$, then we have

$$J_\lambda(t\tilde{u}_\tau) \leq \frac{t^2}{2} \int_{\Omega} (- \Delta \overline{u}_\lambda + \overline{u}_\lambda) (\eta_\tau^2 \overline{u}_\lambda) \, dx - \frac{tp+1}{p+1} \int_{\Omega} \lambda K_{\infty} \overline{u}_\lambda^{p+1} \, dx$$

$$+ \frac{t^2}{2} \int_{\Omega} |\nabla \eta_\tau|^2 \, d|\overline{u}_\lambda|^2 \, dx$$

$$+ \frac{tp+1}{p+1} \int_{\Omega} \lambda (\overline{u}_\lambda^{p+1} - \tilde{u}_\tau^{p+1}) \, dx$$

$$+ \frac{tp+1}{p+1} \int_{\Omega} \lambda (K_{\infty} - K(x)) \tilde{u}_\tau^{p+1} \, dx$$

$$- \int_{\Omega} \int_{0}^{t\tilde{u}_\tau} \lambda K(x) [(s + u_{\lambda})^p - u_{\lambda}^p - sp] \, ds \, dx.$$ \hfill (5.23)
It follows from (2.5) that for any $\epsilon > 0$, there exists a constant $c_1 > 0$, independent of τ, such that, for all $\tau \geq \tau_*$,

$$\frac{t_2^2}{2} \int_\Omega |\nabla \eta_t|^2 |\bar{u}_\lambda|^2 \, dx \leq c_1 \exp \left(-2 \sqrt{1 + \mu_1} \tau^{-n+1+2\epsilon}\right),$$

$$\frac{t_2^{p+1}}{p+1} \int_\Omega \lambda K_\infty (\bar{u}_\lambda^{p+1} - \bar{u}_t^{p+1}) \, dx \leq c_1 \exp \left(-2 \sqrt{1 + \mu_1} \tau^{-n+1+2\epsilon}\right).$$

From condition (k2) and (2.5), there exists a constant $\tau_1 > 0$ such that, for all $\tau \geq \tau_1$,

$$\frac{t_2^{p+1}}{p+1} \int_\Omega \lambda (K_\infty - K(x))^{+} \bar{u}_t^{p+1} \, dx$$

$$\leq c \left(\int_{\Omega \cap \{|z| \geq \tau/(p+1)\}} + \int_{\Omega \cap \{|z| \leq \tau/(p+1)\}} \right) (K_\infty - K(x))^{+} \bar{u}_\lambda^{p+1} (x + \tau e_N) \, dx$$

$$\leq c \exp \left(- \sqrt{1 + \mu_1} \right) \left(\frac{p}{p+1}\right) \tau^{-\gamma_0} + c_1 \exp \left(- \sqrt{1 + \mu_1} \right) \left(\frac{1}{p+1}\right) \tau^{-(n-1)/2+\epsilon}$$

$$\leq c_2 \exp \left(- \sqrt{1 + \mu_1} \right) \tau^{-\gamma_0},$$

(5.25)

where $c_2 > 0$ is a constant independent of τ and $\gamma_0 = \min \{\gamma, (p+1)(-n-1/2+\epsilon)\}$.

Let $\omega_0 \subset \omega$ be a smooth bounded domain in \mathbb{R}^m. Set $D_1(\tau e_N) = \{x = (y,z) \in \Omega : y \in \omega_0, |z - \tau e_N| < 1\}$. Noting that $(a + b) \geq a^p + b^p$ for all $a \geq 0, b \geq 0, p > 1$, then for $\tau \geq \tau_0$, we have $\eta(x) = 1$ on $D_1(\tau e_N)$ and

$$\int_{\Omega} \int_{0}^{\tilde{t}_\tau} \lambda K(x) \left[(s + u_\lambda)^p - u_\lambda^p - s^p \right] ds \, dx$$

$$\geq \int_{D_1(\tau e_N)} \int_{0}^{\tilde{t}_\tau} \lambda K(x) \left[(s + u_\lambda)^p - u_\lambda^p - s^p \right] ds \, dx$$

$$= \int_{D_1(\tau e_N)} \int_{0}^{\tilde{t}_\tau} \lambda K(x) \left[[(s + u_\lambda)^p - s^p] + [(s + u_\lambda)^p - u_\lambda^p] \right] ds \, dx$$

$$\geq \int_{D_1(\tau e_N)} \int_{0}^{\tilde{t}_\tau} \lambda K(x) \left[(s + u_\lambda)^p - u_\lambda^p \right] u_\lambda \, ds \, dx$$

$$= \int_{D_1(\tau e_N)} \lambda K(x) \left[\frac{(\tilde{t}_\tau + u_\lambda)^p - u_\lambda^p}{p^\tilde{t}_\tau} - tu_\lambda^p \right] \tilde{u}_\tau u_\lambda \, dx.$$

(5.26)

By Lemma 4.8, there exist some constants $\tau_2 \geq \tau_0 + \tau_1$ and $\alpha > 0$, such that

$$\frac{(\tilde{t}_\tau + u_\lambda)^p - u_\lambda^p}{p^\tilde{t}_\tau} - tu_\lambda^p \geq \alpha$$

for $\tau \geq \tau_2, x \in D_1(\tau e_N), t \in [t_1, t_2]$,

(5.27)
then by (k1), (4.9), and (5.26), there exists a constant \(\tau_3 \geq \tau_2 \) such that
\[
K(x) \geq \frac{K_{\infty}}{2} \quad \text{for} \quad x \in D_1(\tau e_N)
\]
and
\[
\int_{D_1(\tau e_N)} \lambda K(x) [(s + u_\lambda)^p - u_\lambda^p - s^p] \, ds \, dx \\
\geq \frac{1}{2} \lambda \alpha K_{\infty} \int_{D_1(\tau e_N)} u_\lambda(x) \, dx \\
\geq c \int_{D_1(\tau e_N)} u_\lambda(x - \tau e_N) \exp \left[- (\tau + 1) \sqrt{1 + \mu_1} (\tau + 1)^{-(n-1)/2} \right] \\
\geq c \exp \left(- \sqrt{1 + \mu_1} \right) \tau^{-(n-1)/2},
\]
where \(c_3 > 0 \) is a constant independent of \(\tau \) for all \(\tau \geq \tau_3 \) and \(t \in [t_1, t_2] \).

From (5.23)–(5.28), we get, for \(\tau \geq \tau_3 + \tau^* \) and \(t \in [t_1, t_2] \),
\[
J_\lambda(t \tilde{u}_\tau) \leq M_\lambda^\infty + 2c_1 \exp \left(-2 \sqrt{1 + \mu_1} \right) \tau^{-(n+1+2\epsilon)} + c_2 \exp \left(- \sqrt{1 + \mu_1} \right) \tau^{-\gamma_0} - c_3 \exp \left(- \sqrt{1 + \mu_1} \right) \tau^{-(n-1)/2},
\]
where \(c_i, 1 \leq i \leq 3, \) are independent of \(\tau \).

Let \(\varepsilon = \frac{p(n-1)}{4(p+1)} \) and by \(\gamma > (n-1)/2 \), we have \(\gamma_0 > (n-1)/2 \). Hence, we can find some constant \(\tau^* > \tau_3 + \tau^* \) large enough such that
\[
2c_1 \exp \left(-2 \sqrt{1 + \mu_1} \right) \tau^{-(n+1+2\epsilon)} + c_2 \exp \left(- \sqrt{1 + \mu_1} \right) \tau^{-\gamma_0} - c_3 \exp \left(- \sqrt{1 + \mu_1} \right) \tau^{-(n-1)/2} < 0
\]
and (5.18) is proved.

PROPOSITION 5.6. Let conditions (k1) and (k2) hold, then (5.1) has at least one solution for \(\lambda \in (0, \lambda^*) \).

Proof. For the constant \(\tau^* \) in Lemma 5.5, by Lemma 5.4, we know that there is a constant \(t_0 > 0 \) such that \(J_\lambda(t_0 \tilde{u}_{\tau^*}) < 0 \). We set
\[
\Gamma = \{ \gamma \in C([0, 1], H^1_0(\Omega)) : \gamma(0) = 0, \gamma(1) = t_0 \tilde{u}_{\tau^*} \},
\]
then, from (5.6) and (5.18) we get
\[
0 < c = \inf_{\gamma \in \Gamma} \max_{0 \leq s \leq 1} J_\lambda(\gamma(s)) < M_\lambda^\infty.
\]

Applying the mountain pass lemma of Ambrosetti and Rabinowitz [3], there exists a \((PS)_c\)-sequence \(\{v_k\} \) such that
\[
J_\lambda(v_k) \longrightarrow c, \quad J'_\lambda(v_k) \longrightarrow 0 \quad \text{in} \quad H^{-1}(\Omega).
\]
By Lemma 5.3, there exist a subsequence, still denoted by \(\{v_k\} \), an integer \(l \geq 0 \), a solution \(v_\lambda \) of (5.1), and solutions \(v_i^\lambda \) of (2.1), for \(1 \leq i \leq l \), such that

\[
c = J_\lambda(v_\lambda) + \sum_{i=1}^{l} I^\infty_\lambda(v_i^\lambda). \tag{5.34}
\]

By the strongly maximum principle, to complete the proof, we only need to prove \(v_\lambda \not\equiv 0 \) in \(\Omega \). We proceed by contradiction. Assume that \(v_\lambda \equiv 0 \) in \(\Omega \). From (5.32) and (5.34), we have \(l \geq 1 \) and

\[
0 < M_\lambda^\infty \leq l M_\lambda^\infty \leq \sum_{i=1}^{l} I^\infty_\lambda(v_i^\lambda) = c < M_\lambda^\infty. \tag{5.35}
\]

This implies \(v_\lambda \not\equiv 0 \) in \(\Omega \). \(\square \)

6. Properties and bifurcation of solutions

Denote \(A = \{ (\lambda, u) : u \) satisfies (1.1), \(\lambda \in [0, \lambda^*] \} \). By Lemma 4.8, we have \(A \subset \mathbb{R} \times L^\infty(\Omega) \cap H^1_0(\Omega) \). Moreover, we assume that \(f(x), K(x) \in C^a(\Omega) \cap L^2(\Omega) \). By elliptic regular theory [9], we can deduce that \(A \subset \mathbb{R} \times C^2, a(\Omega) \cap H^2(\Omega) \).

For each \((\lambda, u) \in A \), let \(\sigma_\lambda(u) \) denote the number defined by (3.11), which is the first eigenvalue of the problem (3.12).

Lemma 6.1. Let \(u \) be a solution and let \(u_\lambda \) be the minimal solution of (1.1) for \(\lambda \in (0, \lambda^*) \). Then

(i) \(\sigma_\lambda(u) > \lambda \) if and only if \(u = u_\lambda \);

(ii) \(\sigma_\lambda(U_\lambda) < \lambda \), where \(U_\lambda \) is the second solution of (1.1) constructed in Section 5.

Proof. Now, let \(\phi \geq 0 \) and \(\phi \in H^1_0(\Omega) \). Since \(u \) and \(u_\lambda \) are the solution of (1.1), then

\[
\int_{\Omega} \nabla \phi \cdot \nabla (u_\lambda - u) \, dx + \int_{\Omega} \phi (u_\lambda - u) \, dx = \lambda \int_{\Omega} K(u_\lambda^p - u^p) \phi \, dx = \lambda \int_{\Omega} \left(\int_{u}^{u_\lambda} t^{p-1} \, dt \right) p K \phi \, dx \geq \lambda \int_{\Omega} p K u^{p-1} (u_\lambda - u) \phi \, dx. \tag{6.1}
\]

Let \(\phi = (u - u_\lambda)^+ \geq 0 \) and \(\phi \in H^1_0(\Omega) \). If \(\phi \not\equiv 0 \), then (6.1) implies

\[
- \int_{\Omega} (|\nabla \phi|^2 + \phi^2) \, dx \geq -\lambda \int_{\Omega} p K u^{p-1} \phi^2 \, dx \tag{6.2}
\]

and, therefore, the definition of \(\sigma_\lambda(u) \) implies

\[
\int_{\Omega} (|\nabla \phi|^2 + \phi^2) \, dx
\leq \lambda \int_{\Omega} p K u^{p-1} \phi^2 \, dx < \sigma_\lambda(u) \int_{\Omega} p K u^{p-1} \phi^2 \, dx \leq \int_{\Omega} (|\nabla \phi|^2 + \phi^2) \, dx, \tag{6.3}
\]

which is impossible. Hence \(\phi \equiv 0 \), and \(u = u_\lambda \) in \(\Omega \). On the other hand, by Lemma 3.3, we also have that \(\sigma_\lambda(u_\lambda) > \lambda \). This completes the proof of (i).
By (i), we get that \(\sigma_\lambda(U_\lambda) \leq \lambda \) for \(\lambda \in (0, \lambda^*) \). We claim that \(\sigma_\lambda(U_\lambda) = \lambda \) cannot occur. We proceed by contradiction. Set \(w_\lambda = U_\lambda - u_\lambda \); we have
\[
-\Delta w_\lambda + w_\lambda = \lambda K[U_\lambda^p - (U_\lambda - w_\lambda)^p], \quad w_\lambda > 0 \text{ in } \Omega.
\] (6.4)

By \(\sigma_\lambda(U_\lambda) = \lambda \), we have that the problem
\[
-\Delta \varphi + \varphi = \lambda p K U_\lambda^{p-1} \varphi, \quad \varphi \in H^1_0(\Omega),
\] (6.5)
possesses a positive solution \(\varphi_\lambda \).

Multiplying (6.4) by \(\varphi_\lambda \) and (6.5) by \(w_\lambda \), integrating, and subtracting we deduce that
\[
0 = \int_{\Omega} \lambda K[U_\lambda^p - (U_\lambda - w_\lambda)^p] \varphi_\lambda dx
- \frac{1}{2} p(p-1) \int_{\Omega} \lambda \xi_\lambda^{p-2} w_\lambda^2 \varphi_\lambda dx,
\] (6.6)
where \(\xi_\lambda \in (u_\lambda, U_\lambda) \). Thus \(w_\lambda \equiv 0 \), that is, \(U_\lambda = u_\lambda \) for \(\lambda \in (0, \lambda^*) \). This is a contradiction. Hence, we have \(\sigma_\lambda(U_\lambda) < \lambda \) for \(\lambda \in (0, \lambda^*) \). □

Lemma 6.2. Let \(u_\lambda \) be the minimal solution of (1.1) for \(\lambda \in [0, \lambda^*) \) and \(\sigma_\lambda(u_\lambda) > \lambda \). Then for any \(g(x) \in H^{-1}(\Omega) \), problem
\[
-\Delta w + w = \lambda p K u_\lambda^{p-1} w + g(x), \quad w \in H^1_0(\Omega),
\] (6.4)$_\lambda$
has a solution.

Proof. Consider the functional
\[
\Phi(w) = \frac{1}{2} \int_{\Omega} (|\nabla w|^2 + w^2) dx - \frac{1}{2} \lambda p \int_{\Omega} K u_\lambda^{p-1} w^2 dx - \int_{\Omega} g(x) w dx,
\] (6.7)
where \(w \in H^1_0(\Omega) \). From Hölder inequality and Young’s inequality, we have, for any \(\epsilon > 0 \),
\[
\Phi(w) \geq \frac{1}{2} \left(1 - \lambda \sigma_\lambda(u_\lambda)^{-1} \right) \|w\|^2 - \frac{1}{2} \epsilon \|w\|^2 - \frac{C\epsilon}{2} \|g\|^2_{H^{-1}(\Omega)}
\geq -C\|g\|^2_{H^{-1}(\Omega)}
\] (6.8)
if we choose \(\epsilon \) small.

Now, let \(\{w_k\} \subset H^1_0(\Omega) \) be the minimizing sequence of variational problem
\[
d = \inf \{ \Phi(w) \mid w \in H^1_0(\Omega) \}.
\] (6.9)
From (6.8) and \(\sigma_\lambda(u_\lambda) > \lambda \), we can also deduce that \(\{w_k\} \) is bounded in \(H^1_0(\Omega) \) if we choose \(\epsilon \) small. So we may suppose that
\[
w_k \rightharpoonup w \text{ weakly in } H^1_0(\Omega),
\]
\[
w_k \rightarrow w \text{ strongly in } L^q_{\text{loc}}(\Omega) \text{ for } 2 \leq q < \frac{2N}{N-2} \text{ as } k \rightarrow \infty.
\] (6.10)
\[
w_k \rightarrow w \text{ a.e. in } \Omega,
\]
By Fatou’s lemma,
\[
\|w\|^2 \leq \liminf_{k \to \infty} \|w_k\|^2 ,
\] (6.11)
and by the weak convergence we have
\[
\int_{\Omega} gw_k dx \rightharpoonup \int_{\Omega} gw dx \quad \text{as } k \to \infty.
\] (6.12)

By Lemma 4.8, we have \(u_\lambda(y,z) \to 0\) as \(|z| \to \infty\) uniformly for \(y \in \omega\). It follows that there exists a constant \(c_1 > 0\) such that
\[
|u_\lambda(x)| \leq c_1 \quad \forall x \in \Omega.
\] (6.13)

Furthermore, for any \(\varepsilon > 0\), there exists \(R > 0\) such that \(|u_\lambda^{p-1}(x)| < \varepsilon\) for all \(x = (y,z) \in \Omega\) and \(|y| \geq R\). Let \(\Omega_R = \{x = (y,z) \in \Omega : |z| < R\}\), then we have
\[
\left| \int_{\Omega} K u_\lambda^{p-1}(w_k^2 - w^2) \, dx \right|
\leq \|K\|_{L^\infty(\Omega)} \left(\int_{\Omega_R} u_\lambda^{p-1} |w_k - w|^2 \, dx + \int_{\Omega \setminus \Omega_R} u_\lambda^{p-1} |w_k - w|^2 \, dx \right)
\leq c_2 \int_{\Omega_R} |w_k - w|^2 \, dx + \varepsilon \int_{\Omega \setminus \Omega_R} |w_k - w|^2 \, dx.
\] (6.14)

From \(w_k \to w\) strongly in \(L^q_{\text{loc}}(\Omega)\) for \(2 \leq q < 2N/(N-2)\) as \(k \to \infty\), it follows that
\[
\lim_{k \to \infty} \int_{\Omega_R} |w_k - w|^2 \, dx = 0.
\] (6.15)

Since \(\{w_k\}\) is bounded in \(H^1_0(\Omega)\), this implies that there exists a constant \(c_3 > 0\) such that
\[
\int_{\Omega \setminus \Omega_R} |w_k - w|^2 \, dx \leq c_3.
\] (6.16)

Therefore, we conclude that
\[
\lim_{k \to \infty} \left| \int_{\Omega} K u_\lambda^{p-1}(w_k^2 - w^2) \, dx \right| \leq c_3 \varepsilon.
\] (6.17)

Take \(\varepsilon \to 0\), we obtain
\[
\int_{\Omega} K u_\lambda^{p-1} w_k^2 \, dx \rightharpoonup \int_{\Omega} K u_\lambda^{p-1} w^2 \, dx \quad \text{as } k \to \infty.
\] (6.18)

Therefore
\[
\Phi(w) \leq \lim_{n \to \infty} \Phi(w_n) = d
\] (6.19)
and \(\Phi(w) = d\) which gives that \(w\) is a solution of (6.4)\(_\lambda\). \(\square\)
Remark 6.3. From Lemma 6.2, we know that (6.4) has a solution \(w \in H_0^1(\Omega) \). Now, we also assume that \(K(x), f(x), \) and \(g(x) \) are in \(C^n(\Omega) \cap L^2(\Omega) \), then by Lemmas 4.4 and 4.6, we have that \(w \in H_0^1(\Omega) \). The standard elliptic regular theory yields \(w \in C^{2,\alpha}(\Omega) \).

Lemma 6.4. Suppose \(u_{\lambda^*} \) is a solution of (1.1)_{\lambda^*}, then \(\sigma_{\lambda^*}(u_{\lambda^*}) = \lambda^* \) and the solution \(u_{\lambda^*} \) is unique.

Proof. Define \(F : \mathbb{R} \times H_0^1(\Omega) \to H^{-1}(\Omega) \) by
\[
F(\lambda, u) = \Delta u - u + \lambda K(u^+)^p + f(x).
\]
Since \(\sigma_1(u_1) \geq \lambda \) for \(\lambda \in (0, \lambda^*) \), so \(\sigma_1(u_1) \geq \lambda^* \). If \(\sigma_1(u_{\lambda^*}) > \lambda^* \), the equation \(F_u(\lambda^*, u_{\lambda^*})\phi = 0 \) has no nontrivial solution. From Lemma 6.2, \(F_u \) maps \(\mathbb{R} \times H_0^1(\Omega) \) onto \(H^{-1}(\Omega) \). Applying the implicit function theorem to \(F \), we can find a neighborhood \((\lambda^* - \delta, \lambda^* + \delta) \) of \(\lambda^* \) such that (1.1) possesses a solution \(u_1 \) if \(\lambda \in (\lambda^* - \delta, \lambda^* + \delta) \). This is contradictory to the definition of \(\lambda^* \). Hence, we obtain \(\sigma_{\lambda^*}(u_{\lambda^*}) = \lambda^* \).

Next, we are going to prove that \(u_{\lambda^*} \) is unique. In fact, suppose (1.1)_{\lambda^*} has another solution \(U_{\lambda^*} \geq u_{\lambda^*} \). Set \(w = U_{\lambda^*} - u_{\lambda^*} \); we have
\[
-\Delta w + w = \lambda^* K[(w + u_{\lambda^*})^p - u_{\lambda^*}^p], \quad w > 0 \text{ in } \Omega.
\]
By \(\sigma_{\lambda^*}(u_{\lambda^*}) = \lambda^* \), we have that the problem
\[
-\Delta \phi + \phi = \lambda^* pKu_{\lambda^*}^{p-1} \phi, \quad \phi \in H_0^1(\Omega)
\]
possesses a positive solution \(\phi_1 \).

Multiplying (6.21) by \(\phi_1 \) and (6.22) by \(w \), integrating, and subtracting we deduce that
\[
0 = \int_\Omega \lambda^* K[(w + u_{\lambda^*})^p - u_{\lambda^*}^p - pu_{\lambda^*}^{p-1}w] \phi_1 dx
= \frac{1}{2} p(p-1) \int_\Omega \lambda^* K\xi_{\lambda^*}^{p-2}w^2 \phi_1 dx,
\]
where \(\xi_{\lambda^*} \in (u_{\lambda^*}, u_{\lambda^*} + w) \). Thus \(w \equiv 0 \).

Proposition 6.5. Let \(u_\lambda \) be the minimal solution of (1.1). Then \(u_\lambda \) is uniformly bounded in \(L^\infty(\Omega) \cap H_0^1(\Omega) \) for all \(\lambda \in [0, \lambda^*] \) and
\[
u_\lambda \to u_0 \quad \text{in } L^\infty(\Omega) \cap H_0^1(\Omega) \quad \text{as } \lambda \to 0^+,
\]
where \(u_0 \) is the unique positive solution of (1.1)_{0}.

Proof. By Lemmas 4.8, 3.3, and 6.4, we can deduce \(\|u_\lambda\|_{L^\infty(\Omega)} \leq \|u_{\lambda^*}\|_{L^\infty(\Omega)} \leq c \) for \(\lambda \in [0, \lambda^*] \). By (3.26), we have \(\|u_\lambda\| \leq (p/(p+1))\|f\|_{H^{-1}} \). Hence, \(u_\lambda \) is uniformly bounded in \(L^\infty(\Omega) \cap H_0^1(\Omega) \) for \(\lambda \in [0, \lambda^*] \).

Now, let \(w_\lambda = u_\lambda - u_0 \), then \(w_\lambda \) satisfies the following equation:
\[
-\Delta w_\lambda + w_\lambda = \lambda K u_\lambda^p \quad \text{in } \Omega,
\]
We proceed by contradiction. Assume to the contrary that there exists c where
\[\lim_{\lambda \to 0^+} \| u_\lambda \|_{L^\infty} = \infty. \]

By Lemma 4.4, $u_\lambda \in L^q(\Omega)$ for all $q \in [2, \infty)$ and u_λ is uniformly bounded in $L^\infty(\Omega) \cap H^1_0(\Omega)$, then for any $q \in [2, \infty)$, there exists a positive constant c_q, independent of u_λ, $\lambda \in [0, \lambda^*]$, such that
\[\| K u_\lambda \|_{L^q(\Omega)} \leq c_q. \quad (6.26) \]

Now, let $q_0 = N/2 + 1 > N/2$ and by Lemma 4.4, we have $\lambda K u_\lambda^p \in L^{q_0}(\Omega)$. Apply Lemmas 4.2, 4.4, 4.6, to $(6.8)_\lambda$ and by (6.25) and (6.26), we obtain
\[\| w_\lambda \|_{L^2(\Omega)} \leq c \| u_\lambda \|_{W^{2,q_0}(\Omega)} \]
\[\leq c_2 \left(\| K u_\lambda^p \|_{L^{q_0}(\Omega)} + \| u_\lambda \|_{L^{q_0}(\Omega)} \right) \leq c_3 \lambda + c_2 \| u_\lambda \|_{L^2(\Omega)} \leq c(\lambda + \lambda^{1/q_0}), \quad (6.27) \]

where c is independent of λ. Hence, we obtain $u_\lambda \to u_0$ in $L^\infty(\Omega)$ as $\lambda \to 0^+$. \qed

Proposition 6.6. For $\lambda \in (0, \lambda^*)$, let U_λ be the positive solution of (1.1) with $U_\lambda > u_\lambda$, then U_λ is unbounded in $L^\infty(\Omega) \cap H^1_0(\Omega)$, that is,
\[\lim_{\lambda \to 0^+} \| U_\lambda \| = \lim_{\lambda \to 0^+} \| U_\lambda \|_{L^\infty(\Omega)} = \infty. \quad (6.28) \]

Proof. Let φ_λ be a minimizer of $\sigma_\lambda(U_\lambda)$ for $\lambda \in (0, \lambda^*)$, that is,
\[\int_\Omega pKU_\lambda^{p-1} \varphi_\lambda^2 dx = 1, \quad \| \varphi_\lambda \|^2 = \sigma_\lambda(U_\lambda). \quad (6.29) \]

(i) First, we show that $\{ U_\lambda : \lambda \in (0, \lambda_0) \}$ is unbounded in $L^\infty(\Omega)$ for any $\lambda_0 \in (0, \lambda^*)$. We proceed by contradiction. Assume to the contrary that there exists $c_0 > 0$ such that
\[\| U_\lambda \|_{L^\infty} \leq c_0 < \infty \quad \forall \lambda \in (0, \lambda_0), \quad (6.30) \]

by (6.29) and $\sigma_\lambda(U_\lambda) < \lambda$ for all $\lambda \in (0, \lambda_0)$, we obtain
\[1 = \int_\Omega pKU_\lambda^{p-1} \varphi_\lambda^2 dx \leq c \| \varphi_\lambda \|^2 = c\sigma_\lambda(U_\lambda) < \lambda, \quad (6.31) \]

where $c = p\| K \|_{L^\infty(\Omega)} c_0^{p-1}$. This is a contradiction for all $\lambda < 1/c$. Hence, for any $\lambda_0 \in (0, \lambda^*)$, $\{ U_\lambda : \lambda \in (0, \lambda^*) \}$ is unbounded in $L^\infty(\Omega)$. From this result, it is easy to see that $\lim_{\lambda \to 0^+} \| U_\lambda \|_{L^\infty} = \infty$.
(ii) Now, we show that \{U_\lambda : \lambda \in (0,\lambda_0)\} is unbounded in \(H_0^1(\Omega)\) for any \(\lambda_0 \in (0,\lambda^*)\). If not, then there exists a constant \(c_0 > 0\) independent of \(\lambda\), such that
\[
\|U_\lambda\| \leq c_0 \quad \forall \lambda \in (0,\lambda_0).
\]
(6.32)

By (6.29), (6.32), Hölder inequality, Sobolev embedding theorem, and \(\sigma_0(U_\lambda) < \lambda\) for all \(\lambda \in (0,\lambda^*)\), we have
\[
1 = \int_\Omega pK U_\lambda^{p-1} \varphi_\lambda^2 dx \leq p\|K\|_{L^{\infty}(\Omega)}\|U_\lambda\|_{L^p(\Omega)} \|\varphi_\lambda\|_{L^{p/(p-1)}(\Omega)}^2
\]
\[
\leq c_1 \|U_\lambda\|^{p-1} \|\varphi_\lambda\|^2 \leq c_1 c_0^{p-1} \|\varphi_\lambda\|^2 = c_1 c_0^{p-1} \sigma_0(U_\lambda) < c_1 c_0^{p-1} \lambda,
\]
where \(c_1\) is a constant independent of \(\lambda\). Now, let \(\lambda \to 0^+\), then we obtain a contradiction. Hence, \{U_\lambda : \lambda \in (0,\lambda^*)\} is unbounded in \(H_0^1(\Omega)\) and \(\lim_{\lambda \to 0^+} \|U_\lambda\| = +\infty\). \hfill \Box

In order to get bifurcation results we need the following bifurcation theorem which can be found in Crandall and Rabinowitz [6].

Theorem 6.7. Let \(X, Y\) be Banach spaces. Let \((\overline{\lambda}, \overline{x}) \in \mathbb{R} \times X\) and let \(F\) be a continuously differentiable mapping of an open neighborhood of \((\overline{\lambda}, \overline{x})\) into \(Y\). Let the null space \(N(F_X(\overline{\lambda}, \overline{x})) = \text{span}\{x_0\}\) be one-dimensional and \(\text{codim} R(F_X(\overline{\lambda}, \overline{x})) = 1\). Let \(F_1(\overline{\lambda}, \overline{x}) \notin R(F_X(\overline{\lambda}, \overline{x}))\).

If \(Z\) is the complement of \(\text{span}\{x_0\}\) in \(X\), then the solutions of \(F(\lambda, x) = F_1(\overline{\lambda}, \overline{x})\) near \((\overline{\lambda}, \overline{x})\) form a curve \((\lambda(s), x(s)) = (\overline{\lambda} + \tau(s), \overline{x} + s x_0 + z(s))\), where \(s \to (\tau(s), z(s)) \in \mathbb{R} \times Z\) is continuous differentiable function near \(s = 0\) and \(\tau(0) = \tau'(0) = 0\), \(z(0) = z'(0) = 0\).

Proof of Theorems 1.1 and 1.2. Theorem 1.1 now follows from Lemmas 3.2, 3.3, 6.1, 6.4, and Proposition 5.6. The conclusions (i) and (ii) of Theorem 1.2 follow immediately from Lemma 3.3, Remark 6.2 and Propositions 6.5, 6.6. Now we are going to prove that \((\lambda^*, u_{\lambda^*})\) is a bifurcation point in \(C^{2,\alpha}(\Omega) \cap H^2(\Omega)\) by using an idea in [13]. We also assume that \(K(x)\) and \(f(x)\) are in \(C^\alpha(\Omega) \cap L^2(\Omega)\) and define
\[
F : \mathbb{R}^1 \times C^{2,\alpha}(\Omega) \cap H^2(\Omega) \to C^\alpha(\Omega) \cap L^2(\Omega)
\]
by
\[
F(\lambda, u) = \Delta u - u + \lambda K(u^+)^p + f(x),
\]
(6.35)
where \(C^{2,\alpha}(\Omega) \cap H^2(\Omega)\) and \(C^\alpha(\Omega) \cap L^2(\Omega)\) are endowed with the natural norm; then they become Banach spaces. It can be verified easily that \(F(\lambda, u)\) is differentiable. From Lemma 6.2 and Remark 6.3, we know that
\[
F_u(\lambda, u)w = \Delta w - w + \lambda pK u_\lambda^{p-1} w
\]
(6.36)
is an isomorphism of \(\mathbb{R}^1 \times C^{2,\alpha}(\Omega) \cap H^2(\Omega)\) onto \(C^\alpha(\Omega) \cap L^2(\Omega)\). It follows from implicit function theorem that the solutions of \(F(\lambda, u) = 0\) near \((\lambda, u_\lambda)\) are given by a continuous curve.

Now we are going to prove that \((\lambda^*, u_{\lambda^*})\) is a bifurcation point of \(F\). We show first that at the critical point \((\lambda^*, u_{\lambda^*})\), Theorem 6.7 applies. Indeed, from Lemma 6.4, problem
(6.22) has a solution \(\phi_1 > 0 \) in \(\Omega \). By the standard elliptic regular theory, we have \(\phi_1 \in C^{2,\alpha}(\Omega) \cap H^2(\Omega) \) if \(f \in C^4(\Omega) \cap L^2(\Omega) \). Thus \(F_\nu(\lambda^*, u_{1\nu}) \phi = 0, \phi \in C^{2,\alpha}(\Omega) \cap H^2(\Omega) \) has a solution \(\phi_1 > 0 \). This implies that \(N(F_\nu(\lambda^*, u_{1\nu}) = \text{span}\{\phi_1\} \) is one dimensional and \(\text{codim} R(F_\nu(\lambda^*, u_{1\nu})) = 1 \) by the Fredholm alternative. It remains to check that \(F_\nu(\lambda^*, u_{1\nu}) \notin R(F_\nu(\lambda^*, u_{1\nu})) \).

Assuming the contrary would imply the existence of \(\nu \neq 0 \) such that

\[
\Delta \nu - \nu + \lambda^* pKu_{\lambda^*}^{\nu - 1} \nu = Ku_{\lambda^*}^\nu, \quad \nu \in H^1_0(\Omega).
\] (6.37)

From \(F_\nu(\lambda^*, u_{1\nu}) \phi_1 = 0 \), we conclude that \(\int_\Omega Ku_{\lambda^*}^\nu \phi_1 dx = 0 \). This is impossible because \(K(x) \geq 0, K(x) \neq 0, u_{1\nu}(x) > 0 \), and \(\phi_1(x) > 0 \) in \(\Omega \).

Applying Theorem 6.7, we conclude that \((\lambda^*, u_{1\nu}) \) is a bifurcation point near which the solution of (1.1) forms a curve \((\lambda^* + \tau(s), u_{1\nu} + sp + z(s)) \) with \(s \) near \(s = 0 \) and \(\tau(0) = \tau'(0) = 0, z(0) = z'(0) = 0 \). We claim that \(\tau''(0) < 0 \) which implies that the bifurcation curve turns strictly to the left in \((\lambda, u) \) plane. In order to obtain that \(\tau''(0) < 0 \), we need the following lemma.

Lemma 6.8. Suppose condition (k1) holds, then

\[
\int_\Omega Ku_{\lambda^*}^\nu \phi_1^2 dx < +\infty.
\] (6.38)

Proof. Since \(u_{\lambda^*}(x) \to 0 \) as \(|x| \to \infty \), there is \(R_1 > 0 \) such that

\[
0 = \Delta \phi_1 - \phi_1 + \lambda^* pKu_{\lambda^*}^{-1} \phi_1 \leq \Delta \phi_1 - \frac{1}{4} \phi_1, \quad \text{for } \phi \in \omega, \quad |z| \geq R_1.
\] (6.39)

It is well-known that the Dirichlet equation \(\Delta w - (1/4)w = -w^p \) in \(\mathbb{S} \) has a positive ground-state solution, denoted by \(\bar{w} \) (see [14] and the references there). We can modify the proof in Hsu [10] and obtain that for any \(\epsilon > 0 \) with \(0 < \epsilon < 1/4 + \mu_1 \), there exist constants \(\epsilon_1 \) and \(R_2 > 0 \) such that

\[
\bar{w}(y, z) \leq c_\epsilon \psi(y) \exp\left(-\sqrt{\frac{1}{4} + \mu_1 - \epsilon |z|}\right) \quad \text{for } y \in \omega, \quad |z| \geq R_2,
\] (6.40)

where \(\psi \) is the first positive eigenfunction of the Dirichlet problem \(-\Delta \psi = \mu_1 \psi \) in \(\omega \). Now, let \(\epsilon = (1/2)\mu_1 \). Since \(\Delta \bar{w} - (1/4)\bar{w} = -\bar{w}^p \leq 0 \) in \(\Omega \), hence by the maximum principle we obtain that there exist constants \(\epsilon_1 > 0 \) and \(R_3 > 0 \) such that

\[
\phi_1(y, z) \leq c_1 \psi(y) \exp\left(-\frac{1}{2} \sqrt{1 + 2\mu_1 |z|}\right) \quad \text{for } y \in \omega, \quad |z| \geq R_3.
\] (6.41)

Let \(q \in \partial \Omega \), and \(B \) a small ball in \(\Omega \) such that \(q \in \partial B \). Since \(\phi_1(x) > 0 \) for \(x \in B \), \(\phi_1(q) = 0, u_{1\nu}(x) > 0 \) for \(x \in B \), \(u(q) = 0 \), by the strongly maximum principle \((\partial \phi_1/\partial x)(q) < 0, (\partial u_{1\nu}/\partial x)(q) < 0 \). Thus

\[
\lim_{x \to q} \frac{u_{1\nu}(x)}{\phi_1(x)} = \frac{(\partial u_{1\nu}/\partial x)(q)}{(\partial \phi_1/\partial x)(q)} > 0,
\] (6.42)
and we have \(u_{\lambda^*}^{-1} \phi_1 \in C^1(\overline{\Omega}) \) and \(u_{\lambda^*}^{-1} \phi_1 > 0 \) on \(\overline{\Omega} \). Therefore, there exists \(c_2 > 0 \) such that
\[
u_{\lambda^*}^{-1}(x) \phi_1(x) \leq c_2 \quad \text{for} \ x \in \Omega_{R_0},
\]
where \(\Omega_{R_0} = \{ x = (y, z) \in \Omega : |z| < R_0 \} \).

Now, by (4.9), (6.41), and (6.43), there exists \(c_3 > 0 \) such that
\[
u_{\lambda^*}^{-1}(x) \phi_1^2(x) \leq c_3 \quad \text{for} \ x \in \Omega_{R_0},
\]
(6.44)

From (6.41), (6.44) and Hölder’s inequality, we derive
\[
\int_{\Omega} K u_{\lambda^*}^{p-2} \phi_1^3 dx
\leq c_3 \int_{\Omega} K u_{\lambda^*}^{p-1} \phi_1 dx
\leq c \left(\int_{\Omega} u_{\lambda^*}^{p+1} dx \right)^{(p-1)/(p+1)} \left(\int_{\omega} |\psi(y)|^{p+1/2} dy \cdot \int_{\mathbb{R}^n} e^{-(p+1)/4 \sqrt{1+2\mu_1}|z|^2} dz \right)^{2/(p+1)} < \infty,
\]
(6.45)

Since \(\lambda = \lambda^* + \tau(s) \), \(u = u_{\lambda^*} + s \phi_1 + z(s) \) in
\[-\Delta u + u - \lambda K u^p - f = 0, \quad u > 0, \ u \in C^{2,\alpha}(\Omega) \cap H^2(\Omega),
\]
(6.46)

Differentiating (6.46) in \(s \) twice, we have
\[-\Delta u_{ss} + u_{ss} - \lambda p K u^{p-1} u_{ss} - 2\lambda_p K u^{p-1} u_s - \lambda p (p-1) K u^{p-2} u_s - \lambda u_s K u^p = 0.
\]
(6.47)

Setting here \(s = 0 \) and using the facts that \(\tau'(0) = 0, \ u_s = \phi_1(x) \), and \(u = u_{\lambda^*} \) as \(s = 0 \), we obtain
\[-\Delta u_{ss} + u_{ss} - \lambda^* p K u_{\lambda^*}^{p-1} u_{ss} - \lambda^* p (p-1) K u_{\lambda^*}^{p-2} \phi_1^2 - \tau''(0) K u_{\lambda^*}^p = 0.
\]
(6.48)

Multiplying \(F_s(\lambda^*, u_{\lambda^*}) \phi_1 = 0 \) by \(u_{ss} \) and (6.48) by \(\phi_1 \), integrating, and subtracting the result, and by (6.38) we obtain
\[
\int_{\Omega} \lambda^* p (p-1) K u_{\lambda^*}^{p-2} \phi_1^3 dx + \tau''(0) \int_{\Omega} K u_{\lambda^*}^p \phi_1 dx = 0,
\]
(6.49)

which immediately gives \(\tau''(0) < 0 \). Thus
\[
u_{\lambda^*} \to u_{\lambda^*} \quad \text{in} \ C^{2,\alpha}(\Omega) \cap H^2(\Omega) \text{ as} \ \lambda \to \lambda^*,
\]
\[
u_{\lambda} \to u_{\lambda^*} \quad \text{in} \ C^{2,\alpha}(\Omega) \cap H^2(\Omega) \text{ as} \ \lambda \to \lambda^*.
\]
(6.50)

Using Lemma 6.2, Remark 6.3, the implicit function theorem, and the uniqueness of the positive ground-state solution of (1.1) \(0 \), we can easily prove that
\[
u_{\lambda} \to u_0 \quad \text{in} \ C^{2,\alpha}(\Omega) \cap H^2(\Omega) \text{ as} \ \lambda \to 0^+,
\]
(6.51)

which proves Theorem 1.2.
Remark 6.9. If $\Omega = S$, $\Omega = \mathbb{R}^N$, or $\Omega = \mathbb{R}^N \setminus D$, the proof still holds after simple modification.

References

Tsing-San Hsu: Center for General Education, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
E-mail address: tshsu@mail.cgu.edu.tw
Special Issue on
Intelligent Computational Methods for
Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Computational methods**: artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning
- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk