TOTALLY REAL SUBMANIFOLDS IN A COMPLEX PROJECTIVE SPACE

LIU XIMIN

(Received 23 July 1996 and in revised form 13 December 1996)

Abstract. In this paper, we establish the following result: Let M be an n-dimensional complete totally real minimal submanifold immersed in \mathbb{CP}^n with Ricci curvature bounded from below. Then either M is totally geodesic or $\inf r \leq (3n + 1)(n - 2)/3$, where r is the scalar curvature of M.

Keywords and phrases. Complex projective space, totally real submanifold, Ricci curvature.

1991 Mathematics Subject Classification. 53C40, 53C55.

1. Introduction. Let \mathbb{CP}^n be the n-dimensional complex projective space with the Fubini-Study metric of constant holomorphic sectional curvature $c = 4$ and let M be an n-dimensional totally real submanifold of \mathbb{CP}^n. Let r be the scalar curvature of M. If M is compact, then many authors studied them and obtained many beautiful results (for example [2, 4, 5]).

In this paper, we make use of Yau’s maximum principle to study the complete totally real minimal submanifold with Ricci curvature bounded from below and obtain the following result.

Theorem 1. Let M be an n-dimensional complete totally real minimal manifold immersed in \mathbb{CP}^n with Ricci curvature bounded from below. Then either M is totally geodesic or $\inf r \leq (3n + 1)(n - 2)/3$.

2. Preliminaries. Let M be an n-dimensional totally real minimal submanifold of \mathbb{CP}^n. We choose a local field of orthonormal frames $e_1, \ldots, e_n, e_1^* = Je_1, \ldots, e_n^* = Je_n$ (J is the complex structure of \mathbb{CP}^n), such that, restricted to M, the vectors e_1, \ldots, e_n are tangent to M. We make use of the following convention on the range of indices

$$A, B, C, \ldots = 1, \ldots, n, 1^*, \ldots, n^*; \quad i, j, k, \ldots = 1, \ldots, n. \quad (2.1)$$

With respect to the frame field of \mathbb{CP}^n, let w^A be the field of dual frames. Then the structure equations of \mathbb{CP}^n are given by

$$dw^A = - \sum w^A_B \wedge w^B, \quad w^B_A + w^B_B = 0, \quad (2.2)$$

$$dw^A_B = - \sum w^A_C \wedge w^C_B + \frac{1}{2} \sum R^A_{BCD} w^C \wedge w^D, \quad (2.3)$$

$$R^A_{BCD} = \delta_{AC} \delta_{BD} - \delta_{AD} \delta_{BC} + J_{AC} J_{BD} - J_{AD} J_{BC} + 2 J_{AB} J_{CD}, \quad (2.4)$$
where $J = J_{AB}e_A \otimes e_B$, so that

$$\langle J_{AB} \rangle = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix},$$

(2.5)

where I_n is the identity matrix of order n. We restrict these forms to M. Then from [2], we have

$$w^{i*} = 0, \quad w^i_j = w^{i*}_j, \quad w^{i*}_j = w^j_i,$$

(2.6)

$$w^k_i = \sum h^{k*}_{ij} w^j, \quad h^{k*}_{ij} = h^{i*}_{ij} = h^{j*}_{ik},$$

(2.7)

d$w^i_j = -\sum w^i_j \wedge w^j_i, \quad w^{i*}_j = w^j_i,$$

(2.8)

d$w^i_j = -\sum w^k \wedge w^i_k + \frac{1}{2} \sum R_{ijkl}^i w^k \wedge w^j_l,$$

(2.9)

$$R_{ijkl}^i = \tilde{R}_{ijkl}^i w^k + (h^{m*}_{ik} h^{m*_j} - h^{m*}_{il} h^{m*_k}),$$

(2.10)

$$R_{ijkl}^* = \tilde{R}_{ijkl}^* + \sum (h^{m*}_{km} h^{m*_l} - h^{m*}_{ml} h^{m*_k}).$$

(2.11)

The second fundamental form h of M in CP^n is defined as $h = \sum h^{k*}_{ij} w^j \otimes e^k$, whose squared length is $\|h\|^2 = \sum (h^{k*}_{ij})^2$.

If M is minimal in CP^n, i.e., trace $h = 0$, then from (2.4) and (2.10), we have

$$r = n(n-1) - \|h\|^2,$$

(2.13)

where r is the scalar curvature of M.

Define h^{m*}_{ij} and h^{m*}_{ijkl} by

$$\sum h^{m*}_{ij} w^k = dh^{m*}_{ij} - \sum h^{m*}_{kj} w^i - \sum h^{m*}_{ik} w^j + \sum h^{m*}_{ij} w^{m*}_{k},$$

(2.14)

$$\sum h^{m*}_{ijkl} w^i = dh^{m*}_{ijk} - \sum h^{m*}_{ikj} w^i + \sum h^{m*}_{ijk} w^j - \sum h^{m*}_{ijkl} w^k + \sum h^{m*}_{ijk} w^{m*}_l,$$

(2.15)

respectively.

Let H_{ij} and Δ denote the $(n \times n)$-matrix (h^{i*}_{ij}) and the Laplacian on M, respectively. By a simple calculation, we have (cf. [2])

$$\frac{1}{2} \Delta \|h\|^2 = \sum (h^{i*}_{ij})^2 + (n+1) \|h\|^2 + \sum \text{tr} (H_{ik} H_{j*} - H_{kj} H_{i*})^2$$

$$- \sum (\text{tr} H_{i*} \text{tr} H_{j*})^2.$$

(2.16)

The following lemma is important in this paper.

Lemma 1 [6]. Let M^n be a complete Riemannian manifold with Ricci curvature bounded from below and let f be a C^2-function bounded from above on M^n, then for all $\epsilon > 0$, there exists a point $x \in M^n$ at which

(i) $\sup f - \epsilon < f(x)$;

(ii) $\|\nabla f(x)\| < \epsilon$;

(iii) $\Delta f(x) < \epsilon$.

Proof of the main theorem. By \([3]\), we have \(\sum (\text{tr} H_i \ast H_j) = \sum (\text{tr} H_i^2)\). From \([1]\), we know that \(\sum \text{tr}(H_i \ast H_j - H_j \ast H_i)^2 - \sum (\text{tr} H_i^2)^2 \geq -3/2 \| h \|^4\). So, from (2.16), we obtain
\[
\frac{1}{2} \Delta \| h \|^2 \geq \| h \|^2 ((n + 1) - 3/2 \| h \|^2). \tag{2.17}
\]
We know that \(\| h \|^2 = n(n - 1) - r\). By the condition of the theorem, we conclude that \(\| h \|^2\) is bounded. We define \(f = \| h \|^2\) and \(F = (f + a)^{1/2}\) (where \(a > 0\) is any positive constant number). \(F\) is bounded. We have
\[
dF = \frac{1}{2} (f + a)^{-1/2} df, \tag{2.18}
\]
\[
\Delta F = \frac{1}{2} \left(- \frac{1}{2} (f + a)^{-3/2} \| df \|^2 + (f + a)^{-1/2} \Delta f\right) \tag{2.19}
\]
i.e.,
\[
\Delta F = \frac{1}{2F} \left(-2 \| dF \|^2 + \Delta f\right) (f + a)^{-1/2}, \tag{2.20}
\]
Hence, \(F \Delta F = -\| dF \|^2 + 1/2 \Delta f\) or \(1/2 \Delta f = F \Delta F + \| dF \|^2\).

Applying Lemma 1 to \(F\), we have for all \(\epsilon > 0\), there exists a point \(x \in M\) such that at \(x\)
\[
|dF(x) < \epsilon|; \tag{2.21}
\]
\[
\Delta F(x) < \epsilon; \tag{2.22}
\]
\[
F(x) > \sup F - \epsilon. \tag{2.23}
\]
From (2.21), (2.22), and (2.23), we have
\[
\frac{1}{2} \Delta f < \epsilon^2 + F \epsilon = \epsilon(\epsilon + F). \tag{2.24}
\]
We take a sequence \(\{\epsilon_m\}\) such that \(\epsilon_m \to 0(m \to \infty)\) and for all \(m\), there exists a point \(x_m \in M\) such that (2.21), (2.22), and (2.23) hold. Therefore, \(\epsilon_m (\epsilon_m + F(x_m)) \to 0(m \to \infty)\) (because \(F\) is bounded).

From (2.23), we have \(F(x_m) > \sup F - \epsilon_m\). Because \(\{F(x_m)\}\) is a bounded sequence. So we get \(F(x_m) \to F_0\) (if necessary, we can choose a subsequence). Hence, \(F_0 \geq \sup F\). So we have
\[
F_0 = \sup F. \tag{2.25}
\]
From the definition of \(F\), we get
\[
f(x_m) \to f = \sup f. \tag{2.26}
\]
(2.17) and (2.24) imply that
\[
f\left((n + 1) - \frac{3}{2} f\right) \leq \frac{1}{2} \Delta f \leq \epsilon(\epsilon + F), \tag{2.27}
\]
and
\[
f(x_m)\left((n + 1) - \frac{3}{2} f(x_m)\right) < \epsilon_m^2 + \epsilon_m F(x_m) \leq \epsilon_m^2 + \epsilon_m F_0 \tag{2.28}
\]
let $m \to \infty$, then $\epsilon_m \to 0$ and $f(x_m) \to f_0$. Hence,

$$f_0 \left((n+1) - \frac{3}{2} f_0 \right) \leq 0. \quad (2.29)$$

(i) if $f_0 = 0$, we have $f = \|h\|^2 = 0$. Hence, M is totally geodesic.

(ii) if $f_0 > 0$, we have $(n+1) - 3/2 f_0 \leq 0$ and $f_0 \geq 2/3(n+1)$, that is, $\sup \|h\|^2 \geq 2/3(n+1)$. Therefore, $\inf \ r \leq (3n+1)(n-2)/3$. This completes the proof. \qed

Acknowledgement. The author is grateful to the referee for the careful reading and the very helpful comments on the earlier versions of this manuscript.

References

Ximin: Department of Mathematics, Nankai University, Tianjin 300071, China

Current address: Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China

E-mail address: xmliu@dlut.edu.cn
Special Issue on
Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk