ON THE FEKETE-SZEGÖ PROBLEM

B. A. FRASIN and MASLINA DARUS

(Received 9 May 2000)

Abstract. Let $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$ be an analytic function in the open unit disk. A sharp upper bound is obtained for $|a_3 - \mu a_2^2|$ by using the classes of strongly starlike functions of order β and type α when $\mu \geq 1$.

Keywords and phrases. Univalent and analytic functions, starlike and convex functions, Fekete-Szegö problem.

2000 Mathematics Subject Classification. Primary 30C45.

1. Introduction. Let \mathcal{A} denote the family of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unit disk $\mathbb{D} = \{z : |z| < 1\}$. Further, let \mathcal{S} denote the class of functions which are univalent in \mathbb{D}. A function $f(z)$ belonging to \mathcal{A} is said to be strongly starlike of order β and type α in \mathbb{D}, and denoted by $\mathcal{S}_\alpha^*(\beta)$ if it satisfies

$$\left| \arg \left(\frac{zf'(z)}{f(z)} - \alpha \right) \right| < \frac{\pi}{2} \beta \quad (z \in \mathbb{D})$$

for some $\alpha (0 \leq \alpha < 1)$ and $\beta (0 < \beta \leq 1)$. If $f(z) \in \mathcal{A}$ satisfies

$$\left| \arg \left(1 + \frac{zf''(z)}{f'(z)} - \alpha \right) \right| < \frac{\pi}{2} \beta \quad (z \in \mathbb{D})$$

for some $\alpha (0 \leq \alpha < 1)$ and $\beta (0 < \beta \leq 1)$, then we say that $f(z)$ is strongly convex of order β and type α in \mathbb{D}, and we denote by $\mathcal{K}_\alpha(\beta)$ the class of all such functions (see also Srivastava and Owa [16]). For the class \mathcal{S} of analytic univalent functions, Fekete-Szegö [6] obtained the maximum value of $|a_3 - \mu a_2^2|$ when μ is real. For various functions of \mathcal{S}, the upper bound for $|a_3 - \mu a_2^2|$ is investigated by many different authors including [1, 2, 3, 4, 5, 7, 10, 11, 12, 13, 14, 17].

In this paper, we obtain sharp upper bounds for $|a_3 - \mu a_2^2|$ when f belonging to the classes of functions defined as follows.

Definition 1.1. Let $0 \leq \alpha < 1$, $\beta > 0$ and let $f \in \mathcal{A}$. Then $f \in \mathcal{M}(\alpha, \beta)$ if and only if there exist $g \in \mathcal{S}_\alpha^*(\beta)$ such that

$$\text{Re} \left(\frac{zf'(z)}{g(z)} \right) > 0 \quad (z \in \mathbb{D}),$$

and $f \in \mathcal{G}(\alpha, \beta)$ if and only if there exists $g \in \mathcal{K}_\alpha(\beta)$ and satisfy condition (1.4) with $g(z) = z + b_2 z^2 + b_3 z^3 + \cdots$.

Note that $\mathcal{M}(0, \beta) = \mathcal{K}(\beta)$ is the class of close-to-convex functions defined in [3] and $\mathcal{M}(0, 1) = \mathcal{K}(1)$ is the class of normalized close-to-convex functions defined by Kaplan [9].

2. Main results. In order to derive our main results, we have to recall here the following lemma [15].

Lemma 2.1. Let $h \in \mathcal{C}$, that is, h be analytic in \mathbb{U} and be given by $h(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots$, and $\text{Re} h(z) > 0$ for $z \in \mathbb{U}$, then

$$\left| c_2 - \frac{c_1^2}{2} \right| \leq 2 - \frac{|c_1^2|}{2}. \quad (2.1)$$

Theorem 2.2. Let $f(z) \in \mathcal{M}(\alpha, \beta)$ and be given by (1.1). Then for $0 \leq \alpha < 1$, $\beta \geq 1$, and $\mu \geq 1$ we have the sharp inequality

$$\left| a_3 - \mu a_2^2 \right| \leq \frac{2\beta^2 (\mu - 1) + \alpha \beta^2 (8 - 2\alpha - 3\mu)}{(1 - \alpha)^2 (2 - \alpha)} + \frac{2\beta + 1 - \alpha (3\mu - 2)}{3(1 - \alpha)}. \quad (2.2)$$

Proof. Let $f(z) \in \mathcal{M}(\alpha, \beta)$. It follows from (1.4) that

$$zf'(z) = g(z)q(z), \quad (2.3)$$

for $z \in \mathbb{U}$, with $q \in \mathcal{C}$ given by $q(z) = 1 + q_1 z + q_2 z^2 + q_3 z^3 + \cdots$. Equating coefficients, we obtain

$$2a_2 = q_1 + b_2, \quad 3a_3 = q_2 + b_2 q_1 + b_3. \quad (2.4)$$

Also, it follows from (1.2) that

$$zg'(z) - \alpha g(z) = g(z) (p(z))^\beta, \quad (2.5)$$

where $z \in \mathbb{U}$, $p \in \mathcal{C}$, and $p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \cdots$. Thus equating coefficients, we obtain

$$(1 - \alpha) b_2 = \beta p_1, \quad (2 - \alpha) b_3 = \beta \left(p_2 + \frac{\beta (3 - \alpha) + \alpha - 1}{2(1 - \alpha)} p_1^2 \right). \quad (2.6)$$

From (2.4) and (2.6), we have

$$a_3 - \mu a_2^2 = \frac{1}{3} \left(q_2 - \frac{1}{2} q_1^2 \right) + \frac{2 - 3\mu}{12} q_1^2 + \frac{\beta}{3(2 - \alpha)} \left(p_2 - \frac{1}{2} p_1^2 \right) \quad + \frac{\beta^2 [6(1 - \mu) + \alpha(2\alpha + 3\mu - 8)]}{12(1 - \alpha)^2 (2 - \alpha)} p_1^2 + \frac{\beta (2 - 3\mu)}{6(1 - \alpha)} p_1 q_1. \quad (2.7)$$

Assume that $a_3 - \mu a_2^2$ is positive. Thus we now estimate $\text{Re}(a_3 - \mu a_2^2)$, so from (2.7) and by using Lemma 2.1 and letting $p_1 = 2re^{i\theta}$, $q_1 = 2Re^{i\phi}$, $0 \leq r \leq 1$, $0 \leq R \leq 1$, $0 \leq \theta < 2\pi$, and $0 \leq \phi < 2\pi$, we obtain
\[3\text{Re}(a_3 - \mu a_z^2) = \text{Re}\left(q_2 - \frac{1}{2} q_1^2\right) + \frac{2 - 3\mu}{4} \text{Re} q_1^2 + \frac{\beta}{(2 - \alpha)} \text{Re}\left(p_2 - \frac{1}{2} p_1^2\right) + \frac{\beta^2 [6 + 2\alpha^2 + 3\alpha \mu] - (6\mu + 8\alpha)}{(4(1 - \alpha)^2(2 - \alpha))} \text{Re} p_1 q_1.\]

\[\leq 2(1 - R^2) + (2 - 3\mu)R^2 \cos 2\phi + \frac{2\beta}{2 - \alpha} (1 - r^2)\]

\[+ \frac{\beta^2 [6 + 2\alpha^2 + 3\alpha \mu] - (6\mu + 8\alpha)}{(1 - \alpha)^2(2 - \alpha)} r^2 \cos 2\theta + \frac{2\beta(2 - 3\mu)}{1 - \alpha} r R \cos(\theta + \phi)\]

\[\leq (3\mu - 4)R^2 + \frac{2\beta(3\mu - 2)}{1 - \alpha} r R\]

\[+ \frac{6\beta^2(\mu - 1) + \alpha\beta^2(8 - 2\alpha - 3\mu) - 2\beta(1 - \alpha)^2}{(1 - \alpha)^2(2 - \alpha)} r^2 + \frac{2(\beta - \alpha) + 4}{2 - \alpha} = \Psi(r, R).\]

(2.8)

Letting \(\alpha, \beta,\) and \(\mu\) fixed and differentiating \(\Psi(r, R)\) partially when \(0 \leq \alpha < 1, \beta \geq 1,\) and \(\mu \geq 1,\) we observe that

\[\Psi_r \Psi_{rr} - (\Psi_r)^2 = 4\beta[4\beta + 2 + \alpha(2\alpha\beta + 2\alpha - 4 - 7\beta)] - 3\beta \mu(6\beta + 2 + \alpha(2\alpha\beta + 2\alpha - 4 - 8\beta)].\]

(2.9)

Therefore, the maximum of \(\Psi(r, R)\) occurs on the boundaries. Thus the desired inequality follows by observing that

\[\Psi(r, R) \leq \Psi(1, 1) = \frac{6\beta^2(\mu - 1) + \alpha\beta^2(8 - 2\alpha - 3\mu)}{(1 - \alpha)^2(2 - \alpha)} + \frac{(2\beta + 1 - \alpha)(3\mu - 2)}{1 - \alpha}.\]

(2.10)

The equality for (2.2) is attained when \(p_1 = q_1 = 2i\) and \(q_1 = q_2 = -2.\)

Letting \(\alpha = 0\) in Theorem 2.2, we have the result given by Jahangiri [8].

Corollary 2.3. Let \(f(z) \in \mathcal{K}(\beta)\) and be given by (1.1). Then for \(\beta \geq 1,\) and \(\mu \geq 1,\) we have the sharp inequality

\[|a_3 - \mu a_z^2| \leq \beta^2(\mu - 1) + \frac{(2\beta + 1)(3\mu - 2)}{3}.\]

(2.11)

Theorem 2.4. Let \(f(z) \in \mathcal{G}(\alpha, \beta)\) and be given by (1.1). Then for \(0 \leq \alpha < 1, \beta \geq 1,\) and \(\mu \geq 1,\) we have the sharp inequality

\[|a_3 - \mu a_z^2| \leq \frac{6\beta^2(3\mu - 4) + \alpha\beta^2(32 - 8\alpha - 9\mu)}{36(1 - \alpha)^2(2 - \alpha)} + \frac{(\beta + 1 - \alpha)(3\mu - 2)}{3(1 - \alpha)}.\]

(2.12)

Proof. Let \(f(z) \in \mathcal{G}(\alpha, \beta)\). It follows from (1.3) that

\[z g''(z) + (1 - \alpha) g'(z) = g'(z)(p(z))^{\beta},\]

(2.13)

where \(z \in \mathcal{U}, p \in \mathcal{P},\) and \(p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \cdots.\) Thus equating coefficients, we obtain

\[2(1 - \alpha)b_2 = \beta p_1, \quad 3(2 - \alpha)b_3 = \beta \left(\frac{\beta(3 - \alpha) + \alpha - 1}{2(1 - \alpha)} p_1^2\right).\]

(2.14)
From (2.4) and (2.14) and proceeding as in the proof of Theorem 2.2, we get

\[3\text{Re} \left(a_3 - \mu a_2^2 \right) \leq (3\mu - 4)R^2 + \frac{\beta(3\mu - 2)}{1 - \alpha} rR + \frac{2(\beta - 3\alpha) + 12}{3(2 - \alpha)} + \frac{6\beta^2(3\mu - 4) + \alpha\beta^2(32 - 8\alpha - 9\mu) - 8\beta(1 - \alpha)^2}{12(1 - \alpha)^2(2 - \alpha)} r^2 \]

\[= \Phi(r,R). \]

(2.15)

Letting \(\alpha, \beta \) and \(\mu \) fixed and differentiating \(\Phi(r,R) \) partially when \(0 \leq \alpha < 1, \beta \geq 1, \) and \(\mu \geq 1, \) we have

\[\Phi_{rr} \Phi_{RR} - (\Phi_{rR})^2 = 4\beta \left[18\beta + 8 + \alpha(8\alpha\beta + 8\alpha - 16 - 29\beta) \right] \]

\[- 3\beta\mu \left[24\beta + 8 + \alpha(8\alpha\beta + 8\alpha - 16 - 32\beta) \right] < 0. \]

(2.16)

Therefore, the maximum of \(\Phi(r,R) \) occurs on the boundaries. Thus the desired inequality (2.12) follows by observing that

\[\Phi(r,R) \leq \Phi(1,1) = \frac{6\beta^2(3\mu - 4) + \alpha\beta^2(32 - 8\alpha - 9\mu)}{12(1 - \alpha)^2(2 - \alpha)} + \frac{(\beta + 1 - \alpha)(3\mu - 2)}{1 - \alpha}. \]

(2.17)

The equality in (2.12) is attained on choosing \(p_1 = q_1 = 2i \) and \(q_1 = q_2 = -2. \) This completes the proof of Theorem 2.4.

Corollary 2.5. Let \(f(z) \in \mathcal{G}(0, \beta) \) and be given by (1.1). Then for \(\beta \geq 1, \) and \(\mu \geq 1, \) we have the sharp inequality

\[|a_3 - \mu a_2^2| \leq \frac{1}{12} \left[(3\mu - 2)(\beta + 2)^2 - 2\beta^2 \right]. \]

(2.18)

References

B. A. FRASIN: SCHOOL OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCES AND TECHNOLOGY, UNIVERSITY KEBANGSAAN MALAYSIA, BANGI 43600 SELANGOR, MALAYSIA

MASLINA DARUS: SCHOOL OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCES AND TECHNOLOGY, UNIVERSITY KEBANGSAAN MALAYSIA, BANGI 43600 SELANGOR, MALAYSIA

E-mail address: maslina@pkrisc.cc.ukm.my
Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1315 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation
http://www.hindawi.com