VALUE DISTRIBUTION OF CERTAIN DIFFERENTIAL POLYNOMIALS

INDRAJIT LAHIRI

(Received 5 October 2000 and in revised form 1 April 2001)

ABSTRACT. We prove a result on the value distribution of differential polynomials which improves some earlier results.

2000 Mathematics Subject Classification. 30D35.

1. Introduction and definitions. Let f be a transcendental meromorphic function in the open complex plane. The problem of possible Picard values of derivatives of f reduces to the problem of whether certain polynomials in a meromorphic function and its derivatives necessarily have zeros. We do not explain the standard definitions and notations of value distribution theory as those are available in [6].

Definition 1.1. A meromorphic function “a” is said to be a small function of f if $T(r,a) = S(r,f)$.

Definition 1.2 (see [1, 4, 10]). Let $n_{0j}, n_{1j}, ..., n_{kj}$ be nonnegative integers. The expression $M_j[f] = (f)^{n_{0j}}(f^{(1)})^{n_{1j}} \cdots (f^{(k)})^{n_{kj}}$ is called a differential monomial generated by f of degree $\gamma_{M_j} = \sum_{i=0}^{k} n_{ij}$ and weight $\Gamma_{M_j} = \sum_{i=0}^{k} (i+1) n_{ij}$.

The sum $P[f] = \sum_{j=1}^{l} b_j M_j[f]$ is called a differential polynomial generated by f of degree $\gamma_P = \max \{\gamma_{M_j} : 1 \leq j \leq l\}$ and weight $\Gamma_P = \max \{\Gamma_{M_j} : 1 \leq j \leq l\}$, where $T(r,b_j) = S(r,f)$ for $j = 1, 2, ..., l$.

The numbers $\gamma_P = \min \{1 \leq j \leq l\}$ and k (the highest order of the derivative of f in $P[f]$) are called, respectively, the lower degree and order of $P[f]$.

$P[f]$ is said to be homogeneous if $\gamma_P = \gamma_{\gamma_P}$.

Also $P[F]$ is called a quasi differential polynomial generated by f if, instead of assuming $T(r,b_j) = S(r,f)$, we just assume that $m(r,b_j) = S(r,f)$ for the coefficients $b_j(j = 1, 2, ..., l)$.

Definition 1.3. Let m be a positive integer. We denote by $N(r,a; f| \leq m)$ the counting function of those a-points of f whose multiplicities are not greater (less) than m, where each a-point is counted according to its multiplicity.

In a similar manner, we define $N(r,a; f| < m)$ and $N(r,a; f| > m)$.

Also $\overline{N}(r,a; f| \leq m)$, $\overline{N}(r,a; f| > m)$, and $\overline{N}(r,a; f| = m)$ are defined similarly, where in counting the a-points of f we ignore the multiplicities.

Finally, we agree to take $\overline{N}(r,a; f| = \infty) \equiv \overline{N}(r,a; f)$ and $N(r,a; f| \leq \infty) \equiv N(r,a; f)$.

Definition 1.4. For two meromorphic functions f, g and positive integer m, we denote by $N(r,a; f| g = b, > m)$ the counting function of those a-points of f, counted...
with proper multiplicities, which are the b-points of g with multiplicities greater than m.

Definition 1.5 (see [2]). Let m be a positive integer. We denote by $N_m(r, a; f)$ the counting function of a-points of f, where an a-point of multiplicity μ is counted μ times if $\mu \leq m$ and m times if $\mu > m$.

As the standard convention, we mean by $N(r, f)$ and $\overline{N}(r, f)$ the counting functions $N(r, \infty; f)$ and $\overline{N}(r, \infty; f)$, respectively.

Hayman [5] proved the following theorems.

Theorem 1.6. If f is a transcendental meromorphic function and $n \geq 5$ is a positive integer, then $\psi = f' - af^n$ assumes all finite values infinitely often.

Theorem 1.7. If f is a transcendental meromorphic function and $n \geq 3$ is a positive integer, then $\psi = f'f^n$ assumes all finite values, except possibly zero, infinitely often.

When f is transcendental, entire conclusions of Theorems 1.6 and 1.7 hold, respectively for $n \geq 3$ (cf. [5]) and $n \geq 1$ (cf. [3]).

To study the value distribution of differential polynomials Yang [7] proved the following results.

Theorem 1.8. Let f be a transcendental meromorphic function with $N(r, f) = S(r, f)$, and let $\psi = f^n + P[f]$, where $n \geq 2$ is an integer and $P[f]$ is a differential polynomial generated by f with $\gamma_P \leq n - 2$. Then $\delta(a; \psi) < 1$ for $a \neq 0, \infty$.

Theorem 1.9. Let f be a transcendental meromorphic function with $N(r, f) = S(r, f)$, and let $\psi = f^nP[f]$, where $n \geq 2$ is an integer and $P[f]$ is a differential polynomial generated by f. Then $\delta(a; \psi) < 1$ for $a \neq 0, \infty$.

Improving all the above results, Yi [9] proved the following theorem.

Theorem 1.10. Let f be a transcendental meromorphic function and $Q_1[f], Q_2[f]$ be two differential polynomials generated by f such that $Q_1[f] \not\equiv 0$, $Q_2[f] \not\equiv 0$, and $P[f] = \sum_{j=0}^{n} a_j f^j$ ($a_n \not\equiv 0$), where a_1, a_2, \ldots, a_n are small functions of f. If $F = P[f] Q_1[f] + Q_2[f]$, then

\[(n - \gamma_{Q_2}) T(r, f) \leq \overline{N}(r, 0; F) + \overline{N}(r, 0; P[f]) + (\Gamma_{Q_2} - \gamma_{Q_2} + 1) \overline{N}(r, f) + S(r, f). \tag{1.1}\]

In Theorem 1.10 we see that the influence of $Q_1[f]$ on the value distribution of F is ignored. In this paper, we show that Theorem 1.10 can further be improved if the influence of $Q_1[f]$ is taken into consideration. Throughout, we ignore zeros and poles of any small function of f because the corresponding counting function is absorbed in $S(r, f)$.

2. **Lemmas.** In this section, we present some lemmas which will be needed in the sequel.

Lemma 2.1 (see [4]). Let f be a nonconstant meromorphic function and $Q^{*}[f], Q[f]$ denote differential polynomials generated by f with arbitrary meromorphic coefficients
$q_1^*, q_2^*, \ldots, q_s^*$ and q_1, q_2, \ldots, q_t, respectively. Further let $P[f] = \sum_{j=0}^{n} a_j f^j$ ($a_n \neq 0$) and $y_Q \leq n$. If $P[f]Q^*[f] = Q[f]$, then

$$m(r,Q^*[f]) \leq \sum_{j=1}^{s} m(r,q_j^*) + \sum_{j=1}^{t} m(r,q_j) + S(r,f). \quad (2.1)$$

Lemma 2.2. Let $Q[f] = \sum_{j=1}^{l} b_j M_j[f]$ be a differential polynomial generated by f of order and lower degree k and y_Q, respectively. If z_0 is a zero of f with multiplicity μ ($> k$) and z_0 is not a pole of any of the coefficients b_j ($j = 1, 2, \ldots, l$), then z_0 is a zero of $Q[f]$ with multiplicity at least $(\mu - k)y_Q$.

Proof. Clearly z_0 is a zero of $M_j[f]$ with multiplicity

$$\mu n_{0j} + (\mu - 1) n_{1j} + \cdots + (\mu - k) n_{kj}$$

$$= \mu y_{M_j} - (\Gamma_{M_j} - y_{M_j}) = (\mu - k)y_{M_j} + (k + 1)\gamma_{M_j} - \Gamma_{M_j} \quad (2.2)$$

$$\geq (\mu - k)\gamma_{M_j} \geq (\mu - k)y_Q.$$

Since z_0 is assumed not to be a pole of the coefficients b_j ($j = 1, 2, \ldots, l$) we see that z_0 is a zero of $Q[f]$ with multiplicity at least $(\mu - k)y_Q$. This proves the lemma. \qed

Lemma 2.3 (see [1]). The following inequality holds:

$$N(r,P[f]) \leq y_P N(r,f) + (\Gamma_P - y_P) \overline{N}(r,f) + S(r,f). \quad (2.3)$$

Lemma 2.4 (see [7]). Let $P[f] = \sum_{i=0}^{n} a_i f^i$, where $a_n (\neq 0), a_{n-1}, \ldots, a_1, a_0$ are small functions of f. Then $m(r,P[f]) = n m(r,f) + S(r,f)$.

Lemma 2.5 (see [4]). If $Q[f]$ is a differential polynomial generated by f with arbitrary meromorphic coefficients q_j ($1 \leq j \leq n$), then

$$m(r,Q[f]) \leq y_Q m(r,f) + \sum_{j=1}^{n} m(r,q_j) + S(r,f). \quad (2.4)$$

Lemma 2.6 (see [8]). If $P[f]$ is as in Lemma 2.4, then $T(r,P[f]) = n T(r,f) + S(r,f)$.

3. The main result. In this section, we present the main result of the paper.

Theorem 3.1. Let f be a transcendental meromorphic function in the open complex plane, and $Q_1[f]$ ($\neq 0$), $Q_2[f]$ ($\neq 0$) be two differential polynomials generated by f such that k and y_{Q_1} be the order and lower degree of $Q_1[f]$, respectively and $P[f] = \sum_{i=0}^{n} a_i f^i$, where $a_n (\neq 0), a_{n-1}, \ldots, a_0$ are small functions of f. If

$$F = P[f]Q_1[f] + Q_2[f], \quad (3.1)$$

then

$$(n - y_{Q_2}) T(r,f) \leq N(r,0;F) + \overline{N}(r,0;P[f]) + (\Gamma_{Q_2} - y_{Q_2} + 1) \overline{N}(r,f)$$

$$- \gamma \{ N(r,0;f) - N_{k+1}(r,0;f) \} + S(r,f), \quad (3.2)$$

where $\gamma = y_{Q_1}$ if $n \geq y_{Q_2}$ and $\gamma = 0$ if $n < y_{Q_2}$.
Proof. If \(n < y_{Q_2} \), the theorem is obvious. So we suppose that \(n \geq y_{Q_2} \). Differentiating (3.1) we get

\[
F' = P'[f]Q_1[f] + P[f]Q'_1[f] + Q'_2[f],
\]

where \(P'[f] = (d/dz)P[f] \) and \(Q'_i[f] = (d/dz)Q_i[f] \) for \(i = 1, 2 \).

Multiplying (3.1) by \((F'/F)\), and substituting in (3.3) we get

\[
P[f]Q^*[f] = Q[f],
\]

where

\[
Q^*[f] = \left(\frac{F'}{F} - \frac{P'[f]}{P[f]}\right)Q_1[f] - Q'_1[f],
\]

\[
Q[f] = Q'_2[f] - \left(\frac{F'}{F}\right)Q_2[f].
\]

First we suppose that \(Q^*[f] \neq 0 \). By Lemma 2.1, it follows from (3.4) that \(m(r, Q^*[f]) = S(r, f) \) because \(y_2 = y_{Q_2} \leq n \).

Since \(P[f] = Q[f]/Q^*[f] \), we get by Lemma 2.5 and the first fundamental theorem

\[
m(r, P[f]) \leq m(r, Q^*[f]) + m(r, 0; Q^*[f])
\leq y_{Q_2}m(r, f) + m(r, Q^*[f]) + N(r, Q^*[f]) - N(r, 0; Q^*[f]) + S(r, f)
= y_{Q_2}m(r, f) + N(r, Q^*[f]) - N(r, 0; Q^*[f]) + S(r, f).
\]

So by Lemma 2.4

\[
(n - y_{Q_2})m(r, f) \leq N(r, Q^*[f]) - N(r, 0; Q^*[f]) + S(r, f).
\]

From (3.5) we see that possible poles of \(Q^*[f] \) occur at the poles of \(f \) and zeros of \(F \) and \(P[f] \). Also we note that the zeros of \(F \) and \(P[f] \) are at most simple poles of \(Q^*[f] \). Let \(z_0 \) be a pole of \(f \) with multiplicity \(\mu \). Then \(z_0 \) is a pole of \(Q[f] \) with multiplicity not exceeding \((\mu - 1)\gamma_{Q_2} + \Gamma_{Q_2} + 1 = \mu\gamma_{Q_2} + \Gamma_{Q_2} - y_{Q_2} + 1 \) and \(z_0 \) is a pole of \(P[f] \) with multiplicity \(n\mu \). Hence, from (3.4) it follows that \(z_0 \) is a pole of \(Q^*[f] \) with multiplicity not exceeding \(\mu\gamma_{Q_2} + \Gamma_{Q_2} - y_{Q_2} + 1 - n\mu = \Gamma_{Q_2} - y_{Q_2} + 1 - (n - y_{Q_2})\mu \).

Therefore

\[
N(r, Q^*[f]) \leq N(r, 0; F) + N(r, 0; P[f]) + (\Gamma_{Q_2} - y_{Q_2} + 1)N(r, f)
- (n - y_{Q_2})N(r, f) - S(r, f).
\]

Now we note that the order of the differential polynomial \(Q'_1[f] \) is \(k + 1 \). Let \(z_0 \) be a zero of \(f \) with multiplicity \(\mu > k + 1 \). Let \(y_{Q_1} \geq 1 \). Then by Lemma 2.2, we see that \(z_0 \) is a zero of \(Q_1[f] \) with multiplicity at least \((\mu - 1)\gamma_{Q_1} \). Also \(z_0 \) may be a pole of \((F'/F) - P'[f]/P[f]\) with multiplicity not exceeding 1. So \(z_0 \) is a zero of \((F'/F) - P'[f]/P[f]Q_1[f] \) with multiplicity at least \((\mu - k)\gamma_{Q_1} - 1 \).
Since the lower degree of $Q_1[f]$ is γ_{Q_1}, it follows from Lemma 2.2 that z_0 is a zero of $Q_1[f]$ with multiplicity at least $(\mu - k - 1)\gamma_{Q_1}$.

Therefore z_0 is a zero of $Q^*[f]$ with multiplicity at least $(\mu - k - 1)\gamma_{Q_1}$. Hence

$$N(r,0;Q^*[f])$$

$$\geq N(r,0;Q^*[f])|f = 0, > k + 1)$$

$$\geq y_{Q_1}N(r,0;f)|k + 1) - y_{Q_1}(k + 1)N(r,0;f > k + 1) + S(r,f)$$

$$= y_{Q_1}N(r,0;f) - y_{Q_1}[N(r,0;f) \leq k + 1) + (k + 1)N(r,0;f > k + 1) + S(r,f).$$

(3.10)

So

$$N(r,0;Q^*[f]) \geq y_{Q_1}[N(r,0;f) - N_{k+1}(r,0;f)] + S(r,f).$$

(3.11)

If $y_{Q_1} = 0$, inequality (3.11) obviously holds. Now from (3.8), (3.9), and (3.11) we get

$$(n - y_{Q_2})T(r,f) \leq N(r,0;f) + N(r,0;P[f]) + (I_{Q_2} - y_{Q_2} + 1)N(r,f)$$

$$- y_{Q_1}[N(r,0;f) - N_{k+1}(r,0;f)] + S(r,f).$$

(3.12)

Next we suppose that $Q^*[f] = 0$. Then from (3.4) it follows that $Q[f] = 0$, and so using (3.1) we get $P[f]Q_1[f] = cQ_2[f]$, where c is a nonzero constant. Then in a similar line of calculation for inequalities (3.8), (3.9), and (3.11) we get

$$(n - y_{Q_2})m(r,f) \leq N(r,Q_1[f]) - N(r,0;Q_1[f]) + S(r,f),$$

$$N(r,Q_1[f]) \leq (I_{Q_2} - y_{Q_2} + 1)N(r,f) - (n - y_{Q_2})N(r,f) + S(r,f),$$

(3.13)

$$N(r,0;Q_1[f]) \geq y_{Q_1}[N(r,0;f) - N_{k+1}(r,0;f)] + S(r,f).$$

Now from (3.13) we get

$$(n - y_{Q_2})T(r,f) \leq N(r,0;f) + N(r,0;P[f]) + (I_{Q_2} - y_{Q_2} + 1)N(r,f)$$

$$- y_{Q_1}[N(r,0;f) - N_{k+1}(r,0;f)] + S(r,f).$$

(3.14)

This proves the theorem.

\[\square\]

Remark 3.2. The following example shows that Theorem 3.1 is sharp.

Example 3.3. Let $f = e^2 - 2$, $P[f] = f + 2$, $Q_1[f] = f$, and $Q_2[f] = 1$. Then $F = P[f]Q_1[f] + Q_2[f] = (e^{z - 1})^2$ and $k = 0$, $y_{Q_1} = 1$, $y_{Q_2} = 0$, $n = 1$. Also we see that

$$(n - y_{Q_2})T(r,f) = N(r,0;f) + N(r,0;P[f]) + (I_{Q_2} - y_{Q_2} + 1)N(r,f)$$

$$- y_{Q_1}[N(r,0;f) - N_{k+1}(r,0;f)] + S(r,f).$$

(3.15)

4. Applications. As applications of Theorem 1.10, Yi [9] proved the following theorems which improve Theorems 1.8 and 1.9.
Theorem 4.1. Let \(f \) be a transcendental meromorphic function and \(Q_1[f] (\neq 0), Q_2[f] (\neq 0) \) be two differential polynomials generated by \(f \). Let \(F = f^n Q_1[f] + Q_2[f] \) and

\[
\limsup_{r \to \infty} \frac{N(r,0;f) + (\Gamma_{Q_2} - \gamma_{Q_2} + 1)N(r,f)}{T(r,f)} < n - \gamma_{Q_2}.
\]

Then \(\Theta(a;F) < 1 \) for any small function \(a (\neq \infty, Q_2[f]) \) of \(f \).

Theorem 4.2. Let \(F = f^n Q[f] \), where \(Q[f] \) is a differential polynomial generated by \(f \) and \(Q[f] \neq 0 \). If

\[
\limsup_{r \to \infty} \frac{N(r,0;f) + N(r,f)}{T(r,f)} < n,
\]

then \(\Theta(a;F) < 1 \), where \(a (\neq 0, \infty) \) is a small function of \(f \).

Considering the following examples, Yi [9] claimed that Theorems 4.1 and 4.2 are sharp.

Example 4.3. Let \(f = (e^{4z} + 1)/(e^{4z} - 1) \), \(Q_1[f] = 1 \), \(Q_2[f] = f' - 1 \), and \(F = f^4 Q_1[f] + Q_2[f] \). Then \(n = 4 \), \(\gamma_{Q_2} = 1 \), \(\Gamma_{Q_2} = 2 \), and

\[
\limsup_{r \to \infty} \frac{N(r,0;f) + (\Gamma_{Q_2} - \gamma_{Q_2} + 1)N(r,f)}{T(r,f)} = n - \gamma_{Q_2}.
\]

Also we see that \(\Theta(0;F) = 1 \).

Example 4.4. Let \(f = (e^{2} - 1)/(e^{2} + 1) \), \(Q_1[f] = 1 \), \(F = f^n Q_1[f] \), where \(n = 2 \). It is easy to verify that

\[
\limsup_{r \to \infty} \frac{N(r,0;f) + N(r,f)}{T(r,f)} = n
\]

and \(\Theta(1;F) = 1 \).

The following examples suggest that some improvements of Theorems 4.1 and 4.2 are possible.

Example 4.5. Let \(f = ((e^{2} - 1)/(e^{2} + 1))^2 \), \(Q_1[f] = f \), \(Q_2[f] = 1 \), and \(F = f^2 Q_1[f] + Q_2[f] \). Then \(n = 1 \), \(\gamma_{Q_1} = 1 \), \(\gamma_{Q_2} = 0 \), \(\Gamma_{Q_2} = 0 \), and the order of the differential polynomial \(Q_1[f] \) is zero. Clearly

\[
\limsup_{r \to \infty} \frac{N(r,0;f) + (\Gamma_{Q_2} - \gamma_{Q_2} + 1)N(r,f)}{T(r,f)} = n - \gamma_{Q_2}.
\]

Also we see that \(\Theta(1;F) = \Theta(\infty;F) = 3/4 \), \(\Theta(2;F) = 1/2 \) and so, by Nevanlinna’s three small functions theorem (cf. [6, page 47]), \(\Theta(a;F) \leq 2 - 3/4 - 1/2 = 3/4 \) for any small function \(a (\neq 1, 2, \infty) \). However, we note that

\[
\limsup_{r \to \infty} \frac{N(r,0;f) \leq 1 + (\Gamma_{Q_2} - \gamma_{Q_2} + 1)N(r,f)}{T(r,f)} = \frac{1}{2} < n - \gamma_{Q_2}.
\]
Example 4.6. Let \(f = \frac{(e^z - 1)/(e^z + 1))^2}{f} \), \(Q[f] = f \), and \(F = fQ[f] \). Then \(n = 1 \), \(\gamma_Q = 1 \), and the order of the differential polynomial \(Q[f] \) is zero. Clearly

\[
\limsup_{r \to \infty} \frac{N(r,0;f) + N(r,f)}{T(r,f)} = n
\]

(4.7)

and \(\Theta(a,F) < 1 \) for any small function \(a \) of \(f \). We note that

\[
\limsup_{r \to \infty} \frac{N(r,0;f) \leq 1 + N(r,f)}{T(r,f)} = \frac{1}{2} < n.
\]

(4.8)

The following two theorems improve Theorems 4.1 and 4.2.

Theorem 4.7. Let \(f \) be a transcendental meromorphic function and \(Q_1[f], Q_2[f] \) be two differential polynomials generated by \(f \) which are not identically zero. Let \(F = f^n Q_1[f] + Q_2[f] \). If

\[
\limsup_{r \to \infty} \frac{N(r,0;f) \leq \chi_{Q_1} + (\Gamma_{Q_2} - \gamma_{Q_2} + 1)N(r,f)}{T(r,f)} < n - \gamma_{Q_2},
\]

(4.9)

then \(\Theta(a,F) < 1 \) for any small function \(a \) \((\not\equiv \infty, Q_2[f]) \) of \(f \), where

\[
\chi_{Q_1} = \begin{cases} 1 + k & \text{if } \gamma_{Q_1} \geq 1, \\ \infty & \text{if } \gamma_{Q_1} = 0, \end{cases}
\]

(4.10)

and \(k \) is the order of the differential polynomial \(Q_1[f] \).

Theorem 4.8. Let \(f \) be a transcendental meromorphic function and \(Q[f] \) \((\not\equiv 0)\) be a differential polynomial generated by \(f \). If \(F = f^n Q[f] \) and

\[
\limsup_{r \to \infty} \frac{N(r,0;f) \leq \chi_Q + N(r,f)}{T(r,f)} < n,
\]

(4.11)

then \(\Theta(a,F) < 1 \) for every small function \(a \) \((\not\equiv 0, \infty)\) of \(f \), where

\[
\chi_Q = \begin{cases} 1 + k & \text{if } \gamma_Q \geq 1, \\ \infty & \text{if } \gamma_Q = 0, \end{cases}
\]

(4.12)

and \(k \) is the order of the differential polynomial \(Q[f] \).

Remark 4.9. Theorem 4.7 improves Theorems 1.8 and 4.1, and Theorem 4.8 improves Theorems 1.9 and 4.2.

Remark 4.10. The following examples show that Theorems 4.7 and 4.8 are sharp.

Example 4.11. Let \(f = e^z - 1, Q_1[f] = f' - f, Q_2[f] = 2f', \) and \(F = f^2 Q_1[f] + Q_2[f] \). Then \(n = 2, k = 1, \Gamma_{Q_2} = 2, \gamma_{Q_2} = 1, \) and

\[
\limsup_{r \to \infty} \frac{N(r,0;f) \leq 2 + (\Gamma_{Q_2} - \gamma_{Q_2} + 1)N(r,f)}{T(r,f)} = n - \gamma_{Q_2}.
\]

(4.13)

Also we see that \(\Theta(1,F) = 1 \).
Example 4.12. Let $f = e^z + 1$, $Q[f] = f - f'$, and $F = f Q[f]$. Then $\gamma_Q = 1$, $k = 1$, $n = 1$, and
\[
\limsup_{r \to \infty} \frac{\overline{N}(r,0;f) \leq 2 + \overline{N}(r,f)}{T(r,f)} = n.
\] (4.14)

Also we see that $\Theta(1;F) = 1$.

As other applications of Theorem 3.1, we obtain the following results which improve Theorems 1.6 and 1.7.

Theorem 4.13. Let f be a transcendental meromorphic function, and $F = f' - af^n$, where $a \neq 0$ is a small function of f. If $n \geq 5$ is an integer, then $\Theta(b;F) \leq 4/n$ for any small function b of f.

Theorem 4.14. Let f be a transcendental meromorphic function. If $F = f^n f'$ and $n \geq 3$ is an integer, then $\Theta(a;F) \leq 4/(n+2)$ for any small function a of f.

We prove Theorems 4.8 and 4.14 only.

Proof of Theorem 4.8. First we treat the case $\gamma_Q \geq 1$. Then by Theorem 3.1 we get
\[
nT(r,f) \leq \overline{N}(r,a;F) + \overline{N}(r,0;P[f]) + \overline{N}(r,f) - \gamma_Q \left(N(r,0;f) - Nk+1(r,0;f) \right) + S(r,f)
\]
\[
\leq \overline{N}(r,a;F) + \overline{N}(r,0;f) - N(r,0;f) + Nk+1(r,0;f) + \overline{N}(r,f) + S(r,f),
\] (4.15)

that is,
\[
nT(r,f) \leq \overline{N}(r,a;F) + \overline{N}(r,0;f) \leq k+1 + \overline{N}(r,f) + S(r,f).
\] (4.16)

Now we treat the case $\gamma_Q = 0$. Then from Theorem 3.1 we get
\[
nT(r,f) \leq \overline{N}(r,a;F) + \overline{N}(r,0;f) + \overline{N}(r,f) + S(r,f).
\] (4.17)

Combining (4.16) and (4.17), we obtain
\[
nT(r,f) \leq \overline{N}(r,a;F) + \overline{N}(r,0;f) \leq \chi_Q + \overline{N}(r,f) + S(r,f)
\] (4.18)

from which the theorem follows.

Proof of Theorem 4.14. Proceeding in the line of the proof of Theorem 4.8 we get
\[
nT(r,f) \leq \overline{N}(r,a;F) + \overline{N}(r,0;f) \leq k+1 + \overline{N}(r,f) + S(r,f),
\] (4.19)

that is,
\[
(n-2)T(r,f) \leq \overline{N}(r,a;F) + S(r,f).
\] (4.20)
Now by Lemmas 2.3 and 2.5 we see that

$$T(r,F) \leq (n+2)T(r,f) + S(r,f). \quad (4.21)$$

If possible let $\Theta(a;F) > 4/(n+2)$. Then there exists an $\varepsilon > 0$ such that for all large values of r

$$N(r,a;F) < \left(\frac{n-2}{n+2} - \varepsilon\right)T(r,F). \quad (4.22)$$

From (4.20), (4.21), and (4.22) we get

$$\varepsilon(n+2)T(r,f) \leq S(r,f), \quad (4.23)$$

which is a contradiction. This proves the theorem. \hfill \Box

References

Indrajit Lahiri: Department of Mathematics, University of Kalyani, West Bengal 741235, India
E-mail address: indrajit@cal2.vsnl.net.in
Special Issue on
Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk