ON ALMOST PERIODIC SOLUTIONS OF THE DIFFERENTIAL EQUATION $x''(t) = Ax(t)$ IN HILBERT SPACES

GASTON M. N’GUEREKATA

(Received 31 January 2001)

Abstract. We prove almost periodicity of solutions of the equation $x''(t) = Ax(t)$ when the linear operator A satisfies an inequality of the form $\text{Re}(Ax,x) \geq 0$.

2000 Mathematics Subject Classification. 34G10, 34K14.

1. Introduction. Let H be a Hilbert space equipped with norm $\| \cdot \|$ and scalar product (\cdot, \cdot). Almost periodic functions (in Bochner’s sense) are continuous functions $f : \mathbb{R} \rightarrow H$ such that for every $\epsilon > 0$, there exists a positive real number l such that every interval $[a, a + l]$ contains at least a point τ such that

$$\sup_{t \in \mathbb{R}} \| f(t + \tau) - f(t) \| < \epsilon. \quad (1.1)$$

The Bochner’s criterion (cf. [1, 3, 4]) states that a function $f : \mathbb{R} \rightarrow H$ is almost periodic if and only if for every sequence of real numbers $(\sigma_n)_{n=1}^\infty$ there exists a subsequence $(s_n)_{n=1}^\infty$ such that $(f(t + s_n))_{n=1}^\infty$ is uniformly convergent in $t \in \mathbb{R}$.

We proved in [2] that if $A = A_+ + A_-$, where A_+ is a symmetric linear operator and A_- is a skew-symmetric linear operator such that $\text{Re}(A_+ x, A_- x) \geq -c \| A_+ x \|^2$ for every $x \in H$, then every solution of $x'(t) = Ax(t)$, $t \in \mathbb{R}$, with a relatively compact range in H is almost periodic.

In this note, we use the technique described in [2] to prove similar results for some classes of linear differential equation of second order $x''(t) = Ax(t)$.

2. Main results

Theorem 2.1. Assume that the linear operator A satisfies the inequality of the form $\text{Re}(Ax,x) \geq 0$, for any $x \in H$. Then solutions of the differential equation

$$x''(t) = Ax(t), \quad t \in \mathbb{R}, \quad (2.1)$$

(that are functions $x(t) \in C^2(\mathbb{R}, H)$) with relatively compact ranges in H, are almost periodic.

Proof. Consider $x(t)$ a solution of (2.1) with a relatively compact range in H and let $\phi : \mathbb{R} \rightarrow \mathbb{R}$ be defined by $\phi(t) = \| x(t) \|^2$. Then ϕ is a bounded function over \mathbb{R}.
Moreover, for every \(t \in \mathbb{R} \), we have
\[
\phi'(t) = (x'(t), x(t)) + (x(t), x'(t)),
\]
\[
\phi''(t) = 2[||x'(t)||^2 + \text{Re}(Ax(t), x(t))]
\geq 0,
\]
which shows that \(\phi \) is a convex function over \(\mathbb{R} \), therefore it is constant
\[
\phi(t) = \phi(0), \quad \forall \ t \in \mathbb{R},
\]
or
\[
||x(t)|| = ||x(0)||, \quad \forall \ t \in \mathbb{R}.
\]
We fix \(s \in \mathbb{R} \) and consider the function \(y_s(\cdot) : \mathbb{R} \rightarrow H \) defined by
\[
y_s(t) = x(t + s).
\]
Then \(y_s(t) \) obviously satisfies (2.1). Now fix \(s_1 \) and \(s_2 \) in \(\mathbb{R} \). Then \(y_{s_1}(t) - y_{s_2}(t) \) also satisfies (2.1); therefore we have
\[
||y_{s_1}(t) - y_{s_2}(t)|| = ||y_{s_1}(0) - y_{s_2}(0)||, \quad \forall \ t \in \mathbb{R},
\]
which gives
\[
||x(t + s_1) - x(t + s_2)|| = ||x(s_1) - x(s_2)||, \quad \forall \ t \in \mathbb{R}.
\]
Let \((\sigma_n)_{n=1}^{\infty} \) be a sequence of real numbers. Then by relative compactness of \(x(t) \), there exists a subsequence \((s_n)_{n=1}^{\infty} \subset (\sigma_n)_{n=1}^{\infty} \) such that \((x(s_n))_{n=1}^{\infty} \) is Cauchy. Hence for any given \(\epsilon > 0 \), there exists \(N \) such that if \(n, m > N \), then
\[
||x(s_n) - x(s_m)|| < \epsilon.
\]
Consequently,
\[
\sup_{t \in \mathbb{R}} ||x(t + s_n) - x(t + s_m)|| < \epsilon.
\]
We conclude that \(x(t) \) is almost periodic by the Bochner's criterion.

Remark 2.2. Examples of such problem occur when \(A \) is a positive or monotone linear operator.

References

Gaston M. N’Guerekata: Department of Mathematics, Morgan State University, Baltimore, MD 21251, USA

E-mail address: gnguerek@morgan.edu
Special Issue on
Intelligent Computational Methods for
Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Computational methods**: artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management

- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk