STEADY STATE RESPONSE OF A NONLINEAR SYSTEM

SUDHANSHU B. KARMAKAR
Western Electric Company
Whippany, New Jersey 07981 U.S.A.

(Received November 1, 1979)

ABSTRACT. This paper presents a method of the determination of the steady state response for a class of nonlinear systems. The response of a nonlinear system to a given input is first obtained in the form of a series solution in the multidimensional frequency domain. Conditions are then determined for which this series solution will converge. The conversion from multidimensions to a single dimension is then made by the method of association of variables, and thus an equivalent linear model of the nonlinear system is obtained. The steady state response is then found by any technique employed with linear system.

KEYWORDS AND PHRASES. Association of variables, Multidimensional frequency domain, Nonlinear transfer function.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES: 34-00, 34A45.

1. INTRODUCTION.

This paper considers a nonlinear system described by the equation of the form
\[L y + a_3 y^3 + a_5 y^5 = x(t) \] \hspace{1cm} (1.1)

\(L \) is a linear operator defined as

\[L(s) = b_n s^n + b_{n-1} s^{n-1} + \ldots + b_0 \]

\(a_3, a_5, b_n \) are constants. \(x(t) \) is the input to the nonlinear system and \(y(t) \) is the response to it. Many physical systems encountered in practice can be related to above kind of equation. We shall investigate the conditions under which a bounded input to the system will produce a bounded output. This will lead to the stability conditions of the above type of nonlinear system.

2. \textbf{ANALYSIS OF A NONLINEAR SYSTEM}

Equation (1.1) can be viewed as follows: Volterra [1] has shown that the response \(y(t) \) can be represented as some functional of the input \(x(t) \). The following functional expansion was suggested:

\[y(t) = \int h_1(t-\tau_1)x(\tau_1)d\tau_1 + \int \int h_2(t-\tau_1, t-\tau_2)x(\tau_1)x(\tau_2)d\tau_1d\tau_2 + \ldots \] \hspace{1cm} (2.1)

We assume a causal system, i.e., \(x(t) = 0 \) for \(t < 0 \). The limits of integrations are \([0, \infty)\). Let

\[y_n(t) = \int \ldots \int h_n(t-\tau_1 \ldots t-\tau_n)x(\tau_1)x(\tau_2)\ldots x(\tau_n)d\tau_1d\tau_2 \ldots d\tau_n \]

Then equation (2.1) can be written as

\[y(t) = \sum_{n=1}^{\infty} y_n(t) \] \hspace{1cm} (2.2)

\(h_1(t-\tau_1) \) is the 1st order Volterra Kernel and \(h_n(t-\tau_1 \ldots t-\tau_n) \) is the nth order Volterra Kernel.
3. **DETERMINATION OF THE VOLterra KERNELS**

By applying the technique or reversion of algebraic series [2] from (1.1) we get

\[
y = L^{-1}x - a_3L^{-1}(L^{-1}x)^3 + L^{-1}\left\{3a_3^2L^{-1}(L^{-1}x)^5 - a_5(L^{-1}x)^5\right\} + \quad (3.1)
\]

It is clearly understood that \(x\) and \(y\) are both functions of time \(t\). Let us define

\[
L^{-1}x \equiv \int h(t-\tau)x(\tau)d\tau \quad (3.2)
\]

where \(h(t)\) is the impulse response of the linear part of the system. Hence from (2.2)

\[
y_1 = \int h(t-\tau)x(\tau)d\tau
\]

\[
y_3 = -a_3L^{-1}\left(\int h(t-\tau)x(\tau)d\tau\right)^3
\]

\[
= -a_3L^{-1}\int\int h(t-\tau_1)h(t-\tau_2)h(t-\tau_3)x(\tau_1)x(\tau_2)x(\tau_3)d\tau_1d\tau_2d\tau_3
\]

\[
= -a_3\int\int\int h(t-u)h(u-\tau_1)h(u-\tau_2)h(u-\tau_3)x(\tau_1)x(\tau_2)x(\tau_3)d\tau_1d\tau_2d\tau_3du
\]

Similarly

\[
y_5 = 3a_3^2\int\ldots\int h(t-v)h(v-u)h(u-\tau_1)\ldots h(u-\tau_5)x(\tau_1)\ldots x(\tau_5)d\tau_1\ldots d\tau_5dv
\]

\[
- a_5\int\ldots\int h(t-u)h(u-\tau_1)\ldots h(u-\tau_5)x(\tau_1)\ldots x(\tau_5)d\tau_1\ldots d\tau_5du.
\]
Hence by comparing (2.1) and (2.2)

\[h_1(t-\tau) = h(t-\tau) \]
\[h_2(t-\tau_1, t-\tau_2) = 0 \]
\[h_3(t-\tau_1, t-\tau_2, t-\tau_3) = -a_3 \int h(t-u)h(u-\tau_1)h(u-\tau_2)h(u-\tau_3)du \]
\[h_4(t-\tau_1...t-\tau_4) = 0 \]
\[h_5(t-\tau_1...t-\tau_5) = 3a_3^2 \int \int h(t-u)h(v-u)h(u-\tau_1)...h(u-\tau_5)du dv \]
\[-a_5 \int h(t-u)h(u-\tau_1)...h(u-\tau_5)du. \]

Higher order kernels can thus be determined by expanding further the equation (3.1).

4. CONVERGENCY OF THE FUNCTIONAL EXPANSION

Let

\[\max_{0 < t \leq \infty} |x(t)| \leq X \]

\[y_1 \leq \int |h(t-\tau)||x(\tau)|d\tau \leq \int |h(t)|d\tau \cdot X = HX \]

where

\[\int |h(t)|dt = H < \infty \]

\[y_3 \leq |a_3| \int |h(t-\tau_1)||x(\tau_1)|d\tau_1 \int |h(t-\tau_2)||x(\tau_2)|d\tau_2 \int |h(t-\tau_3)||x(\tau_3)|d\tau_3 \int |h(t-u)|du. \]

or

\[y_3 \leq |a_3| \left(\int |h(t)|d\tau \right)^4 X^3 = |a_3| H^4 X^3 \]
Similarly

\[y_5 \leq (3a_3^2 H + |a_5|)H^6X^5 \]

Let

\[Y = HX + |a_3|H^4X^3 + (3a_3^2 H + |a_5|)H^6X^5 \] (4.1)

Hence

\[|y_1| < |Y_1| \]

Again by applying the technique of reversion of series [3] it is easy to show that (4.1) is the solution of (4.2)

\[Y = HX + H\left(|a_3|Y^3 + |a_5|Y^5\right) \] (4.2)

and

\[X = \frac{1}{H} Y - |a_3|Y^3 - |a_5|Y^5 \] (4.3)

Let \(X = X_1 \) and \(Y = Y_1 \) corresponding to the value \(\frac{dy}{dX} = \infty \). Hence if \(0 < X \leq X_1 \) then \(0 < Y \leq Y_1 \). Therefore in this above region a bounded input will produce a bounded output. \(Y_1 \) can be determined from

\[5H|a_5|Y_1^4 + 3H|a_3|Y_1^2 - 1 = 0 \] (4.4)

corresponding to

\[\frac{dy}{dX} = \infty \]

or

\[Y_1^2 = \frac{-3H|a_3| \pm \sqrt{9H^2a_3^2 + 20H|a_5|}}{10H|a_5|} \] (4.5)
considering only the positive value of \(Y_1^2 \), \(Y_1 \) is found from \(Y_1 = \sqrt{Y_1^2} \).

From (4.3)

\[
X_1 = \frac{1}{H} Y_1 = |a_3^2| Y_1^3 - |a_5^2| Y_1^5
\] (4.6)

Therefore for \(x(t) < X_1 \), the functional expansion (2.1) will be convergent.

REMARKS:

With the assumed solution of equation (1.1)

\[
y(t) = \sum_{n=1}^{\infty} \left[... \int h_n(\tau_1, \tau_2, ..., \tau_n) x(t-\tau_1)...x(t-\tau_n) d\tau_1...d\tau_n \right]
\]

\[
Y = \sum_{n=1}^{\infty} C_n X^n
\]

where

\[
C_n = \left[... \int |h(\tau_1, \tau_2, ..., \tau_n)| d\tau_1...d\tau_n \right]
\]

And for the time invariant system, \(C_n \) is independent of time [3] which has the radius of convergence \(X_1 \), which in turn implies the convergence of the Volterra series (2.1) for

\[
\max|x(t)| < X_1
\]

\[
0 < t < \infty
\]

5. **REVIEW OF MULTIDIMENSIONAL TRANSFORM.**

As an analogy to the linear system, the nth order transform of a nonlinear system [4] is defined to be

\[
H_n(s_1, s_2, ..., s_n) = \left[... \int h_n(\tau_1, \tau_2, ..., \tau_n) \exp[-s_1 \tau_1 + s_2 \tau_2 + ... + s_n \tau_n] d\tau_1...d\tau_n \right] (5.1)
\]
One method of determining $H_n(s_1, s_2, ..., s_n)$ is the harmonic input method [5]. When the system described by (1.1) is excited with a set of n unit amplitude exponentials at the noncommensurate frequencies $s_1, s_2, ..., s_n$

$$x(t) = \exp(s_1t) + \exp(s_2t) + ... + \exp(s_n t) \quad (5.2)$$

the output will contain exponential components of the form

$$y(t) = \sum_{n=1}^{\infty} \sum_{M} \frac{H_n(s_1, s_2, ..., s_n)}{m_1! m_2! ... m_n!} \exp(m_1 s_1 + m_2 s_2 + ... + m_n s_n) \quad (5.3)$$

while M under the summation indicates that for each n the sum is to be taken over all distinct values of m_n where $1 \leq m_1 \leq m_2 \leq ... \leq m_n$ such that $m_1 + m_2 + ... + m_n = n$.

Thus to determine $H_n(s_1, s_2, ..., s_n)$ we substitute the values of $x(t)$ and $y(t)$ from (5.2) and (5.3), respectively, in the system equation (1.1) and equate the coefficients of

$$n! \exp(s_1 + s_2 + ... + s_n)t$$

By substituting the values of $y(t)$ and $x(t)$ from (5.3) and (5.2), respectively, in (1.1) the first three nonzero transfer functions are found to be:

$$H_1(s_1) = \frac{1}{L(s_1)} \quad (5.4)$$

$$H_3(s_1, s_2, s_3) = \frac{-a_3}{L(s_1 + s_2 + s_3) L(s_1) L(s_2) L(s_3)} \quad (5.5)$$

$$H_5(s_1, s_2, s_3, s_4) = \frac{a_5}{L(s_1 + s_2 + s_3 + s_4) L(s_1) L(s_2) L(s_3) L(s_4) L(s_5)}$$

$$+ \frac{a_5}{L(s_1 + s_2 + s_3 + s_4) L(s_1) L(s_2) L(s_3) L(s_4)} \quad (5.6)$$
Let A mean associate variables s_1, s_2, \ldots, s. Then

$$Y(s) = H_1(s)X(s) + A[H_3(s_1, s_2, s_3)X(s_1)X(s_2)X(s_3)] + A[H_5(s_1, s_3)X(s_1)X(s_3) + \ldots]$$

Now by applying the Final Value Theorem we get

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s)$$

Subject to the convergency of (2.1) it is often enough to consider the first two nonzero terms of (5.7) to represent the system in the frequency domain.

6. EXAMPLE.

We consider a nonlinear system of the form (1.1) whose linear transfer function is given by

$$\frac{1}{L(s)} = H(s) = \frac{1}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

Let its impulse response be $h(t)$.

It is easy to see for $\zeta \leq 0$, $\int |h(t)|dt = H$ is unbounded. Hence the Volterra series expansion (2.1) will be divergent, and the system will not have any bounded steady state response. If $\zeta \geq 1$ it is easy to evaluate $\int |h(t)|dt$ since $s^2 + 2\zeta \omega_n^2 + \omega_n^2 = 0$ will have real roots. If H is bounded, convergency of the Volterra series can further be investigated. If $0 < \zeta < 1$ the evaluation of H is a little more involved.

For $0 < \zeta < 1$

$$h(t) = \frac{-\zeta \omega_n t}{\omega_n \sqrt{1-\zeta^2}} \sin\left(\omega_n \sqrt{1-\zeta^2} \right) t$$ [7]

Let

$$\alpha = \zeta \omega_n, \quad \beta = \omega_n \sqrt{1-\zeta^2}$$
hence

\[h(t) = \frac{e^{-at}}{\beta} \sin \beta t \]

We consider the integral

\[H' = \int e^{-at} |\sin \beta t| \, dt \]

Now

\[\int e^{ax} \sin px \, dx = \frac{e^{ax}(a \sin px - p \cos px)}{a^2 + p^2} \]

\[\sin \beta t < 0 \text{ in the intervals } \{ \beta \pi, \frac{2\pi}{\beta} \}, \{ \frac{3\pi}{\beta}, \frac{4\pi}{\beta} \}, \{ \frac{5\pi}{\beta}, \frac{6\pi}{\beta} \}, \text{ etc. Hence} \]

\[H' = \frac{\beta}{a^2 + \beta^2} \left[\left\{ e^0 + e^{-m} \right\} + \left\{ e^{-m} + e^{-2m} \right\} + \left\{ e^{-2m} + e^{-3m} \right\} + \ldots \right] \]

\[= \frac{\beta}{a^2 + \beta^2} \left[2e^0 + 2e^{-m} + 2e^{-2m} + \ldots - e^0 \right]; \quad m = \frac{a\pi}{\beta} \]

\[H' = \frac{\beta}{a^2 + \beta^2} \left[\frac{2}{1 - e^{-n}} - 1 \right] = \frac{\beta}{a^2 + \beta^2} \cdot \frac{1 + e^{-m}}{1 - e^{-m}} \]

Now \(-\coth(-u) = \coth u = \frac{1 + e^{-2u}}{1 - e^{-2u}}, \text{ hence} \]

\[H' = \frac{\beta}{a^2 + \beta^2} \coth \left(\frac{m}{2} \right) \]

Therefore,

\[H = \frac{1}{\omega_n} \coth \left(\frac{\pi \zeta}{2\sqrt{1 - \zeta^2}} \right) \]
As a numerical example we consider the following system:

\[\ddot{y} + \dot{y} + 3y + \tanh y = A \cos \omega t \] \hspace{1cm} (6.1)

By expanding \(\tanh y \) and by retaining the first three terms we get

\[\ddot{y} + \dot{y} + \tfrac{1}{4}y - \tfrac{1}{3}y^3 + \tfrac{2}{15}y^5 = A \cos \omega t \] \hspace{1cm} (6.2)

The above approximation is quite valid if \(y < 1 \). Here

\[\zeta = \tfrac{1}{4}, \quad \omega_n = 2 \]

Hence

\[H = \frac{1}{4} \coth \left(\frac{\pi \times 0.25}{2 \times 0.96825} \right) = 0.64984 \]

\[y_1^2 = \frac{-3 \times 0.64984 \times \frac{1}{3} \pm \sqrt{9 \times (0.64984)^2 \cdot \frac{1}{9} + 20 \times 0.64984 \times \frac{2}{15}}}{10 \times 0.64984} \]

\[= +0.94432 \text{ hence } y_1 = 0.9717658 \]

\[x_1 = \frac{0.9717658}{0.64984} - \frac{1}{3} (0.9717658)^3 - \frac{2}{15} (0.9717658)^5 \]

\[= 1.07395 - 0.30588 - 0.11554 = 1.07395 \]

Hence the system will have a steady response for \(|A \cos \omega t| < 1.07395 \). Response of the linear part \(= \lim_{s \to 0} \frac{1}{s} \cdot \frac{A^2}{s^2 + s + 4} = 0 \). It is not necessary to determine the response of the nonlinear parts because being convergent, the other terms of the Volterra expansion can not exceed in absolute value of the linear term. Hence the system will be stable for \(|x(t)| < |1.07395 \cos \omega t| \). If \(x(t) = A \), then for \(A < 1.07309 \), the approximate value of the steady state response is given by
In order to determine \(y_3(t) \) we first obtain \(Y_3(s_1, s_2, s_3) \)

\[
Y_3(s_1, s_2, s_3) = H_3(s_1, s_2, s_3)X(s_1)X(s_2)X(s_3)
\]

From (5.5)

\[
Y_3(s_1, s_2, s_3) = -\frac{a_3}{L(s_1 + s_2 + s_3) L(s_1) L(s_2) L(s_3)} \frac{A^3}{s_1 s_2 s_3}
\]

Where

\[
L(s) = s^2 + 2\zeta_n s + \omega_n^2
\]

Now by the technique of association of variables \([7, 8, 9]\) \(Y_3(s_1, s_2, s_3) \) is translated in one frequency domain, thus we obtain

\[
Y_3(s) = -\frac{A^3 a_3}{(s^2 + 2\zeta_n s + \omega_n^2)} \left[\frac{1}{\omega_n^2 (s^2 + 2\zeta_n s + \omega_n^2)} + \frac{1}{A_1} + \cdots + \frac{1}{A_8} \right]
\]

\(\frac{1}{A_1}, \frac{2}{A_2}, \ldots, \frac{1}{A_8} \) are functions of \((s, t, \omega_n)\) but do not contain any factor of the form \(\frac{1}{s} \). Hence

\[
\lim_{t \to \infty} y_3(t) = \lim_{t \to \infty} \frac{sa^3}{s^2 + 2\zeta_n s + \omega_n^2} \cdot \frac{1}{\omega_n^2 (s^2 + 2\zeta_n s + \omega_n^2)} + \lim_{s \to 0} \left(\frac{1}{A_1} + \cdots + \frac{1}{A_8} \right)
\]
The steady state response of the system is approximately given by

\[y_{ss} = \frac{A}{\omega_n} \left(1 - \frac{A a_3}{\omega_n^3}\right) \]

For

\[a_3 = -\frac{1}{3}, \quad \omega_n^2 = 4, \quad A = 1 \]

\[y_{ss} = \frac{1}{4} \left(1 + \frac{1}{3.64}\right) = \frac{1}{4} + \frac{1}{768} \]

If \(x(t) = \delta(t) \). Again by associating the variables \([8]\) we get

\[y_{ss} = \lim_{s \to \infty} \frac{s}{s^2 + 2\zeta\omega_n s + \omega_n^2} + \lim_{s \to \infty} \left(\frac{1}{B_1} + \frac{1}{B_2} + \frac{1}{B_3}\right) = 0 \]

Since \(\frac{1}{B_1}, \frac{1}{B_2}, \frac{1}{B_3} \) do not contain any factor of the form \(\frac{1}{s} \).

ACKNOWLEDGMENT: The author gratefully acknowledges the assistance offered to him by Prof. J. F. Barrett, Department of Mathematics, Eindhoven University of Technology, The Netherlands.

REFERENCES

Special Issue on
Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk