Suppose that X is an arbitrary real Banach space and $T : X \to X$ is a Lipschitz strongly pseudocontractive operator. It is proved that under certain conditions the Ishikawa iterative method with errors converges strongly to the fixed point of T and this iteration procedure is stable with respect to T.

2000 Mathematics Subject Classification: 47H05, 47H06, 47H14, 47H10.

1. Introduction and preliminaries. Let X be a real Banach space and J denote the normalized duality mapping from X into 2^{X^*} given by

$$Jx = \{ f \in X^* : \langle x, f \rangle = \|x\|^2 = \|f\|^2 \}, \quad (1.1)$$

where X^* denotes the dual space of X and $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. In the following, I denotes the identity operator on X. An operator T with domain $D(T)$ and range $R(T)$ in X is called strongly pseudocontractive if there exists a constant $t > 1$ such that for given $x, y \in D(T)$, there exists $j(x - y) \in J(x - y)$ satisfying

$$\langle Tx - Ty, j(x - y) \rangle \leq \frac{1}{t} \|x - y\|^2. \quad (1.2)$$

If $t = 1$ in (1.2), then T is called pseudocontractive. Interest in pseudocontractive mappings stems mainly from their firm connection with the important class of accretive operators, where an operator T is called accretive if for each $x, y \in D(T)$, there exists $j(x - y) \in J(x - y)$ satisfying

$$\langle Tx - Ty, j(x - y) \rangle \geq 0. \quad (1.3)$$

Furthermore, T is called strongly accretive if there exists a constant $k \in (0, 1)$ such that for given $x, y \in D(T)$, there exists $j(x - y) \in J(x - y)$ satisfying

$$\langle Tx - Ty, j(x - y) \rangle \geq k \|x - y\|^2. \quad (1.4)$$

It follows easily from (1.2), (1.3), and (1.4) that T is strongly pseudocontractive (resp., pseudocontractive) if and only if $(I - T)$ is strongly accretive (resp., accretive), so that
the mapping theory for strongly accretive operators (resp., accretive operators) is intimately connected with the fixed point theory of strongly pseudocontractive operators (resp., pseudocontractive operators). It is well known [4] that if $T : X \to X$ is a Lipshitz strongly pseudocontractive operator, then T has a unique fixed point.

Next we recall the definition of stability. Let X be a Banach space and T be a mapping from X into X. Let $x_0 \in X$ and $x_{n+1} = f(T, x_n)$ define an iteration procedure which yields a sequence of points $\{x_n\}_{n=0}^{\infty}$ in X. Suppose that $F(T) = \{x \in X : Tx = x\} \neq \emptyset$ and that $\{x_n\}_{n=0}^{\infty}$ converges to a fixed point p of T. Let $\{y_n\}_{n=0}^{\infty}$ be an arbitrary sequence in X and $\epsilon_n = \|y_{n+1} - f(T, y_n)\|$. If $\lim_{n \to \infty} \epsilon_n = 0$ implies $\lim_{n \to \infty} y_n = p$, then the iteration procedure defined by $x_{n+1} = f(T, x_n)$ is said to be T-stable or stable with respect to T. Stability results for several iteration procedures for certain contractive definitions have been established in recent papers by several authors, (see [6, 10, 11, 12] and the references therein). In [6], Harder and Hicks showed how such a sequence $\{y_n\}_{n=0}^{\infty}$ could arise in practice and demonstrated the importance of investigating the stability of various iteration procedures for various classes of nonlinear mappings.

It is our purpose in this paper to show that if X is an arbitrary real Banach space and $T : X \to X$ is a Lipschitz strongly pseudocontractive operator, then under certain conditions the Ishikawa iterative method with errors converges strongly to the unique fixed point of T. We also prove that this iteration procedure is stable with respect to T. Our results generalize most of the results that have appeared recently. In particular, the results of [1, 2, 3, 5, 6, 8, 10, 11, 12, 13] and a host of others will be special cases of our theorems.

The following lemma plays a crucial role in the proofs of our main results.

Lemma 1.1 [9]. Let $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$, and $\{c_n\}_{n=0}^{\infty}$ be three nonnegative real sequences satisfying the inequality

$$a_{n+1} \leq (1 - w_n) a_n + b_n w_n + c_n$$

for all $n \geq 0$, where $\{w_n\}_{n=0}^{\infty} \subset [0, 1]$, $\sum_{n=0}^{\infty} w_n = \infty$, $\lim_{n \to \infty} b_n = 0$, and $\sum_{n=0}^{\infty} c_n < \infty$. Then $\lim_{n \to \infty} a_n = 0$.

2. Main results. In the sequel, $k = (t - 1)/t$ and t is the constant appearing in (1.2) and L denotes the Lipshitz constant of T with $L \geq 1$.

Theorem 2.1. Let X be an arbitrary real Banach space and let $T : X \to X$ be a Lipshitz strongly pseudocontractive mapping. Define the sequence $\{x_n\}_{n=0}^{\infty}$ iteratively by $x_0, u_0, v_0 \in X$,

$$y_n = (1 - \beta_n) x_n + \beta_n TX_n + v_n, \quad n \geq 0,$$

$$x_{n+1} = (1 - \alpha_n) x_n + \alpha_n Ty_n + u_n, \quad n \geq 0,$$

where $\{\alpha_n\}_{n=0}^{\infty}$, $\{\beta_n\}_{n=0}^{\infty}$ are two real sequences and $\{u_n\}_{n=0}^{\infty}$, $\{v_n\}_{n=0}^{\infty}$ are two sequences in X satisfying the following conditions:
CONVERGENCE THEOREMS AND STABILITY RESULTS ...

\[
\sum_{n=0}^{\infty} \alpha_n = +\infty, \quad 0 \leq \alpha_n \leq 1, \ n \geq 0;
\] (2.2)

\[
\frac{k - L(L+1)\beta_n - L^2(L+1)\alpha_n}{1 - (1-k)\alpha_n} \geq r, \quad 0 \leq \beta_n \leq 1, \ n \geq 0;
\] (2.3)

\[
\lim_{n \to \infty} \|v_n\| = 0, \quad \sum_{n=0}^{\infty} \|u_n\| < +\infty;
\] (2.4)

where \(r \in (0, 1] \) is a constant. Then \(\{x_n\}_{n=0}^{\infty} \) converges strongly to the unique fixed point of \(T \).

Proof. It follows from [4, Corollary 1] that \(T \) has a unique fixed point \(p \) in \(X \). Since \(T \) is strongly pseudocontractive, it follows from (1.2) that for all \(x, y \in X \), there exists \(j(x - y) \in J(x - y) \) such that

\[
\langle (I - T)x - (I - T)y, j(x - y) \rangle \geq k\|x - y\|^2.
\] (2.5)

Thus

\[
\langle (I - T - kI)x - (I - T - kI)y, j(x - y) \rangle \geq 0,
\] (2.6)

and by [7, Lemma 1.1], we have

\[
\|x - y\| \leq \|x - y + s[(I - T - kI)x - (I - T - kI)y]\|,
\] (2.7)

for all \(x, y \in X \) and \(s > 0 \). Using (2.1), we obtain that

\[
(1 - \alpha_n)x_n = x_{n+1} - \alpha_nTy_n - u_n
\]

\[
= [1 - (1-k)\alpha_n]x_{n+1} + \alpha_n(I - T - kI)x_{n+1}
\]

\[
+ \alpha_nTx_{n+1} - \alpha_nTy_n - u_n.
\] (2.8)

Note that,

\[
(1 - \alpha_n)p = [1 - (1-k)\alpha_n]p + \alpha_n(I - T - kI)p.
\] (2.9)

It follows from (2.7), (2.8), and (2.9) that

\[
(1 - \alpha_n)\|x_n - p\|
\]

\[
\geq [1 - (1-k)\alpha_n]\|x_{n+1} - p + \frac{\alpha_n}{1 - (1-k)\alpha_n}[(I - T - kI)x_{n+1} - (I - T - kI)p] - \alpha_n\|Tx_{n+1} - Ty_n\| - \|u_n\|
\]

\[
\geq [1 - (1-k)\alpha_n]\|x_{n+1} - p\| - \alpha_n\|Tx_{n+1} - Ty_n\| - \|u_n\|,
\] (2.10)

which implies that

\[
\|x_{n+1} - p\| \leq \frac{1 - \alpha_n}{1 - (1-k)\alpha_n}\|x_n - p\| + \frac{\alpha_n}{1 - (1-k)\alpha_n}\|Tx_{n+1} - Ty_n\|
\]

\[
+ \frac{1}{1 - (1-k)\alpha_n}\|u_n\|.
\] (2.11)
We have the following estimates:

\[
\begin{align*}
||x_n - y_n|| \leq \beta_n ||x_n - Tx_n|| + ||v_n|| & \leq (L+1)\beta_n ||x_n - p|| + ||v_n||, \\
||Ty_n - y_n|| \leq (L+1)||y_n - p|| & \leq (L+1)(1 - \beta_n + L\beta_n)||x_n - p|| + (L+1)||v_n|| \\
& \leq L(L+1)||x_n - p|| + (L+1)||v_n||. \\
\end{align*}
\]

From (2.1) and (2.12), we have

\[
\begin{align*}
||Tx_{n+1} - Ty_n|| & \leq L||x_{n+1} - y_n|| \\
& \leq L(1 - \alpha_n)||x_n - y_n|| + \alpha_n L||Ty_n - y_n|| + L||u_n|| \\
& \leq L(L+1)\beta_n + L^2(L+1)\alpha_n ||x_n - p|| + L(L+1)||v_n|| + L||u_n||. \\
\end{align*}
\]

Using (2.13) in (2.11), we get

\[
\begin{align*}
||x_{n+1} - p|| & \leq \left\{ \frac{1 - \alpha_n}{1 - (1 - k)\alpha_n} + \frac{\alpha_n}{1 - (1 - k)\alpha_n} \left[L(L+1)\beta_n + L^2(L+1)\alpha_n \right] \right\} \\
& \times ||x_n - p|| + \frac{\alpha_n}{1 - (1 - k)\alpha_n} L(L+1)||v_n|| + \frac{L}{1 - (1 - k)\alpha_n}||u_n|| \\
& \leq \left[1 - \alpha_n \frac{k - L(L+1)\beta_n - L^2(L+1)\alpha_n}{1 - (1 - k)\alpha_n} \right] ||x_n - p|| + D\alpha_n ||v_n|| + D||u_n||,
\end{align*}
\]

where \(D = (L^2 + L)/k \). It follows from (2.3) and (2.14) that

\[
||x_{n+1} - p|| \leq (1 - r\alpha_n)||x_n - p|| + D\alpha_n ||v_n|| + D||u_n||.
\]

Put \(a_n = ||x_n - p||, w_n = r\alpha_n, b_n = (D/r)||v_n||, \) and \(c_n = D||u_n|| \) for any \(n \geq 0 \). Then Lemma 1.1 ensures that \(||x_n - p|| \to 0 \) as \(n \to \infty \). This completes the proof. \(\Box \)

Theorem 2.2. Let \(X, T, \{x_n\}_{n=0}^\infty, \{\alpha_n\}_{n=0}^\infty, \{\beta_n\}_{n=0}^\infty, \) and \(\{v_n\}_{n=0}^\infty \) be as in Theorem 2.1. Suppose that there exists a sequence \(\{y_n\}_{n=0}^\infty \) with \(\lim_{n \to \infty} y_n = 0 \) and \(||u_n|| = y_n\alpha_n \) for any \(n \geq 0 \). Then \(\{x_n\}_{n=0}^\infty \) converges strongly to the unique fixed point of \(T \).

Proof. Just as in the proof of Theorem 2.1, we have

\[
\begin{align*}
||x_{n+1} - p|| & \leq (1 - r\alpha_n)||x_n - p|| + D\alpha_n ||v_n|| + D||u_n|| \\
& = (1 - r\alpha_n)||x_n - p|| + D\alpha_n (||v_n|| + y_n).
\end{align*}
\]

Put \(a_n = ||x_n - p||, w_n = r\alpha_n, b_n = (D/r)(||v_n|| + y_n), \) and \(c_n = 0 \) for any \(n \geq 0 \). Then Lemma 1.1 ensures that \(||x_n - p|| \to 0 \) as \(n \to \infty \). This completes the proof. \(\Box \)

Remark 2.3. Examples 2.4 and 2.5 show that Theorems 2.1 and 2.2 extend properly [3, Theorem 1], [1, Theorem 4.2], and [5, Theorem 1].
Example 2.4. Let X, T be as in Theorem 2.1 and

$$
\begin{align*}
& r = \frac{k}{2}, \quad \alpha_n = \frac{k}{4L^2(L+1)(n+1)}, \quad \beta_n = \frac{k}{4L(L+1)}, \\
& \|u_n\| = \frac{1}{(n+1)^2}, \quad \|v_n\| = \frac{1}{n+1}.
\end{align*}
$$

(2.17)

for all $n \geq 0$. Then the conditions of Theorem 2.1 are satisfied. But [3, Theorem 1], [1, Theorem 4.2], and [5, Theorem 1] are not applicable.

Example 2.5. Let $X, T, r, \{v_n\}_{n=0}^{\infty}, \{\beta_n\}_{n=0}^{\infty}$ be as in Theorem 2.1. Put

$$
\alpha_n = \frac{k}{4L^2(L+1)\sqrt{n+1}}, \quad \|u_n\| = \frac{1}{n+1}
$$

(2.18)

for all $n \geq 0$. Then the assumptions of Theorem 2.2 are fulfilled. However we do not invoke [3, Theorem 1], [1, Theorem 4.2], and [5, Theorem 1] to show the sequence $\{x_n\}_{n=0}^{\infty}$ converges strongly to the unique fixed point of T, because $\{\beta_n\}_{n=0}^{\infty}$ does not converge to 0.

Now we prove the Ishikawa iterative procedure with errors is stable with respect to Lipschitz strong pseudocontraction.

Theorem 2.6. Let $X, T, \{u_n\}_{n=0}^{\infty}, \{v_n\}_{n=0}^{\infty}$ be as in Theorem 2.1. Define the sequence $\{x_n\}_{n=0}^{\infty}$ iteratively by $x_0, u_0, v_0 \in X$,

$$
\begin{align*}
& z_n = (1 - \beta_n)x_n + \beta_nTx_n + v_n, \quad n \geq 0, \\
& x_{n+1} = (1 - \alpha_n)x_n + \alpha_nTz_n + u_n, \quad n \geq 0,
\end{align*}
$$

(2.19)

where $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ are two real sequences satisfying (2.4) and

$$
\begin{align*}
& 0 < a \leq \alpha_n \leq 1, \quad 0 \leq \beta_n \leq 1, \quad n \geq 0; \\
& \lim_{n \to \infty} \|v_n\| = \lim_{n \to \infty} \|u_n\| = 0.
\end{align*}
$$

(2.20)\hspace{1cm}(2.21)

where a is a constant. Let $\{y_n\}_{n=0}^{\infty}$ be an arbitrary sequence in X. Define $\{\epsilon_n\}_{n=0}^{\infty} \subset [0, +\infty)$ by

$$
\begin{align*}
& w_n = (1 - \beta_n)y_n + \beta_nTy_n + v_n, \quad n \geq 0, \\
& \epsilon_n = \|y_{n+1} - (1 - \alpha_n)y_n - \alpha_nTw_n - u_n\|, \quad n \geq 0.
\end{align*}
$$

(2.22)

Then,

1. the sequence $\{x_n\}_{n=0}^{\infty}$ converges strongly to the fixed point p of T;
2. $\|y_{n+1} - p\| \leq (1 - ar)\|y_n - p\| + \epsilon_n + D\|v_n\| + D\|u_n\|, \quad n \geq 0$, where $D = (L^2 + L)/k$;
3. $\lim_{n \to \infty} y_n = p \Leftrightarrow \lim_{n \to \infty} \epsilon_n = 0$.

Proof. It follows from Theorem 2.1 that $x_n \to p$ as $n \to \infty$. This completes the proof of (1).
Using (2.22), we have
\[\| y_{n+1} - p \| \leq \epsilon_n + \| (1 - \alpha_n) y_n + \alpha_n T w_n + u_n - p \|. \] (2.23)

Set \(P_n = (1 - \alpha_n) y_n + \alpha_n T w_n + u_n \), then \((1 - \alpha_n) y_n = P_n - \alpha_n T w_n - u_n \). As the proof in Theorem 2.1 and by (2.20), we obtain that
\[\| P_n - p \| \leq (1 - \alpha_n r) \| y_n - p \| + D \| v_n \| + D \| u_n \|. \] (2.24)

Hence \(\| y_{n+1} - p \| \leq (1 - \alpha r) \| y_n - p \| + \epsilon_n + D \| v_n \| + D \| u_n \|. \) This completes the proof of (2).

Now suppose that \(\lim_{n \to \infty} y_n = p \). Then
\[\epsilon_n = \| y_{n+1} - (1 - \alpha_n) y_n - \alpha_n T w_n - u_n \|
\leq \| y_{n+1} - p \| + \| (1 - \alpha_n) y_n + \alpha_n T w_n + u_n - p \|
\leq \| y_{n+1} - p \| + (1 - \alpha r) \| y_n - p \| + D (\| v_n \| + \| u_n \|). \] (2.25)

It is easy to verify that \(\epsilon_n \to 0 \) as \(n \to \infty \).

Next suppose that \(\lim_{n \to \infty} \epsilon_n = 0 \). From (2.23) and (2.24), we obtain that
\[\| y_{n+1} - p \| \leq (1 - \alpha r) \| y_n - p \| + \epsilon_n + D \| v_n \| + D \| u_n \| + \epsilon_n \]
\[\leq (1 - \alpha r) \| y_n - p \| + D \| v_n \| + D \| u_n \|, \] (2.26)

which means that \(y_n \to p \) as \(n \to \infty \) according to Lemma 1.1 and (2.21). This completes the proof of Theorem 2.6.

Remark 2.7. Example 2.8 below shows that Theorem 2.6 extends substantially [11, Theorem 1] and [12, Theorem 3].

Example 2.8. Let \(X, T \) be as in Theorem 2.6 and
\[r = \frac{k}{2}, \quad a = \frac{k}{16L^2(L+1)}, \quad \alpha_n = \frac{k(n+1)}{8L^2(L+1)(n+2)}, \quad \beta_n = \frac{k(n+1)}{4L^2(L+1)(n+2)}, \quad \| u_n \| = \| v_n \| = \frac{1}{n+1} \] (2.27)

for \(n \geq 0 \). Then the conditions in Theorem 2.6 are fulfilled. But [11, Theorem 1] and [12, Theorem 3] are not applicable since \(\alpha_n < \beta_n \) for all \(n \geq 0 \).

Acknowledgment. This work was supported by Korea Research Foundation Grant (KRF-2001-005-D00002).
REFERENCES

ZEQING LIU: DEPARTMENT OF MATHEMATICS, LIAONING NORMAL UNIVERSITY, P.O. BOX 200, DALIAN, LIAONING 116029, CHINA
E-mail address: zeqingliu@sina.com.cn

LILI ZHANG: DEPARTMENT OF MATHEMATICS, LIAONING NORMAL UNIVERSITY, P.O. BOX 200, DALIAN, LIAONING 116029, CHINA

SHIN MIN KANG: DEPARTMENT OF MATHEMATICS, GYEONGSANG NATIONAL UNIVERSITY, CHINJU 660-701, KOREA
E-mail address: smkang@nongae.gsnu.ac.kr
Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk