ON TWO NEW CHARACTERIZATIONS OF STIELTJES TRANSFORMS FOR DISTRIBUTIONS

SUNIL KUMAR SINHA
Department of Mathematics
Tata College Chaibasa, Singhbhum
Bihar-833202, INDIA
(Received September 27, 1981)

ABSTRACT. Two new characterizations of the Stieltjes transform for distributions are developed, using two transformations on the space of distributions viz., dilation u^n and exponential shifts T^{-p}. The standard theorem on analyticity, uniqueness and invertibility of the Stieltjes transform are proved, using the new characterization as the definition of the Stieltjes transform.

KEY WORDS AND PHRASES. Stieltjes transform of distribution, iterated Laplace transform, dilations, exponential shifts.

1980 AMS SUBJECT CLASSIFICATION CODE. 46F12.

1. INTRODUCTION.

Widder ([1], p. 325) introduced the Stieltjes transform as an iteration of the Laplace transform as follows:

$$f(x) = \int_0^\infty e^{-xt} \phi(t)dt,$$ \hspace{1cm} (1.1)

where

$$\phi(x) = \int_0^\infty e^{-xt} \psi(t)dt,$$ \hspace{1cm} (1.2)

so that

$$f(x) = \int_{x+1}^{\infty} \frac{\psi(t)dt}{t}.$$ \hspace{1cm} (1.3)

More generally, (1.3) can be replaced by Stieltjes integral

$$f(x) = \int_0^\infty \frac{\phi(t)dt}{x+t}.$$ \hspace{1cm} (1.4)

The integral (1.4) was originally considered by Stieltjes[2]. Various generalizations of Stieltjes transform have been given by various authors viz., Widder[3], Pollard[4], Sumner[5], Mishra[6], Pathak[7-8], Rao[9], Varma[10], Arya[11-15], Ghosh[16-18], Boas & Widder[19], and Dube[20].

The present paper is concerned with two new characterizations of Stieltjes transformation for distributions by the help of dilation u^n and exponential shifts T^{-p} introduced earlier by Gesztelyi[21]. It is interesting to note here that Gesztelyi considered two transformations viz., dilation u^n and exponential shifts T^{-p} which are defined for ordinary functions f, complex number p, and positive integer n.

by:
\[u_n f(t) = n f(nt) \] \hspace{1cm} (1.5)
\[T^{-p}f(t) = e^{-pt} f(t) \] \hspace{1cm} (1.6)

Gesztelyi proves that if \(f \) is a function which has a Laplace transform at \(p \), then the sequence function \(\{ u_n T^{-p}f(t) \} \) converges (in Mikusinski sense) as \(n \to \infty \) to the classical Laplace transform of \(f \) at \(p \). He then defines the Laplace transform of a Mikusinski operator \(x \) as the limit (whenever it exist in the sense of Mikusinski-convergence) of the sequence \(\{ u_n T^{-p} x \} \), and shows that his definition generalizes the previous formulation of the Laplace transform of Mikusinski operators of G. Doetsch [23] and V. A. Ditkin ([24]-[25]). Price[26] defined the Laplace transformation of a distribution \(f \) using sequences of the form \(\{ u_n T^{-p} f \} \) and shows that the new definition is equivalent to Schwartz's extension of the transform to distributions. He also introduced spaces \(B \) and \(B_0 \) and their duals \(B' \) and \(B_0' \) and shows that each distribution \(f \) in \(B_0' \) has a unique extension \(f \) in \(B' \). He also shows that the sequence \(\{ u_n f \} \) converges to \(\langle f, I \rangle \delta \) whenever \(f \) is in \(B_0' \). Recently, working on the same lines the present author has given two new characterizations of the Weierstrass, Mellin, Hankel and K-transform for distributions([28], [29], [30] & [31]).

2. TWO NEW CHARACTERIZATIONS OF THE STIELTJES TRANSFORMS.

In the present section we give two new characterizations of Stieltjes transforms for one-dimensional distributions.

We will say that a distribution \(f \) is Stieltjes transformable if there is an open interval \((a,\beta)\) such that whenever \(p = \sigma + it \) is a complex number with real part in \((a, \beta)\); \(T^{-p}f \) is a distribution in \(B_0' \), where \(B_0' \) is the dual space of \(B_0 \), a subspace of \(\mathcal{S}' \) as defined in [27].

If \((a, \beta)\) is the largest such open interval then the set \(\Omega = \{ p: \text{Re } p \in (a, \beta) \} \) is called the domain of definition of the Stieltjes transform for \(f \).

If \(f \) is a Stieltjes transformable distribution, where transform has domain definition \(\Omega \), then for \(p \in \Omega \), we define the Stieltjes transform \(S[f](p) \) of \(f \) at \(p \) by
\[
S[f](p) = \frac{1}{\phi(0)} \lim_{j \to \infty} \langle u_j T^{-p} f, \phi \rangle, \hspace{1cm} (2.1)
\]
where \(f(t) = S[\psi](p), 0 \leq t \leq R \) for every positive \(R \), \(\phi \) is a test function in \(\mathcal{S} \) with \(\phi(0) \neq 0 \) and \(\psi \) is another distribution.

{NOTE: For the existence of limit in (2.1) and its meaning one could focus his attention on Theorem 3.1, p. 24 [26] or [27].}

Thus we have another characterization also as
\[
S[f](p) = \langle T^{-p}f, l \rangle \hspace{1cm} (2.2)
\]
where \(f(t) = S[\psi](p), 0 \leq t \leq R \) for every positive \(R \) and \(\psi \) is another distribution.
From (2.2) we see that $S[f](p)$ is a complex valued function of the complex variable p with domain Ω. In fact, the mapping S is linear. For, if f and g are distributions that are transformable at p and a and b are complex numbers then $(af + bg)$ is Stieltjes transformable at p and

$$S[af + bg](p) = \langle T^{-p}[af + bg], 1 \rangle$$

$$= a\langle T^{-p}f , 1 \rangle + b\langle T^{-p}g , 1 \rangle$$

$$= aS[f](p) + bS[g](p).$$

Theorem 2.1. If f is a distribution that is Stieltjes transformable in Ω, then $S[f](p)$ is analytic function of p in Ω and

$$\frac{d}{dp} S[f](p) = S[-t f(t)](p).$$

Proof. The proof is analogous to that for Laplace transformation as given in [26] [27].

3. **Treatment of the Convolution of Two Distributions.**

Much of the usefulness of the Stieltjes transform is a result of the way it treats the convolution of two distributions. We give here this important property of the transformation by the following theorem:

Theorem 3.1. If f and g are Stieltjes transformable distributions such that the domain of their respective transforms have intersection Ω, then $f \star g$ is Stieltjes transformable in Ω and for every p in Ω $S[f \star g](p) = S[f](p) S[g](p)$.

Proof. For p in Ω, $T^{-p}f$ and $T^{-p}g$ are both in B'_0. Therefore, $f \star g$ is Stieltjes transformable at p, and from (2.2) and the definition of convolution we get

$$S[f \star g](p) = \langle T^{-p}(f \star g) , 1 \rangle$$

$$= \langle T^{-p}f * T^{-p}g , 1 \rangle$$

$$= \langle T^{-p}f(t) \otimes T^{-p}g(t) , 1(t + t) \rangle$$

$$= \langle T^{-p}f(t) \otimes T^{-p}g(t) , 1(t) 1(t) \rangle$$

$$= \langle T^{-p}f , 1 \rangle \langle T^{-p}g , 1 \rangle$$

$$= S[f](p) S[g](p).$$

Q.E.D.

4. **Inversion and Uniqueness Theorems for the Stieltjes Transform.**

No theory of Stieltjes transform would be useful without the inversion and uniqueness theorems. We give Theorem 4.1 which includes both inversion and uniqueness theorems as its corollary.

In what follows we will have as independent variables at various times the real variable t and real and imaginary parts of complex variable p. For reason we will sometime indicate the particular independent variable for the space or an operation by a subscript τ, e.g., $\langle f(t), e^{-i\omega t} \rangle_{\tau}$, where $f(t)$ is in B'_0 and ω is a parameter.
THEOREM 4.1. If \(f \) is a distribution in \(B'_t \), then
\[
f(t) = \frac{1}{2\pi} \lim_{r \to \infty} \int_{-r}^{r} e^{it\omega} \langle f(t), e^{-i\omega} \rangle d\omega,
\]
where the limit is taken in \(t' \).

PROOF. The proof is same as that of Laplace transform as given in [27].

COROLLARY 4.1 (a): (Inversion theorem).
If \(f \) is Stieltjes transformable in \(\mathfrak{u} = \{ p : \alpha < \text{Re} p < \beta \} \). Then, as long as \(\alpha < \sigma < \beta \)
\[
f(t) = \lim_{r \to \infty} \frac{1}{2\pi i} \int_{\Gamma} e^{pt} S[f](p) \, dp,
\]
where the limit is taken in \(t' \).

COROLLARY 4.1(b): (Uniqueness theorem).
If \(f \) and \(g \) are Stieltjes transformable distributions such that \(S[f](p) = S[g](p) \) on some vertical line in the common domain of transforms of \(f \) and \(g \), then \(f = g \) as distributions.

REFERENCES
Think about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http:// mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk