ON THE DUAL SPACE OF A WEIGHTED BERGMAN SPACE
ON THE UNIT BALL OF \mathbb{C}^n

J.S. CHOA and H.O. KIM
Department of Applied Mathematics
KAIST
P.O. Box 150, Cheongryang
Seoul, KOREA

(Received January 30, 1987 and in revised form March 24, 1987)

ABSTRACT. The weighted Bergman space $A^p_{\alpha}(B_n)(0 < p < 1)$, of the holomorphic functions on the unit ball B_n of \mathbb{C}^n forms an F-space. We find the dual space of $A^p_{\alpha}(B_n)$ by determining its Mackey topology.

KEY WORDS AND PHRASES. Hardy space, Bergman space, Mackey topology.

1980 AMS SUBJECT CLASSIFICATION CODE. 30D55, 32A35.

1. INTRODUCTION.
Let B_n be the unit ball of \mathbb{C}^n, ν be the normalized Lebesgue measure and σ be the rotation invariant positive Borel measure on S, the boundary of B_n, with $\sigma(S) = 1$. The weighted Bergman space $A^p_{\alpha}(B_n)(0 < p < \infty, \alpha \geq -1)$ consists of all functions holomorphic in B_n for which

$$\|f\|_{p,\alpha}^p = \left\{ \int_0^1 M^p_{p}(r;f)(1-r)^\alpha \, \sigma(\zeta) 2nr^{2n-1}dr < \infty, \quad \text{if} \quad \alpha > -1, \right.$$ \[\sup_{0 \leq r < 1} M^p_{p}(r;f) < \infty, \quad \text{if} \quad \alpha = -1, \]

where $M^p_{p}(r;f) = \int_S |f(r\zeta)|^p \sigma(\zeta)$. Note that the weighted Bergman space $A^p_{\alpha}(B_n)$ is, in fact, the Hardy space $H^p(B_n)$ if $\alpha = -1$ (See [1]).

The purpose of this paper is to compute the dual space $(A^p_{\alpha}(B_n))^*$ for $0 < p \leq 1$ by determining the Mackey topology of $A^p_{\alpha}(B_n)$. The corresponding problems for the case $n = 1$ are settled by Duren, Romberg and Shields [2], Shapiro [3] and Ahern [4]. Our computations are very similar to those of them.

Throughout this work, $C_{\alpha, \beta,...}$ denotes a positive constant depending only on $\alpha, \beta,...$ which may vary in the various places, and the notation $a(z) - b(z)$ means that the ratio $a(z)/b(z)$ has a positive finite limit as $|z|

2. SOME PRELIMINARY RESULTS.

Lemma 2.1. If $f \in A^p_{\alpha}(B_n)(0 < p < \infty, \alpha \geq -1)$, then

$$|f(z)| \leq C_{n,p,\alpha} \|f\|_{p,\alpha}(1 - |z|)^{-n+a+1}.$$
PROOF. The case $\alpha = -1$ is proved in [1, Thm 7.2.5]. For the proof of the case $\alpha > -1$, it is enough to prove the result for $\frac{1}{2} \leq |z| < 1$ since $|f(z)|$ is bounded for $|z| \leq 1$. For this range of ρ we have:

$$
\|f\|_{p,\alpha}^p = \int_0^1 \int_S |f(rz)|^p (1 - r)^{\alpha 2n - 1} dr d\sigma(z)
$$

$$
\geq C_{n,p} \int_0^1 \int_S |f(rz)|^p (1 - r)^{\alpha} d\sigma(z) dr
$$

$$
\geq C_{n,p} M_p(p;f) \int_0^1 (1 - r)^{\alpha} dr
$$

$$
= C_{n,p,\alpha} M_p(p;f) (1 - \rho)^{n+1}.
$$

By the result of the case $\alpha = -1$ and the above result, we get

$$
|f(\rho z)| \leq C_{n,p} M_p(p;f) (1 - |z|) \frac{n}{p}
$$

$$
\leq C_{n,p,\alpha} \|f\|_{p,\alpha} (1 - \rho) \frac{\alpha + 1}{p} (1 - |z|) \frac{n}{p}.
$$

Consequently we have

$$
|f(z)| = |f(\sqrt{r}rz)| \quad (z = rz)
$$

$$
\leq C_{n,p,\alpha} \|f\|_{p,\alpha} (1 - \sqrt{r}) \frac{\alpha + 1}{p} (1 - \sqrt{r}) \frac{n}{p}
$$

$$
\leq C_{n,p,\alpha} \|f\|_{p,\alpha} (1 - r) \frac{n + \alpha + 1}{p}.
$$

COROLLARY 2.2. (a) The convergence of $A_p^\alpha(B_n)$ with its invariant metric

$$d(f,g) = \begin{cases}
\|f - g\|_{p,\alpha}, & (0 < p < 1), \\
\|f - g\|_{p,\alpha}^p, & (p \geq 1)
\end{cases}
$$

implies the uniform convergence on any compact subset of B_n.

(b) $A_p^\alpha(B_n)$ is an F-space if $0 < p < 1$ and a Banach space if $p \geq 1$.

PROOF. (a) follows immediately from Lemma 2.1. The proof of (b) is routine and is omitted.

COROLLARY 2.3. $A_p^\alpha(B_n) \subset A_q^\alpha(B_n)$ if $0 < p < q$ and $\frac{n + \alpha + 1}{p} = \frac{n + \beta + 1}{q}$.

In particular,

$$A_p^\alpha(B_n) \subset A_0^\alpha(B_n), \text{ where } \sigma = \frac{n + \alpha + 1}{p} - (n+1).
$$

PROOF. First, we prove the case $\alpha > -1$. We use Lemma 2.1 in the first inequality of the following.
This completes the proof of the case \(a > -1 \). The remaining case is essentially a result of Hardy and Littlewood, but we give a proof using Ahern's technique in [5]. Let \(f \in H^p(B_n) \). By Lemma 2.1, we have

\[
|f(z)| \leq K_{n,p} (1 - |z|)^{-n} \|f\|_p.
\]

Set

\[
Mf(\zeta) = \sup_{0<r<1} |f(r\zeta)|.
\]

Then we have

\[
\int_0^1 |f(r\zeta)|(1 - r)^{\frac{-n-1}{p}} 2nr^{2n-1} dr \leq K_{n,p} \|f\|_p \int_0^1 (1 - r)^{-n-1} dr + c_{n,p} Mf(\zeta) \int_0^1 (1 - r)^{\frac{-n-1}{p}} dr
\]

\[
\leq K_{n,p} \|f\|_p \frac{(1 - \lambda)^{-n}}{n} + c_{n,p} Mf(\zeta) \frac{(1 - \lambda)^{\frac{-n}{p}}}{\frac{1}{p} - 1}.
\]

If \(Mf(\zeta) \leq K_{n,p} \|f\|_p \), by setting \(\lambda = 0 \) in (2.2), (2.1) is dominated by \(C_{n,p} \|f\|_p \).

If \(Mf(\zeta) \geq K_{n,p} \|f\|_p \), by setting

\[
\lambda = 1 - \left(\frac{K_{n,p} \|f\|_p}{Mf(\zeta)} \right)^{\frac{p}{n}}
\]

in (2.2), (2.1) is dominated by

\[
C_{n,p} \|f\|_p^{1-p} Mf(\zeta)^p.
\]

Hence, for any \(\zeta \in S \),

\[
(2.1) \leq C_{n,p} \|f\|_p + C_{n,p} \|f\|_p^{1-p} Mf(\zeta)^p.
\]

Integrating (2.3) with respect to \(d\sigma(\zeta) \) over \(S \) and using the complex maximal theorem [1, Thm. 5.6.5], we obtain
3. THE HACKEY TOPOLOGY OF $A^p(B_n)$.

In this section, we will show that the Mackey topology of $A^p(B_n)$ is the restriction of the topology of $A^1(B_n)$, where $\sigma = \frac{n+\alpha+1}{p} - (n+1)$.

First we give necessary definitions.

DEFINITION 3.1. The Hackey topology of a non-locally convex topological vector space (X, τ) is the unique locally convex topology m on X satisfying the following conditions:

1. m is weaker than τ,
2. the τ-closure of the absolutely convex hull of each τ-neighborhood of the origin contains an m-neighborhood of the origin (See [6, Thm 1]).

DEFINITION 3.2. For $\beta > -n$ and $z, w \in B_n$, we define

$$K^p_{\beta}(z, w) = \left[\frac{n + \beta}{n}\right] \frac{(1 - |w|^2)^{\beta}}{(1 - <z, w>)^{\beta + n + 1}}$$

and

$$J^p_{\beta, c}(w)(z) = (1 - |w|^2)^{-c} K^p_{\beta}(z, w).$$

The following proposition is useful in the sequel:

PROPOSITION 3.3. [1, p. 120] If $\beta > -n$, then $K^p_{\beta}(z, w)$ is a reproducing kernel for the holomorphic functions in $L^1((1 - |w|^2)^{\beta}dv(w))$. In other words, if f is holomorphic on B_n and integrable with respect to the measure $(1 - |w|^2)^{\beta}dv(w)$, then

$$f(z) = \int_{B_n} K^p_{\beta}(z, w) f(w) dv(w).$$

LEMMA 3.4. [1, Prop. 1.4.10] For $z \in B_n$ and c real, we define

$$I^c(z) = \int S |<z, \zeta|^{n+c} \frac{d\sigma(\zeta)}{\delta(1 - <z, \zeta>)^{n+c}}.$$

If $c > 0$, then $I^c(z) - (1 - |z|^2)^{-c}$.

LEMMA 3.5. [7, Lemma 6] If $0 < r, \rho < 1$ and $\alpha - \beta + 1 < 0$, then

$$\int_0^1 (1 - r)^{\alpha}(1 - \rho r)^{\beta - 1} dr \leq C_{\alpha, \beta}(1 - \rho)^{\alpha - \beta + 1}$$

for some positive constant $C_{\alpha, \beta}$.

The next lemma is an easy application of the above two lemmas.

LEMMA 3.6. Let $0 < p < 1$ and fix $\beta > \frac{n+\alpha+1}{p} - (n+1) \equiv \sigma$. Then

$$\sup \{ \|J^p_{\beta, c}(w)\|_{p, \sigma} : w \in B_n \} < \infty.$$

PROOF. We only prove the case $\alpha > -1$. Let $w \in B_n$, and $0 < r < 1$.

Then we have, by Lemma 3.4 and 3.5,

\[
\|J_{\beta,\sigma}(\omega)\|_{p,\alpha}^P = \int_0^1 \int_S |J_{\beta,\sigma}(\omega)(rz)|^p (1 - r)^{\alpha} 2^{n-1} drd\sigma(t)
\]

\[
\leq C_n,p,\beta(1 - |w|^2)^{(\beta-\sigma)p} \int_0^1 (1 - r)^{\alpha} \int_0^S \frac{d\sigma(t)}{|1 - rz, w|^{(\beta+n+1)p}} dr
\]

\[
\leq C_n,p,\alpha,\beta(1 - |w|^2)^{(\beta-\sigma)p}(1 - |w|^2)^{\alpha+n+1-(\beta+n+1)p}
\]

Thus we have

\[
\sup\{\|J_{\beta,\sigma}(\omega)\|_{p,\alpha}^P : \omega \in B_n\} < \infty.
\]

The proofs of the following theorems are essentially the same as those of [3] (Prop. 4.4 and Prof. 4.5) and are omitted.

THEOREM 3.7. Let \(0 < p < 1\) and \(\beta > (n+1)\). Then there exists \(C_n,p,\alpha,\beta < \infty\) such that for each \(f \in A_1^p(B_n)\) there exist a sequence \((\omega_j)\) of points in \(B_n\) and a sequence \((\lambda_j)\) of the complex numbers such that

\[
\sum_j |\lambda_j| \leq C_n,p,\alpha,\beta \|f\|_{1,\sigma}
\]

and

\[
f = \sum_j \lambda_j J_{\beta,\sigma}(\omega_j),
\]

where the last series converges in \(A_1^p(B_n)\).

THEOREM 3.8. The Mackey topology of \(A_1^p(B_n)\) is the restriction of the topology of \(A_1^p(B_n)\) where \(\sigma = \frac{n+\alpha+1}{p} - (n+1)\).

4. THE DUAL SPACE OF \(A_1^p(B_n)\).

Finally, we will find the dual space of \(A_1^p(B_n)\). For the proof of this main result, the following definition is needed:

DEFINITION 4.1. (Radial fractional derivatives of holomorphic functions in \(B_n\)) Let \(g(z) = \sum_{k=0}^\infty G_k(z)\) be the homogeneous expansion of \(g\). For any real number \(q\), the radial fractional derivative of \(g\) of order \(q\) is defined by

\[
R^q g(z) = \sum_{k=0}^\infty (k+1)^q G_k(z).
\]

Let

\[
f(z) = \sum_{k=0}^\infty F_k(z) = \sum_{k=0}^\infty \sum_{|\gamma|=k} c(\gamma) z^\gamma,
\]

where \(c(\gamma)\) are complex numbers.
and
\[g(z) = \sum_{k=0}^{\infty} \sum_{\gamma=0}^{\infty} c(\gamma) d(\gamma) \frac{(n-1)!k!}{(n-1+k)!} \frac{2n(k+1)^q}{(k+n)^q} \rho^k \]

be the homogeneous expansions of \(f \) and \(g \), respectively. We note that for \(q > 0 \), \(0 \leq \rho < 1 \), we have
\[
\sum_{k=0}^{\infty} \sum_{\gamma=0}^{\infty} c(\gamma) d(\gamma) \frac{(n-1)!k!}{(n-1+k)!} \frac{2n(k+1)^q}{(k+n)^q} \rho^k = 2 q \int_0^1 (\log \frac{1}{r})^{q-1} \int S R^{-1} f(r(\gamma)) R^{q+1} g(r(\gamma)) 2nr^{n-1} d\sigma(d). \tag{4.1} \]

We can now prove the duality relation. We use the idea of Ahern [4] in the proof of the following.

Theorem 4.2. Let \(0 < p < 1 \) and \(\sigma = \frac{n+q+1}{p} - (n+1) \). Then
\[
(A_p^\alpha(B_n))^* = \{ f \in H(B_n) : \sup(l - |z|)|R^{q+2}f(z)| = \| f \|_{A_\sigma} < \infty \}. \]

Proof. By Theorem 3.8, \((A_\alpha^p)^* = (A_0^1)^* \). It suffices to compute \((A_0^1)^* \). For simplicity we assume \(\sigma = 0 \). Take \(g \) such that
\[
\sup_{z \in B_n} (1 - |z|)|R^2g(z)| < \infty
\]
and let \(f \) be a polynomial. Then by (4.1)
\[
\sum_{k=0}^{\infty} \sum_{\gamma=0}^{\infty} c(\gamma) d(\gamma) \frac{(n-1)!k!}{(n-1+k)!} \frac{2n(k+1)^q}{(k+n)^q} \rho^k
\]
\[
= 2 \int_0^1 \int S R^{-1} f(r(\gamma)) R^{q+2} g(r(\gamma)) 2nr^{n-1} d\sigma(d)
\]
\[
= 4 \int_0^1 \int S R^{-1} (\log \frac{1}{r}) R^2 g(r(\gamma)) 2nr^{n-1} d\sigma(d). \tag{4.2} \]

Hence
\[
\lim_{\rho \to 1} \left(\sum_{k=0}^{\infty} \sum_{\gamma=0}^{\infty} c(\gamma) d(\gamma) \frac{(n-1)!k!}{(n-1+k)!} \frac{2n(k+1)^q}{(k+n)^q} \rho^k \right)
\]
\[
\leq 4 \int_0^1 \int S \frac{1}{1-r} |f(r(\gamma))| \sup_{z \in B_n} (1 - r)|R^2 g(r(\gamma))| 2nr^{n-1} d\sigma(d). \tag{4.2} \]

Since \(\log \frac{1}{r} - 1 - r \) as \(r \to 1 \), (4.2) is dominated by
\[
C_{k,n} \| f \|_{A_0^1} \| g \|_{A_1}.
\]

Since polynomials are dense in \(A_0^1 \), the mapping
\[
\psi(f) = \lim_{\rho \to 1} \left(\sum_{k=0}^{\infty} \sum_{\gamma=0}^{\infty} c(\gamma) d(\gamma) \frac{(n-1)!k!}{(n-1+k)!} \frac{2n(k+1)^q}{(k+n)^q} \rho^k \right)
\]
extends to be a bounded linear functional on A^1_0. Conversely, let $\psi \in (A^1_0)^*$. Since $A^1_0 \subset L^1(2nr^{2n-1}drd\sigma(\zeta))$, by the Hahn-Banach theorem ψ extends to be a bounded linear functional ψ on the space $L^1(2nr^{2n-1}drd\sigma(\zeta))$. But since $(L^1)^* = L^\infty$, there exists G in $L^\infty(2nr^{2n-1}drd\sigma(\zeta))$ such that

$$\psi(f) = \int_0^1 \int_S f(r\zeta)\frac{G(r\zeta)}{2nr^{2n-1}drd\sigma(\zeta)}$$

for each f in A^1_0. Let

$$H(z) = \int_0^1 \int_S \frac{G(w)}{(1-<z,w>)^{n+1}} 2np^{2n-1}d\sigma(n)$$

be the holomorphic projection of G. If f is a holomorphic polynomial, then

$$\psi(f) = \int_0^1 \int_S f(r\zeta)\frac{G(r\zeta)}{2nr^{2n-1}drd\sigma(\zeta)}$$

$$= \int_0^1 \int_S f(r\zeta)\frac{H(r\zeta)}{2nr^{2n-1}drd\sigma(\zeta)}$$

$$= \int_0^1 \int_S R^{-1} f(r\zeta)\frac{\overline{H(r\zeta)}}{R^{-2}(r\zeta)2nr^{2n-1}drd\sigma(\zeta)},$$

where g is defined to be $R^{-1}H$. The proof will be complete if we can show that

$$\sup_{\zeta \in B_n} (1-|\zeta|)|R^1H(z)| < \infty.$$

Since

$$\frac{\partial H(r\zeta)}{\partial r} = \frac{1}{r} \int_0^1 \int_S \frac{(n+1)}{r^2} \frac{<r\zeta, \rho n>G(\rho n)}{(1-<r\zeta, \rho n>)^{n+2}} 2np^{2n-1}d\sigma(n),$$

we have

$$|\frac{\partial H(r\zeta)}{\partial r}| \leq C_n \|G\|_\infty \int_0^1 \int_S \frac{d\sigma(n)}{|1-<r\zeta, \rho n>|^{n+2}} dp$$

$$\leq C_n \|G\|_\infty \int_0^1 \frac{1}{(1-\rho r)^2} dp$$

$$= C_n \|G\|_\infty \frac{1}{1-\rho}.$$ \hspace{1cm} (4.3)

By (4.3) and $R^1H(r\zeta) = \frac{\partial H(r\zeta)}{\partial r} + H(r\zeta)$, we have

$$\sup_{\zeta \in B_n} (1-|\zeta|)|R^1H(z)| < \infty.$$
REFERENCES

Special Issue on
Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/jamds/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>June 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>September 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>December 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be