Some Results on π-Solvable and Supersolvable Groups

T.K. Dutta and A. Bhattacharyya

Department of Pure Mathematics
University of Calcutta
35, Ballygunge Circular Road
Calcutta - 700 019
India

(Received August 3, 1992 and in revised form January 20, 1993)

Abstract. For a finite group G, $\Phi_p(G)$, $S_p(G)$, $L(G)$ and $S_\pi(G)$ are generalizations of the Frattini subgroup of G. We obtain some results on π-solvable, π'-solvable and supersolvable groups with the help of the structures of these subgroups.

Key words and phrases. π-solvable, π'-solvable, supersolvable.

1991 AMS Subject Classification codes. Primary 20D10, 20D25; Secondary 20F16, 20D20.

1. Introduction.

Many authors have considered various generalizations of the Frattini subgroup of a finite group. Deskins [6] considered the subgroup $\Phi_p(G)$, Mukherjee and Bhattacharya [4] the subgroup $S_p(G)$ and Bhatia [3] the subgroup $L(G)$. In [7], we introduced the subgroup $S_\pi(G)$ and investigated its influence on solvable group. In this paper, our aim is to prove some results which imply a finite group G to be π'-solvable, π-solvable and supersolvable. All groups are assumed to be finite. We use standard notations as found in Gorenstein [8] and denote a maximal subgroup M of G by $M \lhd G$.

2. Preliminaries.

Definition. Let H and K be two normal subgroups of a group G with $K \triangleleft H$. Then the factor group H/K is called a chief factor of G if there is no normal subgroup N of G such that $K \subseteq N \subseteq H$, with proper inclusion. Let M be a maximal subgroup of G. Then H is said to be a normal supplement of M in G if $M H = G$. The normal index of M in G is defined as the order of a chief factor H/K, where H is minimal in the set of all normal supplements of M in G and is denoted by $\eta(G : M)$.

(2.1) (Deskins [6, (2.1)], Beidleman and Spencer [2, Lemma-1])
If M is a maximal subgroup of a group G then $\eta(G : M)$ is uniquely determined.

(2.2) (Beidleman and Spencer [2, Lemma-2])
If N is a normal subgroup of a group G and M is a maximal subgroup of G such that $N \subseteq M$ then $\eta(G/N : M/N) = \eta(G : M)$

(2.3) (Mukherjee [9, Theorem-1])
If M is a maximal subgroup of a group G and $M \triangleleft G$ then $\eta(G : M) = [G : M]$, a prime.

(2.4) (Baer [1, Lemma-3])
If the group G possesses a maximal subgroup with core 1 then the following properties of G are equivalent.
(1) The indices in G of all the maximal subgroups with core 1 are powers of one and the same prime p.

(2) There exists one and only one minimal normal subgroup of G and there exists a common prime divisor of all the indices in G of all the maximal subgroups with core 1.

(3) There exists a non-trivial solvable normal subgroup of G.

Definition. Let G be a group and p be any prime. The four characteristic subgroups of G, which are analogous to the Frattini subgroup $\Phi(G)$, are defined as follows:

- $\Phi_p(G) = \{ M : M \leq G, [G:M]_p = 1 \} \subseteq G$
- $\Phi_p(G) = \{ M : M \leq G, [G:M]_p = 1 \} \subseteq G$
- $\Lambda(G) = \{ M : M \leq G, [G:M] \text{ is composite} \} \subseteq G$
- $\Sigma_p(G) = \{ M : M \leq G, [G:M]_p = 1 \text{ and } \gamma_p(G:M) \text{ is composite} \} \subseteq G$

In case $\Sigma_p(G)$ is empty then we define $G = S_p(G)$ and the same thing is done for the other three subgroups.

(2.5) If H is a subgroup with finite index n in a group G then $\text{core}_G H$ has finite index dividing $n!$

(2.6) (Dutta and Bhattacharyya [7, Theorem-3.5])

If G is p-solvable then $S_p(G)$ is solvable.

Definition. Let M be a maximal subgroup of a group G. Then M is said to be c-maximal if $[G:M]_p \neq 1$ and $[G:M]_p$ is composite.

3. SOME RESULTS ON p-SOLVABLE AND p'-SOLVABLE GROUPS.

Theorem 3.1. Let p be the largest prime dividing $|G|$ and $\Sigma_p(G) \neq \emptyset$. Then G is p-solvable if and only if $\eta(G:M)_p = [G:M]_p$ for each M in $\Sigma_p(G)$.

Proof. Let G satisfy the hypothesis of the theorem. Then G is not simple. For, otherwise $|G|_p = \eta(G:M)_p = [G:M]_p = 1$, where M belongs to $\Sigma_p(G)$, which contradicts the fact that p divides $|G|$. Let N be a minimal normal subgroup of G. If p does not divide $|G/N|$ then G/N is a p'-group and hence it is p-solvable. If p divides $|G/N|$ then p is the largest prime dividing $|G/N|$. If $\Sigma_p(G/N) = \emptyset$ then $G/N = S_p(G/N)$. By Theorem-8(1) [10], $S_p(G/N)$ is solvable and hence G/N is p-solvable. We now assume that $\Sigma_p(G/N) \neq \emptyset$. By Lemma-2 [2], we obtain $\eta(G/N:M/N)_p = [G/N : M/N]_p$ for each M/N in $\Sigma_p(G/N)$. So by induction, G/N is solvable. We note that $S_p(G) \neq G$, since $\Sigma_p(G) \neq \emptyset$. If $N \leq S_p(G)$ then N is solvable and so it is p-solvable and consequently G is p-solvable. If $N \nsubseteq S_p(G)$ then there exists M in $\Sigma_p(G)$ such that $N \nsubseteq M$ and so $G = MN$. By hypothesis $|N|_p = \eta(G:M)_p = [G:M]_p = 1$ and so N is p-solvable and hence G is p-solvable.

The converse follows directly from Theorem 1 [2].
THEOREM 3.2. Let p be the largest prime dividing |G|. Then G is p-solvable if the following hold.

(i) G has a p-solvable c-maximal subgroup M with $\gamma(G:M)_p = [G:M]_p$

(ii) If M_1 and M_2 are c-maximal subgroups of G with $\gamma(G:M_1)_p = \gamma(G:M_2)_p$ then $[G:M_1]_p = [G:M_2]_p$

REMARK 3.3. The converse of the above theorem is not necessarily true. Let G be a p-group, where p is any prime. Then G is p-solvable, but it has no c-maximal subgroup and so G does not satisfy the hypothesis (i) of the above theorem. If the group G has a c-maximal subgroup then the converse of Theorem 3.2 follows from Theorem 1 [2].

THEOREM 3.4. Let G be a p-solvable group and $\Sigma_p(G) \neq \emptyset$. Then G is Π^t-solvable if and only if $\gamma(G:M)_\Pi = [G:M]_\Pi$ for each M in $\Sigma_p(G)$.

PROOF. Let the condition of the theorem hold. Let G be simple. Then it immediately follows that either G is a p'-group or is of prime order p. If G is of prime order p then it is solvable and hence Π^t-solvable. If G is a p'-group then $|G|_p = 1$. Also |G| is composite. For, otherwise, G is cyclic and hence it is Π^t-solvable. Let $|G|_\Pi \neq 1$ and p_1, p_2, \ldots, p_n be the set of prime divisors of |G|, which belong to Π. Let $S(p_i)$ (i = 1, 2, ..., n) denote the Sylow p_i-subgroup of G. Then $S(p_i)$ $\not\subset$ G for $i = 1, 2, \ldots, n$. For, otherwise, G is solvable and hence G is Π^t-solvable. Let M_i be the maximal subgroups of G such that $S(p_i) \subset M_i \subset G$ and so $[G:M_i]_{p_i} = 1$ (i = 1, 2, ..., n). By hypothesis $|G|_{\Pi} = \gamma(G:M_1)_{\Pi} = [G:M_1]_{\Pi}$ (i = 1, 2, ..., n). As each $p_i \not\in \Pi$, it follows that $|G|_\Pi = 1$, a contradiction. So $|G|_{\Pi} = 1$ and hence G is Π^t-solvable. We now suppose that G is not simple. Let N be a minimal normal subgroup of G. Then G/N is a p-solvable group. If $\Sigma_p(G/N) = \emptyset$ then G/N = $S\Sigma_p(G/N)$ and so by (2.6), it follows that G/N is solvable and hence it is Π^t-solvable. Now we assume that $\Sigma_p(G/N) \neq \emptyset$. Using Lemma 2 [2], we obtain $\gamma(G/N : M/N)_{\Pi} = [G/N : M/N]_{\Pi}$ for each M/N in $\Sigma_p(G/N)$. By induction, G/N is Π^t-solvable. Let N_0 be another minimal normal subgroup of G. Then G/N_0 is Π^t-solvable. Since G = G/N \cap N_0 is isomorphic to a subgroup of the Π^t-solvable group G/N x G/N_0, it follows that G is Π^t-solvable. We may now assume that N is the unique minimal normal subgroup of G. We shall now show that N is Π^t-solvable. We note that $S\Sigma_p(G) \neq \emptyset$, since $\Sigma_p(G) \neq \emptyset$. If $N \not\in S\Sigma_p(G)$ then by (2.6) it follows that N is solvable and hence it is Π^t-solvable. If $N \not\in S\Sigma_p(G)$ then there exists M_0 in $\Sigma_p(G)$ such that $N \not\in M_0$ and so G = M_0N and core$_G(M_0) = \langle 1 \rangle$. Let M be any maximal subgroup of G with core 1. Then N $\not\subset$ M and so G = MN. Clearly M belongs to $\Sigma_p(G)$. By hypothesis $|N|_{\Pi} = \gamma(G:M)_{\Pi} = [G:M]_{\Pi}$. If $|N|_{\Pi} = 1$ then N is Π^t-solvable. If $|N|_{\Pi} \neq 1$ then there exists a common prime divisor of all the indices in G of all the maximal subgroups with core 1. So by (2.4), N is solvable and hence it is Π^t-solvable. Thus G/N and N are both Π^t-solvable. So G is Π^t-solvable. The converse follows directly from Theorem 2 [9].

THEOREM 3.5. Let G be a group with $\lambda(G) \neq \emptyset$. Then G is Π^t-solvable if and only if $\gamma(G:M)_{\Pi} = [G:M]_{\Pi}$ for each M in $\lambda(G)$, where $\lambda(G) = \{M : M \not\subset G, \gamma(G:M) = \text{composite} \}$.

THEOREM 3.6. Let G be a group with $|\lambda(G)| \geq 2$. Then G is Π^t-solvable if and only if $\gamma(G:M_1)_{\Pi} = \gamma(G:M_2)_{\Pi}$ implies $[G:M_1]_{\Pi} = [G:M_2]_{\Pi}$ for any M_1, M_2 in $\lambda(G)$.

PROOF. Let the condition of the theorem hold. If $|\lambda(G)| = 1$ then G is a Π^t-group and hence it is Π^t-solvable. So we assume that $|\lambda(G)| \neq 1$. Let G be simple and p_1, p_2, \ldots, p_n be the set of prime divisors of |G|, which belong to Π. Then as in the proof of Theorem 3.4, we can show that there exist maximal subgroups M_i of G such that $[G:M_i]_{p_i} = 1$ (i = 1, 2, ..., n).
By hypothesis, $|G|_\pi = [G:M_1]_\pi = [G:M_2]_\pi = \cdots = [G:M_n]_\pi$. As each $p_i \in \mathcal{P}$, it follows that $|G|_\pi = 1$, a contradiction. So G can not be simple. Let N be a minimal normal subgroup of G. If $\lambda(G/N)$ is empty then $\Lambda(G/N)$ is also empty and so by definition, $L(G/N) = G/N$ and consequently by the supersolvability of the group $L(G/N)$, it follows that G/N is π-solvable. If $\lambda(G/N)$ consists of only one element M/N, say, then either $\Lambda(G/N) = \{M/N\}$ then $M/N = L(G/N)$ and consequently M/N is normal in G/N. So by Theorem 1 [9], $\eta(G/N:M/N) = [G:N:M/N] = $ a prime, a contradiction, since $M/N \notin \Lambda(G/N)$. We now assume that $|\Lambda(G/N)| \geq 2$. It can be shown that G/N satisfies the hypothesis of the theorem. So by induction, G/N is π-solvable. As before, we can assume that N is the unique minimal normal subgroup of G. Also we see that $L(G) \neq G$. If $\eta(G) \neq L(G)$ then N is solvable and hence it is π-solvable. If $N \notin L(G)$ then there exists M_0 in $\Lambda(G)$ such that $N \notin M_0$ and $G = M_0N$ and $\text{core}_{G}(M_0) = \{1\}$. Let M be any maximal subgroup of G with core 1. Then $N \notin M$ and so $G = MN$. Consequently $\eta(G:M) = |N| = \eta(G:M_0)$, whence it follows that M belongs to $\Lambda(G)$. By hypothesis $[G:M]_\pi = |N|_\pi$. If $|N|_\pi = 1$ then N is π-solvable. If $|N|_\pi \neq 1$ then using (2.4), we have N is solvable and hence it is π-solvable. Thus G/N and N are both π-solvable and consequently G is π-solvable.

The contrary follows directly from Theorem 5 [9].

Theorem 3.7. Let G be a π-solvable group and $|\Sigma_\mathcal{P}(G)| \geq 2$. Then G is π-solvable if and only if $\eta(G:M_1)_\pi = \eta(G:M_2)_\pi$ implies $[G:M_1]_\pi = [G:M_2]_\pi$ for any M_1, M_2 in $\Sigma_\mathcal{P}(G)$.

Theorem 3.8. Let G be a π-solvable group and $|\Sigma_\mathcal{P}(G)| \geq 2$. Then G is π-solvable if and only if the following hold.

1. G has a π-solvable maximal subgroup M with $\eta(G:M)_\pi = [G:M]_\pi$.
2. $\eta(G:M_1)_\pi = \eta(G:M_2)_\pi$ implies $[G:M_1]_\pi = [G:M_2]_\pi$ for any M_1, M_2 in $\Sigma_\mathcal{P}(G)$.

Theorem 3.9. Let G be a group with $|\Sigma_\mathcal{P}(G)| \geq 2$. Then G is π-solvable if and only if the following hold.

1. G has a π-solvable maximal subgroup M with $\eta(G:M)_\pi = [G:M]_\pi$.
2. $\eta(G:M_1)_\pi = \eta(G:M_2)_\pi$ implies $[G:M_1]_\pi = [G:M_2]_\pi$ for any M_1, M_2 in $\Sigma_\mathcal{P}(G)$.

Proposition 3.10. Let G be a π-solvable group and $|\Sigma_\mathcal{P}(G)| \geq 2$. Then G is π-solvable if $\eta(G:M_1)_\pi = \eta(G:M_2)_\pi = 1$ for all M_1, M_2 in $\Sigma_\mathcal{P}(G)$ with equal normal index.

Proposition 3.11. Let G be a group with $\Lambda(G) \neq \emptyset$. Then G is π-solvable if $\eta(G:M)_\pi = 1$ for each M in $\Lambda(G)$.

Proposition 3.12. Let G be a π-solvable group or p be the largest prime dividing $|G|$ and $\Sigma_\mathcal{P}(G) \neq \emptyset$. Then G is π-solvable if $\eta(G:M)_\pi = 1$ for each M in $\Sigma_\mathcal{P}(G)$.

Proposition 3.13. Let G be a π-solvable group and $|\Sigma_\mathcal{P}(G)| \geq 2$. Then G is π-solvable if $\eta(G:M_1)_\pi = \eta(G:M_2)_\pi = 1$ for all M_1, M_2 belonging to $\Lambda(G)$ with equal normal index.

Proposition 3.14. If a group G has a π-solvable maximal subgroup M with $\eta(G:M)_\pi = 1$ then G is π-solvable.

Proof. Let G satisfy the hypothesis of the proposition. Then G is not simple. For, otherwise, $|G|_\pi = \eta(G:M)_\pi = 1$ and so G is π-solvable. Let N be a minimal normal subgroup of G. If $N \notin M$ then N is π-solvable and also, by induction, G/N is π-solvable and hence G is π-solvable. If $N \notin M$ then $G=MN$ and since $G/N \not\cong M/MN$, G/N is π-solvable.

Some Results on Supersolvable Groups.

Theorem 4.1. Let G be a π-solvable group and suppose that for each c-maximal
Some Results on π-Solvable and Supersolvable Groups

Let G be a group. Then G is supersolvable if and only if \(\eta(G:M) \) is square-free for each M in \(\Sigma_p(G) \).

PROOF. Let G satisfy the hypothesis of the theorem. We claim that \(\Sigma_p(G) \) is empty. If possible, let there exist M in \(\Sigma_p(G) \). Then G is not simple. For otherwise, \(|G| = \eta(G:M) \) is square-free and so G is supersolvable. Let \(\eta(G:M) = |H/K| \) where H/K is a chief factor of G and H is minimal in the set of normal supplements of M in G. By hypothesis \(|H/K| \) is square-free and hence H/K is supersolvable. Thus H/K is a solvable minimal normal subgroup of G/K. So H/K is an elementary abelian \(q \)-group for some prime \(q \). Consequently \(\eta(G:M) = |H/K| = q \), a prime, which is a contradiction. So \(\Sigma_p(G) \) is empty. By definition G = \(\Pi(G) \) and hence G is solvable. We shall now show that \(\Lambda(G) \) is empty. If possible, let there exist M in \(\Lambda(G) \). Then since \(\eta(G:M) = |G:M| \), \([2, \text{Corollary of Theorem 1}] \), it follows that \((G:M) \) is composite and hence \(p \) divides \(|G:M| \). Now the solvability of G implies that \(|G:M| \) is the power of the prime \(p \). By hypothesis, \(|G:M| = \eta(G:M)_p = p \), a prime, which is a contradiction. Hence \(\Lambda(G) \) is empty and consequently G = L(G). Hence G is supersolvable.

Conversely if G is supersolvable then \(\eta(G:M) = |G:M| = p \) for each maximal subgroup M of G and hence the assertion immediately follows.

PROPOSITION 4.2. Let \(p, q \) be two distinct primes. Suppose that G is either \(p \)-solvable or \(q \)-solvable. Then G is supersolvable if and only if \(\eta(G:M) \) is square-free for every M in \(\Sigma_p(G) \) or \(\Sigma_q(G) \).

PROPOSITION 4.3. If G contains a supersolvable maximal subgroup M such that \(\eta(G:M) = 1 \) and \(\eta(G:M) \) is square-free then G is supersolvable.

PROOF. Let G be simple. By hypothesis, \(|G| = \eta(G:M) \) is square-free. So G is supersolvable. We now assume that G is not simple. Let N be a minimal normal subgroup of G. Since \(\eta(G:M) = 1 \), it follows that \(N \not\in M \) and so \(G = MN \). By hypothesis \(|N| = \eta(G:M) \) is square-free and so N is supersolvable. Since \(G/N \sim M/M \), it follows that \(G/N \) is supersolvable. Thus G/N and N are both solvable. Hence G is solvable. Now since N is a minimal normal subgroup of the solvable group, it follows that N is an elementary abelian \(p \)-group for some prime \(p \). Hence \(|N| = p \) and consequently N is cyclic. Therefore G is supersolvable.

PROPOSITION 4.4. If G contains a supersolvable maximal subgroup M such that \(\eta(G:M) \) is square-free and the Fitting subgroup \(F(G) \), is not contained in M then G is supersolvable.

Acknowledgement. We are thankful to the learned referee for his valuable suggestions.

REFERENCES

7. DUTTA, T.K. AND BHATTACHARYYA, A. A generalisation of Frattini Subgroup (Accepted for publication, Soochow Journal of Mathematics).

Special Issue on
Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/bvp/guidelines.html. Authors should follow the Boundary Value Problems manuscript format described at the journal site http://www.hindawi.com/journals/bvp/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>May 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>November 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editor

Donal O’Regan, Department of Mathematics, National University of Ireland, Galway, Ireland;
donal.oregan@nuigalway.ie

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es