GENERALIZED COMMON FIXED POINT THEOREMS FOR
A SEQUENCE OF FUZZY MAPPINGS

B.S. LEE
Department of Mathematics
Kyungsung University
Pusan 608-736, Korea

G.M. LEE, S.J. CHO
Department of Natural Sciences
Pusan National University of Technology
Pusan 608-739, Korea

and

D.S. KIM
Department of Applied Mathematics
National Fisheries University of Pusan
Pusan 608-737, Korea

(Received November 13, 1992 and in revised form May 6, 1993)

ABSTRACT. We obtain generalized common fixed point theorems for a sequence of fuzzy mappings, which is a generalization of the result of Lee and Cho [6].

KEY WORDS AND PHRASES. Fuzzy set, fuzzy mapping, upper semi-continuous, common fixed point.

1991 AMS SUBJECT CLASSIFICATION CODES. 54H25, 47H10.

1. INTRODUCTION. Heilpern [3] first introduced the concept of fuzzy mappings and proved a fixed point theorem for fuzzy contraction mappings, which is a fuzzy analogue of the fixed point theorems for multi-valued mappings ([2], [4], [9]) and the well-known Banach fixed point theorem. Bose and Sahani [1], in their first theorem, extended Heilpern’s result for a pair of generalized fuzzy contraction mappings. They also, in their second theorem, proved a fixed point theorem for non-expansive fuzzy mappings on a compact star-shaped subset of a Banach space. Lee and Cho [5] proved a fixed point theorem for a contractive-type fuzzy mapping which is an extension of the result of Heilpern [3]. Also, they [6] obtained common fixed point theorems for a sequence of fuzzy mappings which are generalizations of their result in [5]. Lee et al. [7] obtained a common fixed point theorem for a sequence of fuzzy mappings satisfying certain conditions, which is a generalization of the second theorem of Bose and Sahani. They also showed common fixed point theorems for a pair of fuzzy mappings in [8], which is an extension of the first theorem of Bose and Sahani [1].

In this paper, we prove generalized common fixed point theorems for a sequence of fuzzy mappings satisfying certain conditions which are generalizations of the result of Lee and Cho [6].

2. PRELIMINARIES.

Let \((X,d)\) be a linear metric linear space. A fuzzy set \(A\) in \(X\) is a function from \(X\) into \([0,1]\). If \(x \in X\), the function value \(A(x)\) is called the grade of membership of \(x\) in \(A\). The \(\alpha\)-level set of \(A\), denote by \(A_\alpha\), is defined by

\[
A_\alpha = \{x : A(x) \geq \alpha\} \quad \text{if} \quad \alpha \in (0,1], \quad A_0 = \{x : A(x) > 0\},
\]

where \(\alpha\) is a real number.
where \bar{B} denotes the closure of the nonfuzzy set of B.

Let $W(X)$ be the collection of all the fuzzy sets A in X such that A_α is compact and convex for each $\alpha \in [0,1]$, and $\sup_{x \in X} A(x) = 1$. For $A, B \in W(X), A \subseteq B$ means $A(x) \leq B(x)$ for each $x \in X$.

DEFINITION 2.1. Let $A, B \in W(X)$ and $\alpha \in [0,1]$. Then we define

$$P_\alpha(A, B) = \inf_{x \in A_\alpha, y \in B_\alpha} d(x, y), \quad P(A, B) = \sup_\alpha P_\alpha(A, B)$$

and

$$D(A, B) = \sup_\alpha d_H(A_\alpha, B_\alpha),$$

where d_H is the Hausdorff metric induced by the metric d. We note that P_α is a nondecreasing function of α and D is a metric on $W(X)$.

DEFINITION 2.2. Let X be an arbitrary set and Y be any linear metric space. F is called a fuzzy mapping if and only if F is a mapping from the set X into $W(Y)$.

In the following section, we will use the following lemmas.

LEMMA 2.1 [5]. Let (X,d) be a complete linear metric space, F a fuzzy mapping from X into $W(X)$ and $x_0 \in X$, then there exists $x_1 \in X$ such that $\{x_1\} \subseteq F(x_0)$.

LEMMA 2.2 [8]. Let $A, B \in W(X)$. Then for each $\{z\} \subset A$ there exists $\{y\} \subset B$ such that $D(\{z\}, \{y\}) \leq D(A, B)$.

We can easily prove the following lemma.

LEMMA 2.3. Let $x \in X$ and $B \in W(X)$. If $\{y\} \subset B$, then $P(\{x\}, B) \leq d(x, y)$.

3. COMMON FIXED POINTS THEOREMS FOR A SEQUENCE OF FUZZY MAPPINGS.

THEOREM 3.1. Let g be a non-expansive mapping from a complete linear metric space (X,d) into itself. If $(F^i)_{i=1}^\infty$ is a sequence of fuzzy mappings from X into $W(X)$ satisfying the following condition: For each pair of fuzzy mappings, F_i, F_j and for any $x \in X, \{u_i\} \subset F_i(x)$, there exists $\{v_j\} \subset F_j(y)$ for all $y \in X$ such that

$$D(\{u_i\}, \{v_j\}) \leq a_1d(g(x), g(u_i)) + a_2d(g(y), g(v_j)) + a_3d(g(x), g(y)) + a_4d(g(y), g(v_j)) + a_5d(g(x), g(y)),$$

where a_1, a_2, a_3, a_4, a_5 are nonnegative real numbers, $a_1 + a_2 + a_3 + a_4 + a_5 < 1$ and $a_3 \geq a_4$. Then there exists $p \in X$ such that $\{p\} \subseteq \bigcap_{i=1}^\infty F_i(p)$.

PROOF. Let $x_0 \in X$. Then we can choose $x_1 \in X$ such that $\{x_1\} \subseteq F_1(x_0)$ by Lemma 2.1. By our assumptions, there exists $x_2 \in X$ such that $\{x_2\} \subseteq F_2(x_1)$ and

$$D(\{x_1\}, \{x_2\}) \leq a_1d(g(x_0), g(x_1)) + a_2d(g(x_1), g(x_2)) + a_3d(g(x_1), g(x_1)) + a_4d(g(x_0), g(x_2)) + a_5d(g(x_0), g(x_1)) \leq a_1d(x_0, x_1) + a_2d(x_1, x_2) + a_3d(x_1, x_1) + a_4d(x_0, x_2) + a_5d(x_0, x_1).$$

Again we can find $x_3 \in X$ such that $\{x_3\} \subseteq F_3(x_2)$ and

$$D(\{x_2\}, \{x_3\}) \leq a_1d(x_2, x_3) + a_2d(x_2, x_3) + a_3d(x_2, x_3) + a_4d(x_1, x_3) + a_5d(x_1, x_2).$$

Inductively, we obtain a sequence $\{x_n\}$ in X such that $\{x_{n+1}\} \subset F_{n+1}(x_n)$ and

$$D(\{x_n\}, \{x_{n+1}\}) \leq a_1d(x_{n-1}, x_n) + a_2d(x_n, x_{n+1}) + a_3d(x_n, x_n) + a_4d(x_{n-1}, x_n) + a_5d(x_{n-1}, x_n).$$

Since $D(\{x_n\}, \{x_{n+1}\}) = d(x_n, x_{n+1})$, by (3.1)

$$d(x_n, x_{n+1}) \leq a_1d(x_{n-1}, x_n) + a_2d(x_n, x_{n+1}) + a_3d(x_n, x_n) + a_4d(x_{n-1}, x_n) + a_5d(x_{n-1}, x_n).$$
Hence
\[d(x_n, x_{n+1}) \leq \left[(a_1 + a_4 + a_5)/(1 - a_2 - a_4) \right] d(x_{n-1}, x_n). \]

Let \(r = (a_1 + a_4 + a_5)/(1 - a_2 - a_4). \) Since \(a_3 \geq a_4, \) \(0 < r < 1. \) Moreover, we have \(d(x_n, x_{n+1}) \leq r^n d(x_0, x_1). \) We can easily show that \((x_n)_{n=1}^{\infty} \) is a Cauchy sequence in \(X. \) Since \(X \) is complete, there exists \(p \in X \) such that \(\lim_{n \to \infty} x_n = p. \) Let \(F_m \) be an arbitrary member of \((F_i)_{i=1}^{\infty}. \) Since \(\{x_n\} \subset F_m(x_{n-1}) \) for all \(n, \) there exists \(v_n \in X \) such that \(\{v_n\} \subset F_m(p) \) for all \(n \) and
\[
D(\{x_n\}, \{v_n\}) \leq a_1 d(x_{n-1}, x_n) + a_2 d(p, v_n) + a_3 d(p, x_n) + a_4 d(x_{n-1}, v_n) + a_5 d(x_{n-1}, p). \tag{3.2}
\]

From (3.2), we have
\[
d(x_n, v_n) \leq a_1 d(x_{n-1}, x_n) + a_2 d(p, x_n) + a_3 d(x_n, v_n) + a_4 d(p, p) + a_5 d(x_n, x_n).
\]
Thus we have
\[
(1 - a_2 - a_4) d(x_n, v_n) \leq a_1 d(x_{n-1}, x_n) + a_2 d(p, x_n) + a_3 d(x_n, v_n) + a_4 d(p, p) + a_5 d(x_n, x_n).
\]
Since \(x_n \to p \) as \(n \to \infty, \) \((1 - a_2 - a_4) d(x_n, v_n) \to 0 \) as \(n \to \infty. \) Hence \(d(x_n, v_n) \to 0 \) as \(n \to \infty. \) Since \(d(p, v_n) \leq d(p, x_n) + d(x_n, v_n), \) \(v_n \to p \) as \(n \to \infty. \) Since \(F_m(p) \in W(X), \) \(F_m(p) \) is upper semi-continuous and thus
\[
\lim_{n \to \infty} \sup\{F_m(p)(v_n)\} \leq \lim_{n \to \infty} \{F_m(p)(v_n)\} = 1. \]
Since \(\{v_n\} \subset F_m(p) \) for all \(n, \) \(\{F_m(p)(v_n)\} = 1. \) Hence \(\{v_n\} \subset F_m(p). \) Since \(F_m \) is arbitrary, \(\{v_n\} \subset \bigcap_{m=1}^{\infty} F_m(p). \)

Putting \(g(x) = x, \) we get the following corollary from Theorem 3.1.

COROLLARY 3.1. Let \((X, d)\) be a complete linear metric space. If \((F_i)_{i=1}^{\infty}\) is a sequence of fuzzy mappings from \(X \) into \(W(X) \) satisfying the following condition (*) for each pair of fuzzy mapping \(F_i, F_j \) and for any \(x \in X, \) \(\{u_n\} \subset F_i(x), \) there exists \(\{v_n\} \subset F_j(y) \) for all \(y \in X \) such that
\[
D(\{u_n\}, \{v_n\}) \leq a_1 d(x, u_n) + a_2 d(y, v_n) + a_3 d(y, u_n) + a_4 d(x, v_n) + a_5 d(x, y),
\]
where \(a_1, a_2, a_3, a_4, a_5 \) are nonnegative real numbers, \(a_1 + a_2 + a_3 + a_4 + a_5 < 1 \) and \(a_3 \geq a_4. \) Then there exists \(p \in X \) such that \(\{p\} \subset \bigcap_{i=1}^{\infty} F_i(p). \)

By Lemmas 2.2 and 2.3, we can obtain the following corollary from Corollary 3.1.

COROLLARY 3.2. Let \((X, d)\) be a complete linear metric space and let \((F_i)_{i=1}^{\infty}\) be a sequence of fuzzy mappings from \(X \) into \(W(X) \) satisfying the following condition (**) for each pair of fuzzy mappings \(F_i, F_j \),
\[
D(F_i(x), F_j(y)) \leq a_1 P(x, F_i(x)) + a_2 P(y, F_j(y)) + a_3 P(y, F_i(x)) + a_4 P(x, F_j(y)) + a_5 d(x, y),
\]
for all \(x, y \) in \(X, \) where \(a_1, a_2, a_3, a_4, a_5 \) are nonnegative real numbers, \(a_1 + a_2 + a_3 + a_4 + a_5 < 1 \) and \(a_3 \geq a_4. \) Then there exists \(p \in X \) such that \(\{p\} \subset \bigcap_{i=1}^{\infty} F_i(p). \)

The following example shows that the condition (*) in Corollary 3.1 does not imply the condition (**) in Corollary 3.2.

EXAMPLE 3.1. Let \((F_i)_{i=1}^{\infty}\) be a sequence of fuzzy mappings from \([0, \infty)\) into \(W([0, \infty)), \)
where \(F_i(x): [0, \infty) \to [0, 1] \) is defined as follows
\[
\begin{align*}
\text{if } x = 0, & \quad [F_i(x)](z) = \begin{cases} 1, & z = 0 \\
0, & z \neq 0, \end{cases} \\
\text{otherwise, } & \quad [F_i(x)](z) = \begin{cases} 1/2, & 0 \leq z \leq x/2 \\
1/2, & x/2 < z \leq ix \\
0, & z > ix. \end{cases}
\end{align*}
\]
Then the sequence $(F_n)_{n=1}^\infty$ satisfies the condition (*) when $a_1 = a_2 = a_3 = a_4 = 0$, but does not satisfy the condition (**).

Putting $a_1 = a_2 = a_3 = a_4 = 0$, we get the following corollary from Theorem 3.1.

COROLLARY 3.3 [6]. Let g be a non-expansive mapping from a complete linear metric space (X,d) into itself and $(F_n)_{n=1}^\infty$ a sequence of fuzzy mappings from X into $W(X)$ satisfying the following condition: There exists a constant k with $0 < k < 1$ such that for each pair of fuzzy mappings F_i, F_j and for any $x \in X, \{u_x\} \subset F_i(x)$, there exists $\{v_y\} \subset F_j(y)$ for all $y \in X$ such that

$$D(\{u_x\}, \{v_y\}) \leq kd(g(x), g(y)).$$

Then there exists $p \in X$ such that $\{p\} \subset \bigcap_{n=1}^\infty F_n(p)$.

By Lemma 2.2, we get the following corollary from Corollary 3.3.

COROLLARY 3.4 [6]. Let g be a non-expansive mapping from a complete linear metric space (X,d) into itself and $(F_n)_{n=1}^\infty$ a sequence of fuzzy mappings from X into $W(X)$ satisfying the following condition: There exists a constant k with $0 < k < 1$ such that for each pair of fuzzy mappings F_i, F_j,

$$D(F_i(x), F_j(y)) \leq kd(g(x), g(y)) \quad \text{for all } x, y \in X,$$

Then there exists $p \in X$ such that $\{p\} \subset \bigcap_{n=1}^\infty F_n(p)$.

Putting $g(x) = x$, we get the following corollary from Corollary 3.4.

COROLLARY 3.5 [6]. Let (X,d) be a complete linear metric space and $(F_n)_{n=1}^\infty$ be a sequence of fuzzy mappings from X into $W(X)$ satisfying the following condition. There exists a constant k with $0 < k < 1$ such that for each pair of fuzzy mappings, F_i, F_j,

$$D(F_i(x), F_j(y)) \leq kd(x, y) \quad \text{for all } x, y \in X,$$

Then there exists $p \in X$ such that $\{p\} \subset \bigcap_{n=1}^\infty F_n(p)$.

REFERENCES

Special Issue on
Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/mpe/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>July 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>October 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>January 1, 2010</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliani Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br