A NOTE ON QUASI AND BI-IDEALS IN TERNARY SEMIGROUPS

V. N. DIXIT and SARITA DEWAN

Department of Mathematics
University of Delhi
Delhi
India

(Received May 11, 1993 and in revised form November 3, 1993)

ABSTRACT. In this paper we have studied the properties of Quasi-ideals and Bi-ideals in ternary semi groups. We prove that every quasi-ideal is a bi-ideal in T but the converse is not true in general by giving several example in different context.

KEY WORDS AND PHRASES. Quasi-ideal, Bi-ideal, Ternary Semi group.

1992 AMS SUBJECT CLASSIFICATION CODE 20N99

1. INTRODUCTION.

D.H. Lehmer [4] gave the definition of a ternary semi group as follows:

DEFINITION 1.1. A non-empty set T is called a ternary semigroup if a ternary operation $[~]_T$ on T is defined and satisfies the associative law

$$[[x_1 x_2 x_3]x_4 x_5] = [x_1[x_2 x_3 x_4]x_5] = [x_1 x_2[x_3 x_4 x_5]]$$

for all $x_i \in T$, $1 \leq i \leq 5$.

Banach showed by an example that a ternary semi group does not necessarily reduce to an ordinary semi group. This has been shown by the following example.

EXAMPLE 1.2. Let $T = \{-1, 0, 1\}$ be a ternary semi group under the multiplication over complex number while T is not a binary semi group under the multiplication over complex number.

Los [5] showed that any ternary semi group however may be embedded in an ordinary semi group in such a way that the operation in the ternary semi group is an (ternary) extension of the (binary) operation of the containing semi group.

Dudek [1], Feizullaer [2], Kim and Roush [3], Lyapin [6] and Sioson [7] has also studied the properties of the ternary semi groups.

We give the following definitions of ideals [7] as follows:

DEFINITION 1.3. A left (right, lateral) ideal of a ternary semi group T is a non-empty subset $L(R,M)$ of T such that
DEFINITION 1.4. If a non-empty subset of T is a left, right and lateral ideal of T, then it is called an ideal of T.

DEFINITION 1.5. For each element t in T, the left, right and lateral ideal generated by 't' are respectively given by:

\[(t)_L = \{t\} \cup [TtT] \]
\[(t)_R = \{t\} \cup [TTt] \]
\[(t)_M = \{t\} \cup [TtT] \cup [TTtT] \]

Due to associative law in T, one may write Sioson [7]

\[[x_1, x_2, \ldots, x_{2n+1}] = [x_1 \ldots, x_m, x_{m+1}, \ldots, x_{m+4}, \ldots, x_{2n+1}], m \leq n \]

DEFINITION 1.6. Quasi-ideal in a ternary semi group [7] is also a subset Q of T (possibly empty) satisfying following two conditions:

1. \([QTT] \cap [TQT] \cap [TQ] \subseteq Q\)
2. \([QTT] \cap [TQT] \cap [TQ] \subseteq Q\)

REMARK 1.7. Every right, left and lateral ideal is a quasi-ideal. But every quasi-ideal is not a right, a left and a lateral ideal of T. This follows from the following example

EXAMPLE 1.8. Let T = \{(0,0),(1,0),(0,1),(0,0),(0,0),(0,0),(0,0),(0,0)\} be the ternary semi group under matrix multiplication. Then Q = \{(0,0),(0,1)\} be the quasi-ideal of T, which is neither a left, nor a right nor a lateral ideal of T.

DEFINITION 1.9. A ternary sub-semi group is a subset S of a ternary semi group T such that

\[[SSS] \subseteq S\]

DEFINITION 1.10. A ternary semi group T is said to be a ternary group if it satisfies the following property that for all x, y and z in T, there exists unique a, b, c in T such that

\[[x+ y] = c, [y + z] = c, [x + z] = c\]

DEFINITION 1.11. A ternary group T is said to be a ternary group with 0 if for all a, b, c in T

\[[o + a] = 0 = [a + o] = [a + o] = [o + o] = [o + c].\]

DEFINITION 1.12. A ternary semi group T is with identity if there exists an
idempotent e in T such that

\[[a ae] = [e aa] = [ae a] = a, \forall a \in T. \]

2. SOME RESULTS ON QUASI-IDEAL IN T WHICH ARE TRIVIALLY TRUE

PROPOSITION 2.1. A ternary group T with 0 and \([TTT] \neq 0\) has no proper quasi-ideal.

PROPOSITION 2.2. The intersection of a quasi-ideal Q and a ternary sub semi-group A of a ternary semi group T is either empty or a quasi-ideal of A.

PROPOSITION 2.3. Let Q be any non-empty subset of a ternary semi-group T, then the following are true:

1. \(Q \cup [QT] \) is the smallest left ideal of T containing Q.
2. \(Q \cup [QT] \) is the smallest right ideal of T containing Q.
3. \(Q \cup [QT] \cup [TQIT] \) is the smallest lateral ideal of T containing Q.
4. If Q is a quasi-ideal of T. Then
 \[
 Q = (Q \cup [QT]) \cap (Q \cup [QT] \cup [TQIT]) \cap (Q \cup [QT]).
 \]

PROPOSITION 2.4. The intersection of arbitrary set of quasi-ideals in a ternary semi-group is either empty or a quasi-ideal of T.

DEFINITION 2.5. Let X be a non-empty subset of a ternary semi-group T. The quasi-ideal of T generated by X is intersection of all quasi-ideals \((X)_q\) of T containing X.

If the subset X consists of a single element x, then \((X)_q\) is the cyclic quasi-ideal of T.

PROPOSITION 2.6. Let X be a non-empty subset of a ternary semi-group T, then

\[
(X)_q = (X \cup [TX]) \cap (X \cup [TXT] \cup [TXITT]) \cap (X \cup [XIT])
\]

is the smallest quasi-ideal containing X.

PROOF. Sioson [7] shows that the intersection of a right, a left and a lateral ideal of a ternary semi-group T is a quasi-ideal. Therefore the proof easily follows by using 2.3.

From 2.6 it follows that

\[
(X)_q = (X \cup [TX]) \cap (X \cup [TXT] \cup [TXITT]) \cap (X \cup [XIT])
\]

is the smallest quasi-ideal of T containing X.

3. BI-IDEALS IN TERNARY SEMI GROUP

DEFINITION 3.1. A ternary sub semi-group B of a ternary semi-group T is a bi-ideal of T if \([BBB]B \subseteq B\).

PROPOSITION 3.2. Every quasi-ideal of a ternary semi-group T is a bi-ideal.
PROOF. Let \(Q \) be a quasi-ideal of \(T \). Then \(Q \) is a ternary semi group of \(T \). Now \([QTQTQ] \subseteq [QTT]T \subseteq [QT]T\).
Similarly \([QTQTQ] \subseteq [TT]Q \subseteq [TT]TQ\).
Therefore \([QTQTQ] \subseteq [TT]Q \subseteq [TT]TQ \subseteq [QTT]T \subseteq Q\).

PROPOSITION 3.3. Let \(A \) be an ideal and \(Q \) be a quasi-ideal of \(T \). Then \(A \cap Q \) is a bi-ideal and a quasi-ideal of \(T \).

PROOF. \(A \cap Q \subseteq A \cap T \subseteq A \cap 0 \subseteq A \cap Q \) implies that \(A \cap Q \) is a ternary sub semi group of \(T \). Also

\[(A \cap Q) T \cap (A \cap Q) \subseteq [A[TAT]A] \subseteq Q \cap [AAA] \]

by (3.2) and the given hypothesis implies that L.H.S. \(\subseteq Q \cap A \). Thus \(A \cap Q \) is a bi-ideal of \(T \). Since \(A \) is an ideal of \(T \) and it is also a quasi-ideal of \(T \). Hence \(A \cap Q \) is a quasi-ideal of \(T \).

PROPOSITION 3.4. Let \(X, Y \) be non-empty subsets of ternary semi group \(T \), then \(N \subseteq [XTY] \) is a bi-ideal of \(T \).

PROOF. Clearly \(N \) is a ternary sub semi group of \(T \). Also

\[[N]N \subseteq [XT][Y][T][T][Y] \subseteq [X][T][Y] \]

Then \(N \) is a bi-ideal of \(T \).

PROPOSITION 3.5. The intersection of arbitrary set of bi-ideals of \(T \) is either empty or a bi-ideal of \(T \).

We omit the trivial proof.

PROPOSITION 3.6. Every left, right or lateral ideal of \(T \) is a bi-ideal of \(T \).

PROOF. Trivial.

PROPOSITION 3.7. Let \(Q \) be a subset of a ternary semi group \(T \) and \(Y \) be a non-empty proper subset of \(T \) such that

1. \([TTQ] \cup [TQT] \cup [QTT] \cup [TTT] \subseteq Y\).
2. \(Y \subseteq Q\).

Then \(Y \) is an ideal of \(T \). Moreover \(Y \) is a bi-ideal of \(T \).

PROOF. It is obvious that \([TTY], [TTY], [TYT] \) and \([TTYT]\) are contained in \(Y \) under the condition (2) therefore \(Y \) is an ideal of \(T \). And hence a quasi-ideal of \(T \) which by 3.2 is a bi-ideal of \(T \).

In the following example we show that if both or either of the conditions (1) and (2) of above proposition are not satisfied then \(Y \) is neither a left, a right, a lateral, a quasi nor a bi-ideal of \(T \).

EXAMPLE 3.8. Let \(T = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \).

Then \(T \) is a ternary semi group under matrix multiplication.
(1) Take \(Y = \{(0 0), (1 0)\} \) and the quasi-ideal
\[
Q = \{(0 0), (1 0)\}
\)
of \(T \).
We see that \(Y \subseteq Q \), and
\[
[TTQ] \cup [TTQ] \cup [TTQ] \cup [TTQ] = \{(0 0), (1 0), (0 0), (0 1), (0 0)\}
\]
\(\subseteq Y \)
Also each of \([TTQ] \), \([TTQ] \), \([TTQ] \) and \([TTQ] \) is not in \(Y \).
Therefore \(Y \) is neither a left, nor a right nor a lateral ideal of \(T \).
Moreover \([TTQ] \cap [TTQ] \cap [TTQ] \cap [TTQ] \cap Y \).
So, \(Y \) is not a quasi-ideal of \(T \).

(2) Take \(Y = \{(0 0), (1 0)\} \) and \(Q = \{(0 0), (1 0)\} \). Then \(Y \subseteq Q \).
Again \([TTQ] \cup [TTQ] \cup [TTQ] \cup [TTQ] \subseteq Y \).
Since each of \([TTQ] \), \([TTQ] \), \([TTQ] \) contains \((0 0) \), they are not contained in \(Y \).
Hence \(Y \) is neither a left, a lateral nor a right ideal of \(T \).
Also \([TTQ] \cap [TTQ] \cap [TTQ] \cap Y \).
So \(Y \) is not a quasi-ideal of \(T \).
Further \([TTQ] \subseteq Y \) implies \(Y \) is not a bi-ideal of \(T \).

(3) Now we take \(Y = \{(0 0), (1 0), (1 0), (0 1), (0 0)\} \) and \(Q = \{(0 0)\} \) of \(T \). Then \(Y \subseteq Q \).
\[
[TTQ] \cup [TTQ] \cup [TTQ] \cup [TTQ] = \{(0 0)\} \subseteq Y.
\]
We find that \((0 0) \in [TTQ], [TTQ] \) and \([TTQ] \).
But \((0 0) \in Y \). So \(Y \) is either a left, a lateral nor a right ideal of \(T \). Similarly
\(Y \) is neither a quasi nor a bi-ideal of \(T \).

Theorem 3.9. Let \(X, Y \) and \(Z \) be three non-empty subsets of a ternary semi-
group \(T \) and \(N = [XYZ] \). Then \(N \) is a bi-ideal of \(T \) if one of the following conditions
holds:

(1) \(X, Y \subseteq Z \) and \(Z \) is a bi-ideal of \(T \).
(2) \(Y, Z \subseteq X \) and \(X \) is a bi-ideal of \(T \).
(3) \(X, Z \subseteq Y \) and \(Y \) is a bi-ideal of \(T \).
(4) At least one of \(X, Y, Z \) is a right, or a left or a lateral ideal of \(T \).

Proof. (1) \([NNN] \subseteq [XYZ][ZZZ] \)
\[
\subseteq [XY][ZZZ] \subseteq N
\]
and \([NNN] \subseteq [XY][ZZZ] \subseteq N \).
Similar proofs establish (2) and (3).
(4) Assume \(X \) is a right ideal of \(T \). Then
Similar proofs can be given when either X or Y or Z is a left, or a lateral or a right ideal of T.

Definition 3.10 [7]. An element 't' in a ternary semi group T is said to be regular if there exists x, y in T such that

\[[txyt] = t. \]

If all the elements of T are regular then it is said to be regular ternary semi group.

Example 3.11. This example shows that there exists a ternary semi group while T is not a regular ternary semi group such that T has a minimal right, a minimal lateral and a minimal left ideal of T.

Let \(T = \{0, e, a, b\} \) be the ternary semi group under the operation \((\,) \), (given below in the table)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>e</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>e</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>b</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\forall a, b, c \in T, \ [abc] = a(bc) = (ab)c. \)

Hence \(\{0\} \) is a minimal right, a minimal left and a minimal lateral ideal of T.

Since a and b are not the regular elements of T. Therefore T is not a regular ternary semi group.

Now we use theorem 3.9 to give an example of a ternary semi group in which a bi-ideal is not a quasi-ideal.

Example 3.12. Let T be a ternary semi group such that T is not regular, X, Y, Z be respectively a minimal right, a minimal lateral and a minimal left ideal of T satisfying the condition of 3.9. Thus \(N = [XYZ] \) is a bi-ideal of T. We will show that N is not a quasi-ideal of T.

Proof. \([XYZ] \subseteq [XTT] \subseteq X, [XYZ] \subseteq Y, [XYZ] \subseteq Z. \) So, \([XYZ] \subseteq X \cap Y \cap Z \) which is a minimal quasi-ideal of T [7].

If we assume that \([XYZ] \) is a quasi-ideal then \([XYZ] = X \cap Y \cap Z \) which (by Sioson [7]) thus implies that T is a regular ternary semi group. Hence it contradicts the hypothesis. So \([XYZ] \) is not a quasi-ideal but bi-ideal by Theorem 3.9.

Proposition 3.13. In a regular ternary semi group every bi-ideal is a quasi-ideal.

Proof. Sioson [7] shows that a subset Q of a regular ternary semi group T is a quasi-ideal if and only if
Since a bi-ideal of \(T \), clearly satisfies the above condition, so we get the proof.

PROPOSITION 3.14. Let \(C \) be a non-empty subset of a ternary semi group \(T \) without identity. Then \(C \cup \langle CCC \rangle \cup \langle CTICIC \rangle \) is the smallest bi-ideal of \(T \) containing \(C \).

PROOF. Let \(x \) be any element of \(C \cup \langle CCC \rangle \cup \langle CTICIC \rangle \). Then either \(x = x_1 \) for \(x_1 \) in \(C \) or \(x = [c_1c_2c_3] \in \langle CCC \rangle \) for all \(c_i \) in \(C \), \(i = 1,2,3 \) or \(x = [c_1t_1c_2t_2c_3] \) \(\langle CTICIC \rangle \) for all \(c_i \) in \(C \), \(i = 1,2,3 \), \(t_i \) in \(T \), \(i = 1,2 \).

We will consider the elements of \(\langle CTICIC \rangle \). The other two cases will be done in a similar manner. Let \(x,y,z \in \langle CTICIC \rangle \).

i.e., \(x = [c_1t_1c_2t_2c_3], y = [c_4t_3c_5t_4c_6], z = [c_7t_5c_8t_6c_9], c_i \in C, \)

\(i = 1,2,\ldots,9, t_i \in T, i = 1,2,\ldots,6. \)

Then

\[
\{xyz\} = \left\{ [c_1t_1c_2t_2c_3][c_4t_3c_5t_4c_6][c_7t_5c_8t_6c_9] \right\} = \left\{ [c_1][\{t_1c_2t_2\}[c_3c_4t_3][c_5c_6][c_7t_5c_8t_6c_9] \right\} = \left\{ [c_1t_7c_7c_8t_6c_9] \right\} \text{ where} \]

\(t_7 = \left\{ [t_1c_2t_2][c_3c_4t_3][c_5t_6c_9] \right\} \)

\(t_8 = \left\{ [c_5c_8t_6c_9] \right\} \)

so \(\{xyz\} \in C \cup \langle CCC \rangle \cup \langle CTICIC \rangle \).

Further, \(\{xt_9yt_10z\} = \left\{ [c_1t_1c_2t_2c_3][t_9c_4c_5t_4c_6][t_10c_7t_5c_8t_6c_9] \right\} \)

\(= \left\{ [c_1][\{t_1c_2t_2\}[c_3c_4t_3][t_9c_5t_4][t_10c_7c_8t_6c_9] \right\} = \left\{ [c_1t_1c_6t_2c_9] \right\} \)

where

\(t_{11} = \left\{ [t_1c_2t_2][c_3c_4t_3][t_9c_5t_4] \right\} \)

\(t_{12} = \left\{ [t_1c_2t_2][c_3c_4t_3][t_5c_8t_6c_9] \right\} \)

Thus

\(\{xt_9yt_10z\} \in C \cup \langle CCC \rangle \cup \langle CTICIC \rangle \).

Hence \(C \cup \langle CCC \rangle \cup \langle CTICIC \rangle \) is a bi-ideal of \(T \) containing \(C \).

Suppose there exists a bi-ideal \(R \) of \(T \) containing \(C \) such that

\(R \subseteq C \cup \langle CCC \rangle \cup \langle CTICIC \rangle \).

Then \(R \) being a bi-ideal implies that

\(R \subseteq C \cup \langle CCC \rangle \cup \langle CTICIC \rangle \subseteq R \cup \langle RRR \rangle \cup \langle RTRTR \rangle \subseteq R. \)

Thus \(R = C \cup \langle CCC \rangle \cup \langle CTICIC \rangle \) is the smallest bi-ideal of \(T \) containing \(C \).
ACKNOWLEDGEMENT. The authors are very thankful to the referee for his valuable comments and suggestions.

REFERENCES

1. DUDEK IZABELA, M. 'On Ternary Semi group Connected With Para Associative Rings' Riarche Mat. 35(1986), No. 2, 191-203.

Special Issue on
Singular Boundary Value Problems for Ordinary
Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/bvp/guidelines.html. Authors should follow the Boundary Value Problems manuscript format described at the journal site http://www.hindawi.com/journals/bvp/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Deadline</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>May 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>November 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editor

Donal O'Regan, Department of Mathematics, National University of Ireland, Galway, Ireland;
donal.oregan@nuigalway.ie

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es

Hindawi Publishing Corporation
http://www.hindawi.com