ON EXTENSION OF PAIRWISE θ-CONTINUOUS MAPS

S. K. SEN and M. N. MUKHERJEE

Department of Pure Mathematics
University of Calcutta
35, Ballygunge Circular Road
Calcutta - 700 019
India

(Received June 17, 1993 and in revised form May 8, 1995)

ABSTRACT. The aim of the paper is to find suitable conditions so as to ultimately establish the existence and uniqueness of the extension of a pairwise θ-continuous map onto an arbitrary extension-space of a bitopological space.

KEY WORDS AND PHRASES. Bitopological extension, pairwise θ-continuity, pairwise θ-proper, pairwise \ast-free.

1992 AMS SUBJECT CLASSIFICATION CODE. 54E55.

1. INTRODUCTION.

The problem of extending continuous maps on a topological space X to a given extension X^{*} of X has been dealt with extensively by many mathematicians. For example it is known (see [2]) that a continuous map $f : X \rightarrow Y$ with Y a compact Hausdorff space can be extended by a continuous map onto an extension X^{*} of X iff for each pair of closed disjoint subsets A and B of Y, the closures of $f^{-1}(A)$ and $f^{-1}(B)$ in X^{*} are disjoint. One of the different interesting generalizations of this result arises when continuity and compactness are replaced by θ-continuity and quasi-\mathcal{H}-closedness (QHC) respectively under a suitably changed condition (see Rudolf [5]).

Bitopological versions of QHC spaces and θ-continuous functions have been introduced by Mukherjee [4], and Bose and Sinha [1] respectively. It is our purpose here to further generalize the above extension theorem by Rudolf [5]. For this we suitably modify and redefine the appliances used by Rudolf to ultimately establish the existence and uniqueness of the extension of a pairwise θ-continuous map onto an arbitrary extension of a bitopological space under certain conditions.

By spaces X and Y we shall mean bitopological spaces (X, Q_{1}, Q_{2}) and (Y, P_{1}, P_{2}) respectively. For any $A \subseteq X$, Q_{i}-intA and Q_{i}-clA will respectively stand for the interior and closure of A in (X, Q_{i}), where $i=1,2$. A set A is called an ij-regularly open set (Singal and Arya [6]) if $A = Q_{i}$-$\text{int} Q_{j}$-$\text{cl}A$, and complement of such a set is called ij-regularly closed where (and also in future discussion) $i,j=1,2$ and $i \neq j$. A space X is called pairwise Hausdorff (Kelly [3]) if for $x, y \in X$ with $x \neq y$, there exist $U \in Q_{1}$ and $V \in Q_{2}$ such that $x \in U$ and $y \in V$ and $U \cap V = \emptyset$.
DEFINITION 1. (see Bose and Sinha [1]) A function (or map) \(f : (X, Q_1, Q_2) \to (Y, P_1, P_2) \) is called \(ij\)-\(\theta \)-continuous if for each \(x \in X \) and each \(P_1 \)-open neighbourhood (henceforth nbhd., for short) \(U \) of \(f(x) \), there is a \(Q_1 \)-open nbhd \(V \) of \(x \) with \(f(Q_1 \cl V) \subseteq P_\cl U \). \(f \) is called pairwise \(\theta \)-continuous if it is \(12 \)- as well as \(21 \)-\(\theta \)-continuous.

DEFINITION 2. (see Singal and Arya [6]) A subset \(A \) of a space \((X, Q_1, Q_2) \) is said to be pairwise dense if every non-empty subset of \(X \) which is the intersection of a \(Q_1 \)-open set and a \(Q_2 \)-open set, has non-empty intersection with \(A \).

2. MAIN THEOREM AND ASSOCIATED RESULTS.

DEFINITION 3. A space \((X*, Q_1*, Q_2*) \) is said to be an extension of a space \((X, Q_1, Q_2) \) if \(Q_1*/X=Q_1 \), \(Q_2*/X=Q_2 \), and \(X \) is pairwise dense in \(X* \).

For an extension \((X*, Q_1*, Q_2*) \) of \((X, Q_1, Q_2) \), a map \(f : (X, Q_1, Q_2) \to (Y, P_1, P_2) \) and a point \(x \) of \(X* \) (of \(Y \)) let \(N_x^{i*} \) (resp. \(N_x^i \)) the family of all \(Q_i \)-open (\(P_i \)-open) nbds of \(x \) in \(X* \) (resp. in \(Y \)), for \(i=1,2 \). For \(x \in X* \), \(N_x^i \) (\(f(N_x^i) \)) shall denote the \(P_i \)-open filter on \(Y \) generated by the family \(\{ f(U \cap X) : U \in N_x^i \} \) (\(i=1,2 \)).

DEFINITION 4. A map \(f : X \to Y \) is \(ij\)-\(\theta \)-proper if for each \(x \in X* \), \(N_x^j(f(N_x^j)) \) is non-void \(P_i \)-adherence, where \((X*, Q_1*, Q_2*) \) is an extension of \((X, Q_1, Q_2) \). The map \(f \) is called pairwise \(\theta \)-proper if for each \(x \in X* \), \(N_x^j(U \cap X) : U \in N_x^j \) \((f(N_x^j) \cap (1-U) \cap Y) \) then \(f(U) \cap Y \) is not empty, a contradiction because \(X \) is pairwise dense in \(X* \).

THEOREM 1. Let \((X*, Q_1*, Q_2*) \) be an extension of a space \((X, Q_1, Q_2) \) and \(f^*: (X*, Q_1*, Q_2*) \to (Y, P_1, P_2) \) be an \(ij\)-\(\theta \)-continuous extension of an \(ij\)-\(\theta \)-continuous map \(f : (X, Q_1, Q_2) \to (Y, P_1, P_2) \). Then for each \(x \in X* \), \(f^*(x) \cap (1-U) \cap Y \) is not empty, a contradiction because \(X \) is pairwise dense in \(X* \).

LEMMA 1. Let \((X*, Q_1*, Q_2*) \) be an extension of a space \((X, Q_1, Q_2) \) and let \(f : (X, Q_1, Q_2) \to (Y, P_1, P_2) \) be an arbitrary map. Then for each \(x \in X* \) and each \(y \in Y \), \(x \in f^{-1}(U \cap X) \) if and only if \(x \in f^{-1}(U \cap X) \).

THEOREM 2. Let \((X*, Q_1*, Q_2*) \) be an extension of \((X, Q_1, Q_2) \). Then for each pairwise \(\theta \)-proper map \(f : (X, Q_1, Q_2) \to (Y, P_1, P_2) \), \(f \) is called pairwise \(\theta \)-proper if it is \(12 \)- as well as \(21 \)-\(\theta \)-free.
extension of pairwise 0-continuous maps

PROOF. Let \(x \in X^*-X. \) Since \(f \) is pairwise \(\theta \)-proper, suppose that \(y \in \{ P_1-\text{cl} U : U \in N(f, x \} \} \). By Lemma 1, \(x \in \{ P_2-\text{cl} V : V \in N(f, x \} \} \). We consider a point \(y \in Y \) such that \(y \neq P_2-\text{cl} V \). Now, \(f \) being \(12*-\text{free} \) there exists a \(P_2 \)-open nbd \(U \) of \(y \) such that \(x \in Q_2-\text{cl} f^{-1}(P_2-\text{cl} V) \). Since \(x \in \{ P_2-\text{cl} V : V \in N(f, x \} \} \), \(x \in Q_2-\text{cl} f^{-1}(P_2-\text{cl} V) \), and thus \(y \in f^{-1}(P_2-\text{cl} V) \) (by Lemma 1).

LEMMA 2. For an \(l-j \)-continuous map \(f : X \rightarrow Y \) and \(U \in \mathcal{N} \), \(f(\mathcal{Q}_2^* \cap f^{-1}(U)) \subset P_1-\text{cl} U \).

We are now in a position to prove the main theorem of this paper as follows:

THEOREM 3. Let \((X^*, Q_1^*, Q_2^*)\) be an extension of \((X, Q_1, Q_2)\). Then each pairwise \(\theta \)-continuous, pairwise \(\theta \)-proper function \(f : X \rightarrow Y \) possesses a pairwise \(\theta \)-continuous extension \(f^* : X^* \rightarrow Y \). The extension is unique if \(Y \) is pairwise Hausdorff.

PROOF. For \(x \in X \) we take \(f^*(x) = f(x) \), and for each \(x \in X^*-X \) we choose and fix a point of \(\{ P_1-\text{cl} U : U \in N(f, x \} \} \) and define it to be \(f^*(x) \); the latter choice is possible since \(f \) is pairwise \(\theta \)-proper.

We first prove that for each \(P_j \)-open set \(U \) of \(Y \),

\[
f^*((X^*-X) \cap Q_1^* \cap f^{-1}(P_1-\text{cl} U) \subset P_1-\text{cl} U \tag{2.1}
\]

If not, then for some \(x \in X^*-X \), there exists a \(P_j \)-open set \(U \) in \(Y \) with \(x \in (X^*-X) \cap Q_1^* \cap f^{-1}(P_1-\text{cl} U) \) but \(f^*(x) = y \), say \(f^*(x) \subset P_1-\text{cl} U \). Since \(f \) is \(ij*-\text{free} \), there exists a \(P_j \)-open nbd \(V \) of \(y \) such that \(x \in Q_j^* \cap f^{-1}(P_j-\text{cl} V) \cap Q_1^* \cap f^{-1}(P_1-\text{cl} U) \). Now since \(y = f^*(x) \subset \{ f(x) \in N(f, x \} \} \), Lemma 1 gives \(x \in Q_j^* \cap f^{-1}(P_j-\text{cl} V) \) which implies \(x \in Q_1^* \cap f^{-1}(P_1-\text{cl} U) \), contradicting the choice of \(x \). This proves (2.1).

Now to prove the pairwise \(\theta \)-continuity of \(f^* \), we first consider \(x \in X \). Suppose \(f^*(x) = y \), and let \(U \) be an arbitrary \(P_j \)-open nbd of \(y \). By \(ij*-\text{continuity} \) of \(f \) there exists a \(Q_j \)-open nbd \(U \) of \(x \) such that \(f(Q_j-\text{cl} U) \subset P_1-\text{cl} U \), i.e.,

\[
Q_1^* \cap \text{cl} f^{-1}(P_1-\text{cl} U) \subset P_1-\text{cl} U \tag{2.2}
\]

Define \(U_x = \{ x \cap U \} \), which is a \(Q_j \)-open nbd of \(x \). Then using the pairwise denseness of \(X \) we have

\[
Q_1^* - \text{cl} f^{-1}(P_1-\text{cl} U) \subset f(Q_1^* - \text{cl} f^{-1}(P_1-\text{cl} U)) \tag{2.3}
\]

Again, \(f(Q_1^* - \text{cl} f^{-1}(P_1-\text{cl} U)) = \{ f((X^*-X) \cap Q_1^* - \text{cl} f^{-1}(P_1-\text{cl} U) \} \cap f((X^*-X) \cap Q_1^* - \text{cl} f^{-1}(P_1-\text{cl} U)) \) for \(y \) by virtue of (2.1), (2.2) and (2.3).

Next we consider \(x \in X^*-X \), and let \(U \) be a \(ji*-\text{regularly open} \) set containing \(f^*(x) \) (= \(y \)). Hence \(y \in Y - U \), where \(Y - U \) is a \(ji*-\text{regularly closed} \) set. Since \(y \in \{ f(x) \in N(f, x \} \} \), Lemma 1 gives \(x \in Q_j^* - \text{cl} f^{-1}(P_1-\text{cl} U) \). Then by \(ji*-\text{regularness} \) of \(f \), \(x \in Q_j^* - \text{cl} f^{-1}(Y - U) \). Then \(U \subset Q_j^* - \text{cl} f^{-1}(Y - U) \), and thus \(x \in f(Q_j-\text{cl} U) \subset P_1-\text{cl} U \). This \(x \in Q_1^* - \text{cl} f^{-1}(P_1-\text{cl} U) \). If not, let \(x \in X^*-X \) but \(x \notin R.H.S. \). Let \(V \) be any \(Q_j \)-open nbd of \(x \). Since \(x \notin (X^*-X) \cap f^{-1}(Y - U) \) (note that \(x \notin R.H.S. \)) and \(X \) is pairwise dense in \(X \), \(V \cap (X^*-X) \cap f^{-1}(Y - U) \) is a \(Q_j \)-open nbd of \(x \), which gives \(V \cap f^{-1}(P_1-\text{cl} U) = \emptyset \). Hence \(x \notin Q_1^* - \text{cl} f^{-1}(P_1-\text{cl} U) \), a contradiction. Now since \(U \subset Q_j^* - \text{cl} f^{-1}(Y - U) = \emptyset \), \(U \subset Q_1^* - \text{cl} f^{-1}(P_1-\text{cl} U) \), i.e.,

\[
Q_1^* - \text{cl} f^{-1}(P_1-\text{cl} U) \subset Q_1^* - \text{cl} f^{-1}(P_1-\text{cl} U) \tag{2.4}
\]
Again, \(U \cap X = X - Q_j \ast \text{cl} f^{-1}(Y - U_y) \subseteq X - f^{-1}(Y - U_y) = f^{-1}(U_y) \). Thus
\[
Q_j - \text{cl}(U \cap X) \subseteq Q_j - \text{cl} f^{-1}(U_y) \tag{2.5}
\]

Now, \(f^*(Q_j - \text{cl} U_x) = f^*((X - X) \cap Q_j - \text{cl} U_x) \cup f^*((X - X) \cap Q_j - \text{cl} U_x) \cup f(Q_j - \text{cl}(U \cap X)) \) (as \(X \) is pairwise dense in \(X \subseteq P_j - \text{cl} U_y \) (by (2.1), (2.4), (2.5) and Lemma 2, noting that \(f \) is \(i j \)-\(@ \)-continuous). If \(U_y \) be any \(P_j \)-open nbd of \(f^*(x) \), then \(U_y = P_j - \text{int} P_j - \text{cl} U_y \) is a \(ji \)-regularly open set containing \(y \). Thus by what we have obtained so far, there is a \(Q_j \ast \text{open nbd} U_x \) of \(x \) with \(f^*(Q_j - \text{cl} U_x) \subseteq P_j - \text{cl} U_y = P_j - \text{cl} U_y' \). Hence \(f^* \) is \(ji \)-\(@ \)-continuous at each point of \(X^* - X \). Thus we infer that \(f^* : X^* \rightarrow Y \) is \(ji \)-\(@ \)-continuous. The \(ij \)-\(@ \)-continuity of \(f^* \) can similarly be dealt with. The uniqueness of the extension \(f^* \) of \(f \) follows from Theorems 1 and 2.

REMARK 1. Putting \(Q_1 = Q_2 \) and \(P_1 = P_2 \) in the above theorem, we get Theorem 3.1 of Rudolf [5]. If \(X \) and \(Y \) are topological spaces, then the \(\theta \)-properness of a map \(f : X \rightarrow Y \) is ensured by the \(QHC \) property of \(Y \) (see [5] for details). In bitopological setting, the definition of pairwise \(QHC \) property of \(Y \) (cf. [4]) implies that \(\bigcap \{ P_j - \text{cl} U : U \in T(f, N_x) \} \neq \emptyset \), for \(i, j = 1, 2 \) (\(i \neq j \)). But it is not necessary that \(\bigcap \{ P_j - \text{cl} U : U \in T(f, N_x) \} \neq \emptyset \). Hence in our case, the role of pairwise \(\theta \)-properness of \(f \) in Theorem 3 cannot be replaced, in general, by pairwise \(\ast \)-Hausdorffness of \((Y, P_1, P_2) \). Nevertheless, taking \(Q_1 = Q_2 \) and \(P_1 = P_2 \) we see that every \(\ast \)-free \(\theta \)-continuous map from a topological space \(X \) to any \(H \)-closed topological space \(Y \) can be extended uniquely over any extension space \(X^* \) of \(X \).

EXAMPLE 1. Let \(X^* = Y = R (= \) the set of reals), \(Q_1 = P_1 = \) the usual topology on \(R \) and \(Q_2 = P_2 = \) the lower limit topology on \(R \). If \(X = \) the set of rationals and \(Q_i = Q_1 \ast /X \), for \(i = 1 \) and 2, then clearly \((X^*, Q_1, Q_2) \) is an extension of \((X, Q_1, Q_2) \) and also, the map \(f : (X, Q_1, Q_2) \rightarrow (Y, P_1, P_2) \), defined by \(f(x) = x \) (\(x \in X \)), is pairwise \(\theta \)-continuous and pairwise \(\ast \)-proper. Since \((Y, P_1, P_2) \) is pairwise Hausdorff, \(f \) has a unique pairwise \(\theta \)-continuous extension over \(X^* \), by Theorem 3.

ACKNOWLEDGEMENT. The authors are grateful to the referee for certain constructive suggestions towards the improvement of the paper.

REFERENCES

Advances in Difference Equations

Special Issue on
Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back to its founder Stefan Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on time scales can build bridges between continuous and discrete mathematics; moreover, it often reveals the reasons for the discrepancies between two theories.

In recent years, the study of dynamic equations has led to several important applications, for example, in the study of insect population models, neural network, heat transfer, and epidemic models. This special issue will contain new researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/ade/guidelines.html. Authors should follow the Advances in Difference Equations manuscript format described at the journal site http://www.hindawi.com/journals/ade/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>April 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>July 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>October 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor
Alberto Cabada, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; alberto.cabada@usc.es

Guest Editor
Victoria Otero-Espinar, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; mvictoria.otero@usc.es