A FIXED POINT THEOREM FOR A NONLINEAR TYPE CONTRACTION

S. A. HUSAIN and V. M. SEHGAL
Department of Mathematics
University of Wyoming
Laramie, Wyoming 82071

(Received January 31, 1978)

ABSTRACT. A well-known result of Boyd and Wong [1] on nonlinear contractions is extended. Several other known results are obtained as special cases.

INTRODUCTION.

In this paper, we extend a well-known result of Boyd and Wong [1] and obtain as consequences several other known results (see [2], [3], [4], [5]).

Throughout this paper, let (X,d) be a complete metric space, \(\mathbb{R}^+ \) the nonnegative reals and \(\phi = \phi(t_1, t_2, t_3, t_4, t_5): (\mathbb{R}^+)^5 \to \mathbb{R}^+ \) a function which is (a) continuous from right in each coordinate variable (b) nondecreasing in \(t_2, t_3, t_4, t_5 \), and satisfies the inequality (c) \(\phi(t, s, s, as, bs) < \max\{t, s\} \) if \(\max\{t, s\} > 0 \) where \(\{a, b\} \subseteq \{0, 1, 2\} \) with \(a + b = 2 \). Note that (c) implies that \(\phi(t, t, t, t, t) < t \) for any \(t > 0 \).

2. MAIN RESULTS.

The following is the main result of this paper.

THEOREM 1. Let \(f, g: X \to X \) be two commutative mappings such that

(i) \(fX \subseteq gX \),

(ii) \(g \) is continuous,

(iii) \(d(fx, fy) \leq \phi(d(gx, gy), d(fx, gx), d(fy, gy), d(fx, gy), d(fy, gx)) \),

for each \(x, y \in X \). Then, there exists a unique \(u \in X \) with \(fu = gu = u \).
We first prove the following lemma which simplifies the proof of the above theorem.

LEMA. Under the conditions of Theorem 1, if there exists a \(v \in X \) such that \(f(v) = g(v) \), then there exists a unique \(u \in X \) with \(f(u) = g(u) = u \).

PROOF. We show that for any \(w \in X \)

\[
 f(w) = g(w) \implies f(v) = f(w) \tag{2.1}
\]

Suppose \(t = d(fv, fw) > 0 \). Then it follows by (iii) that

\[
t < \phi(t, 0, 0, t, t) \leq \phi(t, t, t, t, t) < t,
\]

a contradiction. Thus \(f(v) = f(w) \). Now, since \(f(w) = g(w) \), therefore, \(f(fw) = g(fw) \) and consequently by (2.1)

\[
f(w) = f(fw) = g(fw).
\]

Thus, if we set \(u = f(w) \), then \(f(u) = g(u) = u \). The uniqueness of \(u \) now follows from (2.1).

PROOF OF THEOREM 1. Let \(x \) be an arbitrary point in \(X \). Construct a sequence \(\{ y_n \} \) in \(X \) as follows. Let \(y_0 = fx_0 \). By (i) there exists a \(x_1 \in X \) such that

\[
y_o = gx_1.
\]

Set \(y_1 = fx_1 \). Thus, if \(y_0, y_1, \ldots, y_n \) are obtained with \(y_n = fx_n \), there exists by (i) a \(x_{n+1} \in X \) such that \(y_n = gx_{n+1} \). Let \(y_{n+1} = fx_{n+1} \). Thus, for each \(n \in \mathbb{I} \) (nonnegative Integers),

\[
y_n = fx_n = gx_{n+1} \tag{2.2}
\]

We shall show that \(\{ y_n \} \) is a Cauchy sequence in \(X \). For this, let for each \(n \in \mathbb{I} \), \(d_n = d(y_n, y_{n+1}) \). Then by (i) and (b),

\[
d_{n+1} = d(fx_{n+1}, fx_{n+2}) \leq \phi(d_n, d_n, d_{n+1}, 0, d_n, d_{n+1}) \tag{2.3}
\]

Now, if for some \(n \in \mathbb{I} \), \(d_{n+1} > d_n \), then by (b) and (c)

\[
d_{n+1} \leq \phi(d_n, d_{n+1}, d_{n+1}, 0, d_{n+1}, 0, 2d_{n+1}) < d_{n+1},
\]
a contradiction. Thus for each \(n \in I \), \(d_{n+1} \leq d_n \), that is \(\{d_n\} \) is a nonincreasing sequence of nonnegative reals and consequently there exists a \(d \in \mathbb{R}^+ \) such that \(\{d_n\} \to d \). Clearly \(d = 0 \), for otherwise by (2.3) and (c),

\[
 d < \phi(d,d,d,0,2d) < d,
\]
a contradiction. Thus,

\[
d_n \to 0. \tag{2.4}
\]

Suppose, now that \(\{y_n\} \) is not a Cauchy sequence. Then there exists an \(E > 0 \) such that for each \(k \in I \), there exist integers \(n(k), m(k) \) with \(k \leq n(k) < m(k) \) satisfying

\[
 E_k = d(y_{n(k)}, y_{m(k)}) > E.
\]

Let \(m(k) \) be the least integer greater than \(n(k) \) such (2.4) holds. This implies that for each \(k \in I \), \(d(y_{n(k)}, y_{m(k)-1}) \leq E \). Consequently, for each \(k \in I \),

\[
 E < E_k \leq d(y_{n(k)}, y_{m(k)-1}) + d(y_{m(k)-1}, y_{m(k)}) \leq E + d_k. \tag{2.5}
\]

Hence, it follows by (2.4) that as \(k \to \infty \), \(E_k \to E \).

However, for each \(k \in I \),

\[
 E_k \leq d_n(k) + d(fx_{n(k)}+1, fx_{m(k)+1}) + d_m(k),
\]

\[
 \leq 2d_k + \phi(E_k, d_k, d_k, E_k + d_k, E_k + d_k),
\]

Therefore, as \(k \to \infty \),

\[
 E \leq \phi(E, 0, 0, E, E) < E,
\]

contradicting the existence of \(E > 0 \). Thus, \(\{y_n\} \) is a Cauchy sequence in \(X \).

Consequently, there is a \(v \in X \) such that \(\{y_n\} \to v \), that is

\[
 fx_n = gx_{n+1} \to v. \tag{2.6}
\]

We show that for this \(v \),

\[
 \alpha = d(fv, gv) = 0.
\]
Suppose \(\alpha > 0 \). Now by (ii) and (2.6) we have,
\[
f_{gx_n} = g_{fx_n} \Rightarrow \gamma v \quad \text{and} \quad g_{2x_n} \Rightarrow \gamma v.
\]

Also, it follows by (b) and (iii) that,
\[
d(f(gx_n),fv) \leq \phi(d(g^2x_n,gv), d(fgx_n,g^2x_n), \alpha, d(fgx_n,gv), \alpha + d(gv,g^2x_n)).
\]

Therefore, as \(n \to \infty \), the above inequality yields that
\[
\alpha = d(gv,fv) \leq \phi(0,0,\alpha,\alpha) < \alpha,
\]
a contradiction. Thus \(fv = gv \) and hence by the above lemma, there is a unique \(u \in X \) satisfying \(fu = gu = u \).

In the special case when \(g \) is taken to be the identity map of \(x \) in Theorem 1, we have

COROLLARY 1. Let \(f:X \to X \) satisfy either of the following conditions: for all \(x,y \in X \),
\[\]
(A). \(d(fx, fy) \leq \phi(d(x,y), d(x,fx), d(y,fy), d(x,fy), d(y,fx)). \]
(B). \(d(fx, fy) \leq \alpha(d(x,fx) + d(y,fy)) + \beta(d(x,fy) + d(y,fx)) + \gamma(d(x,y)) \)
\[\]
where \(\alpha > 0, \beta > 0 \) and \(\gamma: \mathbb{R}^+ \to \mathbb{R}^+ \) is a right continuous function satisfying
\[\]
\(\gamma(t) < (1-2\alpha-2\beta)t \) if \(t > 0 \). Then \(f \) has a unique fixed point in \(X \).

PROOF. The conclusion is an obvious consequence of Theorem 1 if (A) holds.
In case of condition (B), let \(\phi:(\mathbb{R}^+)^5 \to \mathbb{R}^+ \) be defined by
\[
\phi(t_1,t_2,t_3,t_4,t_5) = \gamma(t_1) + \alpha(t_2 + t_3) + \beta(t_4 + t_5).
\]
then \(\phi \) satisfies conditions (a), (b) and (c). Thus the conclusion again follows by Theorem 1.

It may be remarked that if \(\alpha = \beta = 0 \) in (B) then Corollary 1 yields a well-known result of Boyd and Wong [1]. If \(\gamma(t) = at \), then Corollary 1 yields certain results of Hardy and Rogers [2], Kannan [3], Reich [4], Sehgal [5]. All these results are special cases of Theorem 1.
REFERENCES

KEY WORDS AND PHRASES. Nonlinear type contraction, Fixed point theorems.

Special Issue on
Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/jamds/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>June 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>September 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>December 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be

Hindawi Publishing Corporation
http://www.hindawi.com