EXISTENCE AND GLOBAL STABILITY OF POSITIVE
PERIODIC SOLUTIONS OF A DISCRETE
DELAY COMPETITION SYSTEM

HAI-FENG HUO and WAN-TONG LI

Received 15 October 2002

The existence and the global stability of positive periodic solutions of a discrete competition model is studied. The model incorporates time delays and allows for a fluctuating environment. By means of some standard procedures of the topological degree method and the construction of a suitable Lyapunov function, sufficient conditions are obtained to ensure the existence and the global stability of positive periodic solutions of the above systems.

2000 Mathematics Subject Classification: 92D25, 39A10.

1. Introduction. There has been quite a lot of excellent work on the study of ecological competition systems (see [3, 4, 11, 16] and the references therein). The classical two-species Lotka-Volterra autonomous competition model is described by the following systems of differential equations:

\[u'(t) = u(t)\left[r_1 - au(t) - bv(t)\right], \]
\[v'(t) = v(t)\left[r_2 - cu(t) - dv(t)\right], \tag{1.1} \]

Though much progress has been seen in the competition systems (1.1), such systems are not well studied in the sense that most results are continuous time cases related. However, many authors [1, 2, 9, 17] have argued that the discrete time models governed by difference equations are more appropriate than the continuous ones when the populations have nonoverlapping generations. Discrete time models can also provide efficient computational models of continuous models for numerical simulations. In [20], Saito et al. considered the following discrete competition system with constant delays \(n_1, n_2, l_1, \) and \(l_2 \):

\[u(k+1) = u(k)\exp\left[r_1 - au(k-n_1) - bv(k-n_2)\right], \]
\[v(k+1) = v(k)\exp\left[r_2 - cu(k-l_1) - dv(k-l_2)\right], \tag{1.2} \]

and they obtained a necessary and sufficient condition for the permanence of (1.2). On the other hand, the variation of the environment plays an important
role in many biological and ecological systems. In particular, the effects of a periodically varying environment are important for the evolutionary theory as the selective forces on systems in a fluctuating environment differ from those in a stable environment. Thus, the assumption of periodicity of the parameters (in a way) incorporates the periodicity of the environment (e.g., seasonal effects of weather, food supplies, mating habits, etc.). In fact, it has been suggested by Nicholson [18] that any periodic change of climate tends to impose its period upon oscillations of internal origin or to cause such oscillations to have a harmonic relation to periodic climatic changes. Therefore, it is physically reasonable to assume that parameters in the models are periodic functions. We remark that in recent years periodic population dynamics has become a very popular subject. In fact, several different periodic models have been studied in [14, 15, 21, 22, 23, 25].

Motivated by all of the above, the principal aim of this paper is to study the global existence of periodic solutions of the following discrete delay competition system:

\[
\begin{align*}
 u(k+1) &= u(k) \exp \left[r_1(k) - a(k)u(k-n_1) - b(k)v(k-n_2) \right], \\
 v(k+1) &= v(k) \exp \left[r_2(k) - c(k)u(k-l_1) - d(k)v(k-l_2) \right],
\end{align*}
\]

(1.3)

where \(u(k), v(k) \) are the population sizes of the two competitors at generation \(k \), \(r_i(k), i = 1, 2 \), is the growth rate of population \(i \) at \(k \)th generation, \(a(k), d(k) \) measure the intensity of intraspecific competition of two species, and \(b(k), c(k) \) measure the intensity of interspecific competition of two species. It is assumed that \(r_i(k), i = 1, 2, a(k), b(k), c(k), d(k) : \mathbb{Z} \rightarrow \mathbb{R}^+ \) are \(\omega \) periodic, that is,

\[
\begin{align*}
 r_i(k+\omega) &= r_i(k), \quad i = 1, 2, \\
 c(k+\omega) &= c(k), \\
 b(k+\omega) &= b(k), \\
 a(k+\omega) &= a(k), \\
 d(k+\omega) &= d(k),
\end{align*}
\]

(1.4)

for any \(k \in \mathbb{Z}, n_i, l_i \) are nonnegative integers. For biological reasons, we only consider the following initial condition:

\[
\begin{align*}
 u(-m) &\geq 0, \quad m = 1, \ldots, \max \{ n_1, l_1 \}, \quad u(0) > 0, \\
 v(-m) &\geq 0, \quad m = 1, \ldots, \max \{ n_2, l_2 \}, \quad v(0) > 0.
\end{align*}
\]

(1.5)

The method used here will be the coincidence degree theory developed by Gaines and Mawhin [10]. Such an approach was adopted in [5, 13, 14, 15, 23].

In mathematical biology, the global stability of a population model is of great interest. There is extensive literature related to this topic for differential equation models (see [16, 19, 24] and the references therein). In contrast,
the studies for many-species difference models focus their attention on the permanence of models or extinction of populations (see [6, 7, 8, 12, 20] and the references therein). Few papers investigate the global stability of positive periodic solutions of these models. So the second purpose of this paper is to study the global stability of the positive periodic solution of system (1.3).

The organization of this paper is the following. In Section 2, we obtain the sufficient conditions to ensure the existence of positive periodic solution of system (1.3). In Section 3, we study the global stability of the positive periodic solution of system (1.3).

2. Existence of positive periodic solutions. In this section, we use the Mawhin’s continuation theorem of the coincidence degree theory to investigate the existence of at least one positive periodic solution of system (1.3).

Let X, Y be real Banach spaces, $L : \text{Dom} L \subset X \to Y$ a Fredholm mapping of index zero ($\text{index}L = \text{dim} \ker L - \text{codim} \text{Im} L$), and $P : X \to X, Q : Y \to Y$ continuous projectors such that $\text{Im} P = \ker L, \ker Q = \text{Im} L, X = \ker L \oplus \ker P$, and $Y = \text{Im} L \oplus \text{Im} Q$. Denote by L_p the restriction of L to $\text{Dom} \cap \ker P$, $K_p : \text{Im} L \to \ker P \cap \text{Dom} L$ the inverse (to L_p), and $J : \text{Im} Q \to \ker L$ an isomorphism of $\text{Im} Q$ onto $\ker L$. For convenience, we introduce a continuation theorem [10, page 40] as follows.

Lemma 2.1. Let $\Omega \subset X$ be an open bounded set, $N : X \to Y$ a continuous operator which is L-compact on $\overline{\Omega}$ (i.e., $QN : \overline{\Omega} \to Y$ and $K_p(I - Q)N : \overline{\Omega} \to Y$ are compact), and $L : \text{Dom} L \subset X \to Y$ a Fredholm mapping of index zero with Ω open bounded in X. Assume that

- for each $\lambda \in (0, 1), x \in \partial \Omega \cap \text{Dom} L$,
 \[Lx = \lambda Nx, \]
 \[(2.1) \]

- for each $x \in \partial \Omega \cap \ker L$,
 \[QNx \neq 0, \]
 \[\deg \{JQNx, \Omega \cap \ker L, 0\} \neq 0. \]
 \[(2.2) \]

Then $Lx = Nx$ has at least one solution in $\overline{\Omega} \cap \text{Dom} L$.

For convenience, we will introduce the notations

\[I_\omega = \{0, 1, \ldots, \omega - 1\}, \quad \overline{u} = \frac{1}{\omega} \sum_{k=0}^{\omega-1} u(k), \quad (u)_M = \max_{k \in I_\omega} u(k), \]
\[(2.3) \]

where $\{u(k)\}$ is an ω-periodic sequence of real numbers defined for $k \in \mathbb{Z}$ and ω is a fixed positive integer.
Lemma 2.2 [5]. Let \(u : \mathbb{Z} \to \mathbb{R} \) be \(\omega \) periodic, that is, \(u(k + \omega) = u(k) \). Then, for any fixed \(k_1, k_2 \in I_\omega \), and for any \(k \in \mathbb{Z} \),

\[
\begin{align*}
 u(k) &\leq u(k_1) + \sum_{s=0}^{\omega-1} |u(s+1) - u(s)|, \\
 u(k) &\geq u(k_2) - \sum_{s=0}^{\omega-1} |u(s+1) - u(s)|.
\end{align*}
\]

Define

\[
l_2 = \{ x = \{ x(k) \} : x(k) \in \mathbb{R}^2, k \in \mathbb{Z} \}. \tag{2.5}
\]

For \(a = (a_1,a_2)^T \in \mathbb{R}^2 \), define \(|a| = \max\{a_1,a_2\} \). Let \(l_\omega \subset l_2 \) denote the subspace of all \(\omega \) periodic sequences equipped with the usual supremum norm \(\| \cdot \| \), that is,

\[
\| x \| = \max_{k \in I_\omega} |x(k)|, \quad \text{for any} \ x = \{ x(k) : k \in \mathbb{Z} \} \in l_\omega. \tag{2.6}
\]

We can show that \(l_\omega \) is a finite-dimensional Banach space. Let

\[
l_\omega^0 = \left\{ x = \{ x(k) \} \in l_\omega : \sum_{k=0}^{\omega-1} x(k) = 0 \right\},
\]

and

\[
l_\omega^c = \{ x = \{ x(k) \} \in l_\omega : x(k) = h \in \mathbb{R}^2, k \in \mathbb{Z} \},
\]

then it follows that \(l_\omega^0 \) and \(l_\omega^c \) are both closed linear subspaces of \(l_\omega \) and

\[
l_\omega = l_\omega^0 \oplus l_\omega^c, \quad \dim l_\omega^c = 2. \tag{2.8}
\]

Now we state our fundamental theorem about the existence of a positive \(\omega \)-periodic solution of system (1.3).

Theorem 2.3. Assume that the following conditions hold:

(i) \(\bar{\tau}_1 - \bar{\beta}(\bar{\tau}_1/\bar{\alpha}) \exp 2\bar{\tau}_2 \omega > 0; \)
(ii) \(\bar{\tau}_2 - \bar{\tau}(\bar{\tau}_1/\bar{\beta}) \exp 2\bar{\tau}_1 \omega > 0; \)
(iii) the system of equations

\[
\begin{align*}
 \bar{\tau}_1 - \bar{\alpha} v_1 - \bar{\beta} v_2 &= 0, \\
 \bar{\tau}_2 - \bar{\tau} v_1 - \bar{\alpha} v_2 &= 0,
\end{align*}
\]

has a unique positive solution \((v_1,v_2) \in \mathbb{R}^2 \).

Then system (1.3) has at least one positive \(\omega \)-periodic solution, say \(x^*(k) = \{ u^*(k), v^*(k) \} \) and there exist positive constants \(\alpha_i \) and \(\beta_i, i = 1,2 \), such that

\[
\alpha_1 \leq u^*(k) \leq \beta_1, \quad \alpha_2 \leq v^*(k) \leq \beta_2, \quad k \in \mathbb{Z}. \tag{2.10}
\]
Proof. Let
\[
\begin{align*}
u(k) &= \exp \{ x_1(k) \}, \\
v(k) &= \exp \{ x_2(k) \}.
\end{align*}
\] (2.11)

Consider the system
\[
\begin{align*}
x_1(k+1) - x_1(k) &= r_1(k) - a(k) \exp x_1(k-n_1) - b(k) \exp x_2(k-n_2), \\
x_2(k+1) - x_2(k) &= r_2(k) - c(k) \exp x_1(k-l_1) - d(k) \exp x_2(k-l_2).
\end{align*}
\] (2.12)

In order to apply Lemma 2.1 to system (2.12), we take
\[
\begin{align*}X &= Y = l^o, \\
(Lx)(k) &= x(k+1) - x(k), \\
(Nx)(k) &= \begin{bmatrix} r_1(k) - a(k) \exp x_1(k-n_1) - b(k) \exp x_2(k-n_2) \\ r_2(k) - c(k) \exp x_1(k-l_1) - d(k) \exp x_2(k-l_2) \end{bmatrix},
\end{align*}
\] (2.13)

for any \(x \in X \) and \(k \in \mathbb{Z} \). It is trivial to see that \(L \) is a bounded linear operator and
\[
\begin{align*}
\ker L &= l^o_c, \\
\im L &= l^o_0,
\end{align*}
\] (2.14)

as well as
\[
\| \ker L \| = 2 = \text{codim} \im L,
\] (2.15)

then it follows that \(L \) is a Fredholm mapping of index zero.

Define
\[
\begin{align*}
P x &= \frac{1}{\omega} \sum_{s=0}^{\omega-1} x(s), \quad x \in X, \\
Q z &= \frac{1}{\omega} \sum_{s=0}^{\omega-1} z(s), \quad z \in Y.
\end{align*}
\] (2.16)

It is not difficult to show that \(P \) and \(Q \) are continuous projectors such that
\[
\begin{align*}
\im P &= \ker L, \\
\im L &= \ker Q = \im (I - Q),
\end{align*}
\] (2.17)

Furthermore, the generalized inverse (to \(L \)) \(K_p : \im L \to \ker P \cap \dom L \) has the form
\[
K_p(z) = \sum_{s=0}^{k-1} z(s) - \frac{1}{\omega} \sum_{s=0}^{\omega-1} (\omega - s) z(s).
\] (2.18)

By the Lebesgue theorem, we can prove that \(QN \) and \(K_p(I - Q)N \) are continuous. Since \(X \) is a finite-dimensional Banach space, using the Arzela-Ascoli
theorem, we can also show that $QN(\Omega)$ and $K_p(I - Q)N(\Omega)$ are relatively compact for any open bounded set $\Omega \subset X$. Hence, N is L-compact on Ω, here Ω is any open bounded set in X.

Now we reach the position to search for an appropriate open bounded subset Ω for the application of Lemma 2.1. Corresponding to the equation $Lx = \lambda Nx$, $\lambda \in (0, 1)$, we have

\begin{equation}
\begin{aligned}
x_1(k+1) - x_1(k) &= \lambda[r_1(k) - a(k) \exp x_1(k - n_1) \\
&\quad - b(k) \exp x_2(k - n_2)], \\
x_2(k+1) - x_2(k) &= \lambda[r_2(k) - c(k) \exp x_1(k - l_1) \\
&\quad - d(k) \exp x_2(k - l_2)].
\end{aligned}
\end{equation}

(2.19)

Suppose that $x(k) = (x_1(k), x_2(k)) \in X$ is a solution of system (2.12) for a certain $\lambda \in (0, 1)$. Summing up both sides of (2.19) from 0 to $\omega - 1$, we obtain

\begin{equation}
\begin{aligned}
\sum_{k=0}^{\omega-1} [r_1(k) - a(k) \exp x_1(k - n_1) - b(k) \exp x_2(k - n_2)] \\
= \sum_{k=0}^{\omega-1} [x_1(k+1) - x_1(k)] = 0,
\end{aligned}
\end{equation}

(2.20)

\begin{equation}
\begin{aligned}
\sum_{k=0}^{\omega-1} [r_2(k) - c(k) \exp x_1(k - l_1) - d(k) \exp x_2(k - l_2)] \\
= \sum_{k=0}^{\omega-1} [x_2(k+1) - x_2(k)] = 0.
\end{aligned}
\end{equation}

Thus

\begin{equation}
\begin{aligned}
\sum_{k=0}^{\omega-1} [a(k) \exp x_1(k - n_1) + b(k) \exp x_2(k - n_2)] &= \bar{r}_1 \omega, \\
\sum_{k=0}^{\omega-1} [c(k) \exp x_1(k - l_1) + d(k) \exp x_2(k - l_2)] &= \bar{r}_2 \omega.
\end{aligned}
\end{equation}

(2.21)

(2.22)

From (2.19), (2.21), and (2.22), it follows that

\begin{equation}
\begin{aligned}
\sum_{k=0}^{\omega-1} [x_1(k+1) - x_1(k)] \\
= \lambda \sum_{k=0}^{\omega-1} [r_1(k) - a(k) \exp x_1(k - n_1) - b(k) \exp x_2(k - n_2)] \\
< \bar{r}_1 \omega + \sum_{k=0}^{\omega-1} [a(k) \exp x_1(k - n_1) + b(k) \exp x_2(k - n_2)] \\
= 2\bar{r}_1 \omega,
\end{aligned}
\end{equation}

(2.19)
\[
\begin{align*}
\sum_{k=0}^{\omega-1} [x_2(k+1) - x_2(k)] &= \lambda \sum_{k=0}^{\omega-1} [r_2(k) - c(k) \exp x_1(k-l_1) - d(k) \exp x_2(k-l_2)] \\
&< \mathcal{R}_2 \omega + \sum_{k=0}^{\omega-1} [c(k) \exp x_1(k-l_1) + d(k) \exp x_2(k-l_2)] \\
&= 2\mathcal{R}_2 \omega.
\end{align*}
\]

(2.23)

That is
\[
\begin{align*}
\sum_{k=0}^{\omega-1} [x_1(k+1) - x_1(k)] &< 2\mathcal{R}_1 \omega, \\
\sum_{k=0}^{\omega-1} [x_2(k+1) - x_2(k)] &< 2\mathcal{R}_2 \omega.
\end{align*}
\]

(2.24)

Note that \((x_1(k), x_2(k))^T \in X\), then there exists \(\xi_i, \eta_i \in I_{\omega}\), \(i = 1, 2, 3\), such that
\[
\begin{align*}
\xi_i = \min_{k \in I_{\omega}} x_i(k), \\
\eta_i = \max_{k \in I_{\omega}} x_i(k), \\
i = 1, 2.
\end{align*}
\]

(2.25)

From (2.21), (2.22), and (2.25), we have
\[
\begin{align*}
x_2(\xi) &= \ln \left(\frac{\mathcal{R}_1}{b}\right), \\
x_1(\xi) &= \ln \left(\frac{\mathcal{R}_1}{a}\right).
\end{align*}
\]

(2.26)

Then, by (2.26) and Lemma 2.2, we have
\[
\begin{align*}
x_1(k) &\leq x_1(\xi) + \sum_{s=0}^{\omega-1} [x_1(s+1) - x_1(s)] < \ln \left(\frac{\mathcal{R}_1}{b}\right) + 2\mathcal{R}_1 \omega := M_1, \\
x_2(k) &\leq x_2(\xi) + \sum_{s=0}^{\omega-1} [x_2(s+1) - x_2(s)] < \ln \left(\frac{\mathcal{R}_1}{a}\right) + 2\mathcal{R}_2 \omega := M_2.
\end{align*}
\]

(2.27)

By virtue of (2.21) and assumption (i), we obtain that
\[
\sum_{k=0}^{\omega-1} [a(k) \exp x_1(k-n_1)] = \mathcal{R}_1 \omega - \sum_{k=0}^{\omega-1} [b(k) \exp x_2(k-n_2)]
\]
\[
> \mathcal{R}_1 \omega - \mathcal{B} \omega \frac{\mathcal{R}_1}{a} \exp 2\mathcal{R}_2 \omega > 0,
\]

(2.28)

which implies that there exist a point \(k_1 \in I_{\omega}\) and a constant \(M_3 > 0\) such that \(x(k_1 - n_1) > -M_3\), denote \(k_1 - n_1 = k_1^* + m_1 \omega\), \(k_1^* \in I_{\omega}\), \(m_1\) is an integer, then
\[
x_1(k_1^*) > -M_3.
\]

(2.29)
Similarly, from (2.22) and assumption (ii), we also obtain that there exist a point \(k^*_2 \in [0, \omega] \) and a constant \(M_4 > 0 \) such that
\[
x_2(k^*_2) > -M_4.
\] (2.30)

By (2.24), (2.29), (2.30), and Lemma 2.2, it is easy to see that
\[
x_1(k) > -(M_3 + 2r_1 \omega), \quad x_2(k) > -(M_4 + 2r_2 \omega).
\] (2.31)

It follows from (2.27) and (2.31) that
\[
|x_1(k)| < \max \{M_1, M_3 + 2r_1 \omega\} = M_5,
\]
\[
|x_2(k)| < \max \{M_2, M_4 + 2r_2 \omega\} = M_6.
\] (2.32)

Clearly, \(M_i \ (i = 1, 2, 3, 4, 5, 6) \) are independent of \(\lambda \), and under assumption (iii) of the theorem, the system of the algebraic equations
\[
\begin{align*}
\bar{r}_1 - \bar{a}v_1 - \bar{b}v_2 &= 0, \\
\bar{r}_2 - \bar{c}v_1 - \bar{d}v_2 &= 0,
\end{align*}
\] (2.33)

has a unique solution \((v_1^*, v_2^*)\) which satisfies \(v_1^* > 0 \) and \(v_2^* > 0 \). Denote
\[
M = M_5 + M_6 + K,
\] (2.34)

where \(K > 0 \) is taken sufficiently large so that the unique solution of system (2.33) satisfies
\[
\|(v_1^*, v_2^*)\| = |v_1^*| + |v_2^*| < M.
\] (2.35)

Now we take
\[
\Omega = \{x = (x_1(k), x_2(k))^T \in X : \|(x_1, x_2)\| < M\}.
\] (2.36)

This satisfies condition (a) of Lemma 2.1. When
\[
x \in \partial \Omega \cap \ker L = \partial \Omega \cap \mathbb{R}^2,
\] (2.37)

\(x \) is a constant vector in \(\mathbb{R}^2 \) with \(\|x\| = M \). Then
\[
QN \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \bar{r}_1 - \bar{a} \exp x_1 - \bar{b} \exp x_2 \\ \bar{r}_2 - \bar{c} \exp x_1 - \bar{d} \exp x_2 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}.
\] (2.38)

Furthermore, it can easily be seen that
\[
\deg \{JQN(x_1, x_2)^T, \Omega \cap \ker L, (0, 0)^T\} = \text{sign} [(\bar{a}\bar{d} - \bar{b}\bar{c})v_1^*v_2^*] \neq 0,
\] (2.39)

where \(J \) is the identity mapping since \(\text{Im} Q = \ker L \). By now we know that \(\Omega \) verifies all the requirements of Lemma 2.1, and then (2.12) has at least one \(\omega \)-periodic solution. The proof is complete. \(\square \)
In view of Theorem 2.3, we can easily obtain the following corollary.

Corollary 2.4. Assume that Theorem 2.3(i) and (ii) hold and that

\[
\frac{\tau_1 d - \tau_2 b}{a} > 0, \quad \frac{\tau_2 - c \tau_1}{a} > 0, \quad \frac{\tau_1 d - \tau_2 b}{a} > 0.
\]

Then system (1.3) has at least one positive \(\omega \)-periodic solution.

Remark 2.5. The continuous counterpart of (1.3) under the assumption of Corollary 2.4 is

\[
u' = u'(t)[r_1(t) - a(t)u(t - n_1) - b(t)v(t - n_2)], \quad v' = v'(t)[r_2(t) - c(t)u(t - l_1) - d(t)v(t - l_2)],
\]

where \(r_1(t), a(t), b(t), r_2(t), c(t), \) and \(d(t) \) are positive periodic continuous functions with period \(\omega > 0 \), and \(\tau(t), \sigma(t) \) are periodic continuous functions with period \(\omega > 0 \). Huo and Li [13] have shown that if

\[
\frac{\tau_1 - b r_1}{a} \exp 2 \tau_2 \omega > 0, \quad \frac{\tau_2 - c \tau_1}{b} \exp 2 \tau_1 \omega > 0,
\]

\[
\frac{\tau_1 d - \tau_2 b}{a} > 0, \quad \frac{\tau_2 - c \tau_1}{a} > 0, \quad \frac{\tau_1 d - \tau_2 b}{a} > 0,
\]

then (2.41) has a positive periodic solution. Clearly, the criteria established above are similar to those for corresponding continuous systems.

Remark 2.6. Theorem 2.3 remains valid if some or all terms are replaced by terms with variable delays.

3. Global stability of positive periodic solutions. In this section, we derive sufficient conditions which guarantee that the positive \(\omega \)-periodic solution of (1.3) is globally stable. Our strategy in the proof of the global stability of the positive \(\omega \)-periodic solution of (1.3) is to construct suitable Lyapunov functions.

Theorem 3.1. In addition to the assumptions in Theorem 2.3, assume further that

(i) there exist positive constant \(\nu \) and positive constants \(c_i \) such that for all large \(k \),

\[
\min \{c_1 a(k) - c_2 c(k), \ c_2 d(k) - c_1 d(k)\} > \nu,
\]
(ii) $a(k)\beta_1 \leq 1$, $d(k)\beta_2 \leq 1$, for all large k, where β_i are given in Theorem 2.3,

(iii) $l_i = 0$, $n_i = 0$, $i = 1, 2$.

Then the positive ω-periodic solution of (1.3) is globally stable.

Proof. The existence of the positive ω-periodic solution of (1.3) follows from Theorem 2.3. Let \{\(u^*(k), v^*(k)\)\} be a positive ω-periodic solution of (1.3). We prove below that it is uniformly asymptotically stable. To this end, we introduce the change of variables

\[
 u_1(k) = u(k) - u^*(k), \quad u_2(k) = v(k) - v^*(k). \tag{3.2}
\]

System (1.3) is then transformed into

\begin{align*}
 u_1(k+1) & = u(k) \exp [r_1(k) - a(k)u(k) - b(k)v(k)] \\
 & \quad - u^*(k) \exp [r_1(k) - a(k)u^*(k) - b(k)v^*(k)], \\
 u_2(k+1) & = v(k) \exp [r_2(k) - c(k)u^*(k) - d(k)v(k)] \\
 & \quad - v^*(k) \exp [r_2(k) - c(k)u^*(k) - d(k)v^*(k)],
\end{align*}

\tag{3.3}

which can be rewritten as

\[
 u_1(k+1) = \exp [r_1(k) - a(k)u^*(k) - b(k)v^*(k)] \\
 \times ((1 - a(k)u^*(k))u_1(k) - b(k)u^*(k)u_2(k) + f_1(k,u(k))), \\
 u_2(k+1) = \exp [r_2(k) - c(k)u^*(k) - d(k)v^*(k)] \\
 \times ((1 - d(k)v^*(k))u_2(k) + c(k)v^*(k)u_1(k) + f_2(k,u(k))),
\tag{3.4}
\]

where $|f_i(k,u)|/\|u\|$ converges, uniformly with respect to $k \in \mathbb{N}$, to zero as $\|u\| \to 0$. In view of system (1.3), it follows from (3.4) that

\[
 u_1(k+1) = u^*(k+1) \left(1 - a(k)u^*(k) \frac{u_1(k)}{u^*(k)} - b(k)u_2(k) + \frac{f_1(k,u(k))}{u^*(k)} \right),
\tag{3.5}
\]

\[
 u_2(k+1) = v^*(k+1) \left(1 - d(k)v^*(k) \frac{u_2(k)}{v^*(k)} + c(k)u_1(k) + \frac{f_2(k,u(k))}{v^*(k)} \right).
\]

We define the function V by

\[
 V(u(k)) = c_1 \left| \frac{u_1(k)}{u^*(k)} \right| + c_2 \left| \frac{u_2(k)}{v^*(k)} \right|,
\tag{3.6}
\]
where c_j are positive constants given in (i). Calculating the difference of V along the solution of system (3.5) and using (ii), we obtain

$$\Delta V \leq -(c_1 a(k) - c_2 c(k)) x_1^*(k) \frac{u_1(k)}{x_1^*(k)} \left| - (c_2 d(k) - c_1 b(k)) x_2^*(k) \frac{u_2(k)}{x_2^*(k)} \right|$$

$$+ c_1 \left| f_1(k, u(k)) \right| \frac{u^*(k)}{u^*(k)} + c_2 \left| f_2(k, u(k)) \right| \frac{u^*(k)}{u^*(k)}.$$ (3.7)

Since $|f_i(k, u)|/\|u\|$ converges uniformly to zero as $\|u\| \to 0$, it follows from condition (i) and Theorem 2.3 that there is a positive constant γ such that if k is sufficiently large and $\|u(k)\| < \gamma$,

$$\Delta V \leq -\nu \|u(k)\|^2.$$ (3.8)

By [1], we see that the trivial solution of (3.5) is uniformly asymptotically stable, and so is the solution $\{u^*(k), v^*(k)\}$ of (1.3). Note that the positive solution $\{u(k), v(k)\}$ is chosen in an arbitrary way. Proceeding exactly as in [24], we conclude that the positive periodic solution $\{u^*(k), v^*(k)\}$ of (1.3) is globally stable. The proof is complete.

Remark 3.2. Theorem 3.1 indicates that diagonally dominant interaction matrices, together with small growth rates and strong persistence, ensure that the positive periodic solution of system (1.3) is globally asymptotically stable.

Remark 3.3. There are still many interesting and challenging mathematical questions to be studied for system (1.3). For example, we did not discuss the bifurcations that occur when conditions of stability are violated. We will leave this for future work.

Acknowledgments. This work is supported by the National Natural Science Foundation (NNSF) of China (10171040), the National Science Foundation (NSF) of Gansu Province of China (ZS011-A25-007-Z), and the Foundation for University Key Teacher by the Ministry of Education of China. It is also supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of Ministry of Education of China, the Key Research and Development Program for Outstanding Groups of Gansu University of Technology, and the Development Program for Outstanding Young Teachers in Gansu University of Technology.

References

Hai-Feng Huo: Department of Applied Mathematics, Gansu University of Technology, Lanzhou, Gansu 730050, China

Wan-Tong Li: Department of Mathematics, Lanzhou University, Lanzhou, Gansu 730000, China

E-mail address: wtli@lzu.edu.cn
Special Issue on
Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back to its founder Stefan Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on time scales can build bridges between continuous and discrete mathematics; moreover, it often reveals the reasons for the discrepancies between two theories.

In recent years, the study of dynamic equations has led to several important applications, for example, in the study of insect population models, neural network, heat transfer, and epidemic models. This special issue will contain new researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/ade/guidelines.html. Authors should follow the Advances in Difference Equations manuscript format described at the journal site http://www.hindawi.com/journals/ade/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>April 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>July 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>October 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Alberto Cabada, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; alberto.cabada@usc.es

Guest Editor

Victoria Otero-Espinara, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; mvictoria.oter@usc.es