INFINITE MATRICES, WAVELET COEFFICIENTS AND FRAMES

N. A. SHEIKH and M. MURSALEEN

Received 2 December 2003

We study the action of A on $f \in L^2(\mathbb{R})$ and on its wavelet coefficients, where $A = (a_{lmjk})_{lmjk}$ is a double infinite matrix. We find the frame condition for A-transform of $f \in L^2(\mathbb{R})$ whose wavelet series expansion is known.

2000 Mathematics Subject Classification: 42C15, 41A17, 42C40.

1. Introduction. The notation of frame goes back to Duffin and Schaeffer [7] in the early 1950s to deal with the problems in nonharmonic Fourier series. There has been renewed interest in the subject related to its role in wavelet theory. For a glance of the recent development and work on frames and related topics, see [3, 4, 5, 6, 9]. In this note, we will use the regular double infinite matrices (see [9, 10]) to obtain the frame conditions and wavelet coefficients.

2. Notations and known results. \mathbb{N} is the set of positive integers, \mathbb{Z} is the set of integers, \mathbb{R} is the set of real numbers. The space $L^2(\mathbb{R})$ of measurable function f is defined on the real line \mathbb{R}, that satisfies

$$\int_{-\infty}^{\infty} |f(x)|^2 dx < \infty. \quad (2.1)$$

The inner product of two square integrable functions $f, g \in L^2(\mathbb{R})$ is defined as

$$\langle f, g \rangle = \int_{-\infty}^{\infty} f(x) \overline{g(x)} dx,$$

$$\|f\|^2 = (f, f)^{1/2}. \quad (2.2)$$

Every function $f \in L^2(\mathbb{R})$ can be written as

$$f(x) = \sum_{j,k \in \mathbb{Z}} C_{j,k} \psi_{j,k}(x). \quad (2.3)$$

This series representation of f is called wavelet series. Analogous to the notation of Fourier coefficients, the wavelet coefficients $C_{j,k}$ are given by

$$C_{j,k} = \int_{-\infty}^{\infty} f(x) \psi_{j,k}(x) dx = \langle f, \psi_{j,k} \rangle,$$

$$\psi_{j,k} = 2^{j/2} \psi(2^j x - k). \quad (2.4)$$
Now, if we define an integral transform
\[(W\psi f)(b,a) = |a|^{-1/2} \int_{-\infty}^{\infty} f(x) \psi\left(\frac{x-b}{a}\right) dx, \quad f \in L^2(\mathbb{R}),\]
then the wavelet coefficients become
\[C_{j,k} = (W\psi f)\left(\frac{k}{2^j}, \frac{1}{2^j}\right),\]
\[A sequence \{x_n\} in a Hilbert space H is a frame if there exist constants c_1 and c_2, 0 < c_1 \leq c_2 < \infty, such that\]
\[c_1 \|f\|^2 \leq \sum_{n \in \mathbb{Z}} |\langle f, x_n \rangle|^2 \leq c_2 \|f\|^2,\]
for all \(f \in H\). The supremum of all such numbers \(c_1\) and infimum of all such numbers \(c_2\) are called the frame bounds of the frame. The frame is called tight frame when \(c_1 = c_2\) and is called normalized tight frame when \(c_1 = c_2 = 1\). Any orthonormal basis in a Hilbert space \(H\) is a normalized tight frame. The connection between frames and numerically stable reconstruction from discretized wavelet was pointed out by Grossmann et al. [8]. In 1985, they defined that a wavelet function \(\psi \in L^2(\mathbb{R})\), constitutes a frame with frame bounds \(c_1\) and \(c_2\), if for any \(f \in L^2(\mathbb{R})\) such that
\[c_1 \|f\|^2 \leq \sum_{j,k \in \mathbb{Z}} |\langle f, \psi_{j,k} \rangle|^2 \leq c_2 \|f\|^2.\]
Again, it is said to be tight if \(c_1 = c_2\) and is said to be exact if it ceases to be frame by removing any of its elements. There are many examples proposed by Daubechies et al. [6]. For further details, one can refer to [1, 5, 6]. Chui and Shi [2] proved that \(\{\psi_{j,k}\}\) is a frame for \(L^2(\mathbb{R})\) with bounds \(c_1\) and \(c_2\), if for some \(a > 1\) and \(b > 0\), the Fourier transform \(\hat{\psi}\) satisfies
\[c_1 \leq \frac{1}{b} \sum_{j \in \mathbb{Z}} |\hat{\psi}(a^j w)|^2 \leq c_2 \text{ a.e.,}\]
for some constants \(c_1\) and \(c_2\). By integrating each term in
\[\frac{c_1}{|w|} \leq \frac{1}{b} \sum_{j \in \mathbb{Z}} \frac{|\hat{\psi}(a^j w)|^2}{|w|} \leq \frac{c_2}{|w|},\]
over \(1 \leq |w| \leq a\), we have
\[2c_1 \log a \leq \frac{1}{b} \sum_{j \in \mathbb{Z}} \int_{1 \leq |w| \leq a} \frac{|\hat{\psi}(a^j w)|^2}{|w|} dw \leq 2c_2 \log a,\]
which immediately yields
\[c_1 \leq \frac{1}{2b \log a} \int_{-\infty}^{\infty} \frac{|\hat{\psi}(a^j w)|^2}{|w|} dw \leq c_2.\]
Let $A = (a_{mnjk})$ be a double infinite matrix of real numbers. Then, A-transform of a double sequence $x = (x_{jk})$ is

$$
\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{mnjk} x_{jk},
$$

which is called A-means or A-transform of the sequence $x = (x_{ij})$. This definition is due to Móricz and Rhoades [9].

A double matrix $A = (a_{mnjk})$ is said to be regular (see [10]) if the following conditions hold:

(i) $\lim_{m,n \to \infty} \sum_{j,k=0}^{\infty} a_{mnjk} = 1$,

(ii) $\lim_{m,n \to \infty} \sum_{j=0}^{\infty} |a_{mnjk}| = 0, \ (k = 0, 1, 2, \ldots)$,

(iii) $\lim_{m,n \to \infty} \sum_{k=0}^{\infty} |a_{mnjk}| = 0, \ (j = 0, 1, 2, \ldots)$,

(iv) $\|A\| = \sup_{m,n>0} \sum_{j,k=0}^{\infty} |a_{mn}| < \infty$.

Either of conditions (ii) and (iii) implies that

$$
\lim_{m,n \to \infty} a_{mnjk} = 0.
$$

In this note, we establish the frame condition by using A-transform of nonnegative regular matrix, also we find action of the matrix A on wavelet coefficients.

3. Main results. In this section, we prove the following theorems.

Theorem 3.1. Let $A = (a_{iljk})$ be a double nonnegative regular matrix. If

$$
f(x) = \sum_{j,k \in \mathbb{Z}} C_{j,k} \psi_{j,k}(x)
$$

is a wavelet expansion of $f \in L^2(\mathbb{R})$ with wavelet coefficients

$$
C_{j,k} = \int_{-\infty}^{\infty} f(x) \psi_{j,k}(x) dx = \langle f, \psi_{j,k} \rangle,
$$

then the frame condition for A-transform of $f \in L^2(\mathbb{R})$ is

$$
c_1 \|f\|^2 \leq \sum_{i,l \in \mathbb{Z}} |\langle Af, \psi_{i,l} \rangle|^2 \leq c_2 \|f\|^2,
$$

where Af is the A-transform of f and $0 < c_1 \leq c_2 < \infty$.

Theorem 3.2. If $C_{j,k}$ are the wavelet coefficients of $f \in L^2(\mathbb{R})$, that is, $C_{j,k} = \langle f, \psi_{j,k} \rangle$, then the $d_{l,m}$ are the wavelet coefficients of Af, where $\{d_{l,m}\}$ is defined as the A-transform of $\{C_{j,k}\}$ by

$$
d_{l,m} = \sum_{j,k=-\infty}^{\infty} a_{lmjk} C_{jk}.
$$
Theorem 3.3. Let $A = (a_{lm,j,k})$ be a double nonnegative matrix whose elements are $(\psi_{j,k}, \psi_{l,m})$. Then, $\{\psi_{j,k}\}$ constitutes a frame of $L^2(\mathbb{R})$ if and only if $\{\psi_{l,m}\}$ constitutes a frame of $L^2(\mathbb{R})$, where $C_{j,k} = \langle f, \psi_{j,k} \rangle$ and $d_{l,m} = \langle f, \psi_{l,m} \rangle$.

Proof of Theorem 3.1. We can write

$$f(x) = \sum_{j,k \in \mathbb{Z}} \langle f, \psi_{j,k} \rangle \psi_{j,k}. \quad (3.5)$$

If we take A-transform of f, we get

$$Af(x) = \sum_{i,l \in \mathbb{Z}} \langle Af, \psi_{i,l} \rangle \psi_{i,l}, \quad (3.6)$$

and therefore

$$\sum_{i,l \in \mathbb{Z}} |\langle Af, \psi_{i,l} \rangle|^2 \leq \sum_{i,l \in \mathbb{Z}} \int_{-\infty}^{\infty} |Af(x)|^2 |\psi_{i,l}(x)|^2 dx \leq \|A\|^2 \|f\|_2^2 \sum_{i,l \in \mathbb{Z}} \|\psi_{i,l}\|_2^2. \quad (3.7)$$

Since A is regular matrix and $\|\psi_{i,l}\|_2 = 1$, therefore

$$\sum_{i,l \in \mathbb{Z}} |\langle Af, \psi_{i,l} \rangle|^2 \leq c_2 \|f\|_2^2, \quad (3.8)$$

where c_2 is positive constant.

Now, for any arbitrarily $f \in L^2(\mathbb{R})$, define

$$\tilde{f} = \left[\sum_{i,l \in \mathbb{Z}} |\langle Af, \psi_{i,l} \rangle|^2 \right]^{-1/2} f. \quad (3.9)$$

Clearly,

$$\langle A\tilde{f}, \psi_{i,l} \rangle = \left[\sum_{i,l \in \mathbb{Z}} |\langle Af, \psi_{i,l} \rangle|^2 \right]^{-1/2} \langle Af, \psi_{i,l} \rangle, \quad (3.10)$$

then

$$\sum_{i,l \in \mathbb{Z}} |\langle Af, \psi_{i,l} \rangle|^2 \leq 1. \quad (3.11)$$
Hence, if there exists α a positive constant, then
\[
\|A\hat{f}\|_2^2 \leq \alpha,
\]
\[
\left[\sum_{i,l \in \mathbb{Z}} \left| \langle Af, \psi_{i,l} \rangle \right|^2 \right]^{-1} \|Af\|_2^2 \leq \alpha.
\] (3.12)

Since A is regular, we have
\[
\left[\sum_{i,l \in \mathbb{Z}} \left| \langle Af, \psi_{i,l} \rangle \right|^2 \right]^{-1} \|f\|_2^2 \leq \alpha_1 \left(\frac{\alpha}{\|A\|^2} \right),
\] (3.13)
where α_1 is another positive constant. Therefore,
\[
c_1 \|f\|_2^2 \leq \sum_{i,l \in \mathbb{Z}} \left| \langle Af, \psi_{i,l} \rangle \right|^2,
\] (3.14)
where $c_1 = \alpha > 0$.

Combining (3.8) and (3.14), we have
\[
c_1 \|f\|_2^2 \leq \sum_{i,l \in \mathbb{Z}} \left| \langle Af, \psi_{i,l} \rangle \right|^2 \leq c_2 \|f\|_2^2.
\] (3.15)

This completes the proof. \(\square\)

Proof of Theorem 3.2. We can write
\[
\langle Af, \psi_{j,k} \rangle = \int_{-\infty}^{\infty} Af(x) \overline{\psi_{l,m}(x)} dx
\]
\[
= \int_{-\infty}^{\infty} \sum_{j,k=-\infty}^{\infty} a_{lm} \overline{c_{j,k} \psi_{j,k}(x)}} \overline{\psi_{l,m}(x)} dx.
\] (3.16)

Now,
\[
\sum_{l,m=-\infty}^{\infty} \langle Af, \psi_{l,m} \rangle \psi_{l,m} = \sum_{l,m=-\infty}^{\infty} \sum_{j,k=-\infty}^{\infty} a_{lm} \overline{c_{j,k} \psi_{j,k}(x)}} \overline{\psi_{l,m}(x)} dx
\]
\[
= \sum_{l,m=-\infty}^{\infty} d_{l,m} \psi_{l,m} \int_{-\infty}^{\infty} \|\psi_{l,m}(x)\|_2^2
\]
\[
= \sum_{l,m=-\infty}^{\infty} d_{l,m} \psi_{l,m}.
\] (3.17)

Therefore,
\[
\sum_{l,m=-\infty}^{\infty} d_{l,m} \psi_{l,m} = \sum_{l,m=-\infty}^{\infty} \langle Af, \psi_{l,m} \rangle \psi_{l,m}.
\] (3.18)

This implies that $d_{l,m}$ are wavelet coefficients of Af.
Thus,
\[d_{l,m} = \langle f, \psi_{l,m} \rangle. \]
(3.19)

This completes the proof.

Proof of Theorem 3.3. We observe that

\[
a_{lmjk}C_{j,k} = \langle \psi_{j,k}, \psi_{l,m} \rangle \langle f, \psi_{j,k} \rangle
\]
= \[\int_{-\infty}^{\infty} \psi_{j,k}(x) \overline{\psi_{l,m}(x)} \, dx \int_{-\infty}^{\infty} f(x) \psi_{j,k}(x) \, dx\]
= \[\int_{-\infty}^{\infty} f(x) \overline{\psi_{l,m}(x)} \, dx \int_{-\infty}^{\infty} \psi_{j,k}(x) \psi_{j,k}(x) \, dx\]
= \[\int_{-\infty}^{\infty} f(x) \overline{\psi_{l,m}(x)} \, dx\]
= \[\langle f, \psi_{l,m} \rangle,\]
(3.20)

that is, \[a_{lmjk}C_{j,k} = d_{l,m}.\]

Now,
\[
\sum_{l,m} |d_{l,m}|^2 = \sum_{l,m} |a_{lmjk}C_{j,k}|^2 = \sum_{l,m} |\langle f, \psi_{l,m} \rangle|^2
\]
= \[\frac{1}{(2\pi)^2} \sum_{l,m} |\langle \hat{f}, \hat{\psi}_{l,m} \rangle|^2,\]
(3.21)

by Parseval’s formula for trigonometric Fourier series.

Now
\[
\left| \sum_{p=\infty}^{\infty} \hat{f}(w + 2\pi p) \overline{\psi(w + 2\pi p)} e^{ilmw} \right|^2
\]
= \[\frac{1}{2\pi} \int_{0}^{2\pi} \left| \sum_{p=\infty}^{\infty} \hat{f}(w + 2\pi p) \overline{\psi(w + 2\pi p)} \right|^2 \, dw,\]
(3.22)

Let \(f(w) = \sum_{q=\infty}^{\infty} \hat{f}(w + 2\pi q) \overline{\psi(w + 2\pi q)}.\)
Therefore,

\[
p = \frac{1}{2\pi} \left(\int_{0}^{2\pi} \left| \sum_{p=-\infty}^{\infty} \hat{f}(w + 2\pi p) \hat{\psi}(w + 2\pi p) dw \right|^2 \right)
\]

\[
= \frac{1}{2\pi} \left(\int_{0}^{2\pi} \sum_{p=-\infty}^{\infty} \hat{f}(w + 2\pi p) \hat{\psi}(w + 2\pi p) dw F(w) dw \right)
\]

\[
= \frac{1}{2\pi} \left(\int_{-\infty}^{\infty} \hat{f}(w) \hat{\psi}(w) F(w) dw \right)
\]

\[
= \frac{1}{2\pi} \left\{ \sum_{q=-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}(w) \hat{\psi}(w) \hat{f}(w + 2\pi q) \hat{\psi}(w + 2\pi q) dw \right\}
\]

\[
= \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(w) \hat{\psi}(w) \hat{f}(w + 2\pi q) \hat{\psi}(w + 2\pi q) dw
\]

\[
= \frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{f}(w)|^2 |\hat{\psi}(w)|^2 dw
\]

\[
= \frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw
\]

\[
= \|f\|_2^2,
\]

that is,

\[
\sum_{l,m} |d_{lm}|^2 = \|f\|_{L_2}^2, \quad f \in L_2(\mathbb{R}). \tag{3.24}
\]

Therefore, for a regular matrix \(A = (a_{lmjk}) \), we have

\[
c_1 \|f\|_2^2 \leq \sum_{l,m} |d_{lm}|^2 \leq c_2 \|f\|_2^2 \tag{3.25}
\]

if and only if

\[
c_1' \|f\|_2^2 \leq \sum_{j,k} |c_{jk}|^2 \leq c_2' \|f\|_2^2, \tag{3.26}
\]

where, \(0 \leq c_1', c_2' < \infty \). This completes the proof. \(\square\)

REFERENCES

N. A. Sheikh: Department of Mathematics, National Institute of Technology, Srinagar, Kashmir 190006, Jammu and Kashmir, India

E-mail address: neyaznit@yahoo.co.in

M. Mursaleen: Department of Mathematics, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India

Current address: Department of Mathematics, Faculty of Science, P.O. Box 80203, King Abdul Aziz University, Jeddah, Kingdom of Saudi Arabia

E-mail address: mursaleen@postmark.net
Special Issue on
Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/mpe/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Schedule</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>July 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>October 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>January 1, 2010</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliani Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br