We consider random Schrödinger operators H_ω acting on $l^2(\mathbb{Z}^d)$. We adapt the technique of the periodic approximations used in (2003) for the present model to prove that the integrated density of states of H_ω has a Lifshitz behavior at the edges of internal spectral gaps if and only if the integrated density of states of a well-chosen periodic operator is nondegenerate at the same edges. A possible application of the result to get Anderson localization is given.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

We consider the following random operator acting on $l^2(\mathbb{Z}^d)$:

$$(H_\omega \psi)(n) = 2d\psi(n) - \sum_{|m-n|=1} \psi(m) + W_{\text{per}}(n)\psi(n) + V_\omega(n)\psi(n).$$

Here, for $n = (n_1, \ldots, n_d) \in \mathbb{Z}^d$, $|n| = \sum_{i=1}^d |n_i|$. It is a second-order finite difference analogous to the Schrödinger equation. These operators have been of interest for a long time in mathematics, and also in physics where they appear in the tight binding approximation of the condensed matter system. The discrete version has the advantage of being less technical and more transparent than the continuous one.

Let us start by defining the main object of our study: the integrated density of states. For this, for $L \in \mathbb{N}$ let H^L_ω be the $(2L+1)^d \times (2L+1)^d$ matrix obtained by restricting H_ω to sites $n = (n_1, \ldots, n_d)$ with $|n_i| \leq L$. Let, for $E \in \mathbb{R}$, $\#(H^L_\omega \leq E)$ denote the number of eigenvalues of H^L_ω smaller than or equal to E. We consider

$$N(E) = \lim_{L \to \infty} \frac{1}{(L+1)^d} \#(H^L_\omega \leq E).$$
It is shown that the limit in (1.2) exists almost surely for all E and ω is independent. It is called the integrated density of states of H_ω (IDS) (see [15]). In 1964, Lifshitz [10] argued using physical interpretations that for the continuous case N should decrease exponentially fast at the bottom of the spectrum. This behavior of the IDS is known as Lifshitz tails (for more details see [15, part IV.9.A]). This behavior is a characteristic of random operators; it has been proved mathematically in several papers. See [9, 11–13, 17, 18].

For the discrete model, the IDS was also the subject of [8], where the band edge behavior of the IDS of random Jacobi matrices in dimension 1 was proved.

Hamiltonians with a potential energy, which is the sum of periodic potential and a random one, give other examples of models with gaps in the spectrum and for which the investigation of the internal Lifshitz tails is a natural problem. They occur, for example, in the study of an electron in crystal with impurities. If the support of the one site distribution of the purely random part of the potential is contained in a compact set with a diameter smaller than the size of the gaps of the periodic potential, then the spectrum of the full operator will still have gaps. For such an operator, the IDS exists and its topological support is equal to the almost sure spectrum. Hence it is constant on these gaps and one could try to determine as before the behavior of the IDS near these gap edges, this is the subject of the present work. The mathematics are more technical and more difficult because of the presence of the periodic potential and the only known results on this context concerns external edges or internal edges, with gaps due to gaps on the probability density as the case in [17, 18].

In the present work we adapt the technique of [9, 12] to the discrete case. It is based on the uncertainty principle and the periodic approximation which allows us to relax some technical assumptions.

1.1. The model. We consider H_ω as in (1.1), with

(i) $W_{\text{per}}(\cdot)$ is a bounded periodic function such that there exists a vector $q_0 = (q_1, \ldots, q_d) \in \mathbb{Z}^d$ with positive components such that

$$\forall x \in \mathbb{Z}^d, \quad W_{\text{per}}(x + q') = W_{\text{per}} \quad \forall q' \in q_0 \cdot \mathbb{Z}; \quad (1.3)$$

(ii) $(V_\omega(n))_{n \in \mathbb{Z}^d}$ is a family of nonconstant and positive independent identically distributed random variables whose common probability measure is noted by P_ω_0. We note the probability space by (Ω, \mathcal{F}, P). We assume that P_ω_0 is compactly supported.

As defined, H_ω is a bounded selfadjoint operator on $l^2(\mathbb{Z}^d)$.

Indeed, if τ_γ refers to the translation by γ, then $(\tau_\gamma)_{\gamma \in q_0 \mathbb{Z}^d}$ is a group of unitary operators on $l^2(\mathbb{Z}^d)$, and for $\gamma \in q_0 \mathbb{Z}^d$ we have

$$\tau_\gamma H_\omega \tau_{-\gamma} = H_{\tau_\gamma \omega}. \quad (1.4)$$
Thus, according to [7, 15], we know that there exist Σ, Σ_{pp}, Σ_{ac} and Σ_{sc} closed and non-random sets of \mathbb{R} such that Σ is the spectrum of H_ω with probability one and such that if σ_{pp} (resp., σ_{ac} and σ_{sc}) designs the pure point spectrum (resp., the absolutely continuous and singular continuous spectrum) of H_ω, then $\Sigma_{\text{pp}} = \sigma_{\text{pp}}$, $\Sigma_{\text{ac}} = \sigma_{\text{ac}}$, and $\Sigma_{\text{sc}} = \sigma_{\text{sc}}$ with probability one.

It is convenient to study H_ω as a perturbation of some background operator. For this, we set

$$(H_0 \psi)(n) = 2d\psi(n) - \sum_{|m-n|=1} \psi(m) + W_{\text{per}}(n)\psi(n).$$

As $W_{\text{per}}(\cdot)$ is periodic, H_0 is a selfadjoint local periodic operator on $l^2(\mathbb{Z}^d)$.

Schrödinger operators with periodic potentials on \mathbb{R}^d are the subject of the well-known Floquet-Bloch theory [16]. Modifications needed to extend the theory to our situation are brought in [4, Section 2]. We refer the reader to [3, 4] for more details on the theory of discrete periodic operators. We recall the following result concerning the band gap structure of the spectrum σ_0 of H_0.

Theorem 1.1 [4]. The spectrum σ_0 of H_0 consists of a finite number n_0 of intervals (bands), namely,

$$\sigma_0 = \bigcup_{1 \leq i \leq n_0 - 1} [E_{2i}, E_{2i+1}], \quad E_{2i} \leq E_{2i+1}, \quad 1 \leq i \leq n_0 - 1.$$ \hspace{1cm} (1.6)

Remark 1.2. (i) There are many discrete models constructed with open spectral gaps [3, 4]. For instance, let $W_{\text{per}} = aw$, with a is a positive constant and w is the operator of the multiplication by a real, periodic nonconstant function $w(x)$. As the discrete Laplacian is a bounded operator, it is clear that H_0 has gaps in the spectrum when the constant a is large enough.

(ii) Even if one supposes that $W_{\text{per}} = 0$, it is still possible that H_ω exhibits spectral gaps, this is when there are gaps in the support of μ [18].

The periodic operator H_0 has an IDS which will be denoted by n. The behavior of n at a band edge 0 is said to be nondegenerate if

$$\lim_{\varepsilon \to 0^+} \frac{\log |n(\varepsilon) - n(0)|}{\log \varepsilon} = \frac{d}{2}.$$ \hspace{1cm} (1.7)

Remark 1.3. It is proven in [9] that (1.7) is equivalent to saying that the Floquet eigenvalues reaching the band edge 0 have only nondegenerate quadratic extrima at that edge. That is, if θ^0 is such that $E_n(\theta^0) = 0$, then θ^0 is a nondegenerate quadratic extremum of E_n. Here E_n is a Floquet eigenvalue of H_0.

As we study the behavior of the IDS at the internal band edges we will just assume the existence of gaps in the spectrum of H_0 and H_ω.

As the operator is bounded, without loss of generality we can assume that 0 is an internal band edge of H_0; the thing that we do in the following.
More precisely

(A.1) There exists $\delta > 0$ such that $\sigma_0 \cap [0, \delta] = [0, \delta)$, and for any $t \in [0, 1]$, $\sigma(H_0 + t) \cap (-\delta, 0] = \emptyset$.

We note that if the support of P_{ω_0} is connected, the assumption (A.1) can be replaced by the following.

(A.1.bis) There exists $\delta' > 0$ such that $\Sigma \cap [-\delta', 0) = \emptyset$.

By adding a disorder parameter λ in the equation which defines H_ω, that is,

$$(H_\omega \psi)(n) = 2d\psi(n) - \sum_{|m-n|=1} \psi(m) + W_{\text{per}}(n)\psi(n) + \lambda V_\omega(n)\psi(n),$$

we can choose λ small enough so that the spectral gap in $\sigma(H_0)$ will not be closed after the perturbation [4].

(A.2)

$$\limsup_{\varepsilon \to 0^+} \frac{\log |\log P_{\omega_0}([0, \varepsilon])|}{\log \varepsilon} = 0.$$

Remark 1.4. Here we allowed the probability distribution to decrease rapidly but at least not more than exponentially fast at 0. In [11, 17, 18], it is asked that the distribution does not decrease more than polynomially fast. Precisely it is required that $P_{\omega_0}([0, \varepsilon]) \geq C\varepsilon^l$; for some C and l.

2. Results and discussion

The main result of this note is stated below.

Theorem 2.1. Assume assumptions (A.1) and (A.2) hold, then

$$(i) \liminf_{\varepsilon \to 0^+} \frac{\log |\log (N(\varepsilon) - N(0))|}{\log \varepsilon} \geq -\frac{d}{2},$$

$$(ii) \lim_{\varepsilon \to 0^+} \frac{\log |\log (N(\varepsilon) - N(0))|}{\log \varepsilon} = -\frac{d}{2} \iff \lim_{\varepsilon \to 0^+} \frac{\log (n(\varepsilon) - n(0))}{\log \varepsilon} = \frac{d}{2}.$$

Remark 2.2. (i) The result of Theorem 2.1 is stated for lower band edges. Under adequate assumptions the corresponding result can be proved for upper band edges.

(ii) We notice that the Lifshitz component is $-d/2$ only if the IDS of the periodic operator is nondegenerate. This is the case for the free Schrödinger operators ($W_{\text{per}} = 0$) and thus we get already known results in this particular case [11, 17, 18].

2.1. Application.**

Now we give a possible application of Theorem 2.1. We can use the result of Theorem 2.1 to get initial estimates to show Anderson localization [4, 21] under assumptions on the distribution of the random variables weaker than those required in these references. Indeed if we assume that the probability measure P_{ω_0} has density, then H_ω satisfies a Wegner estimate [4, 21], that is, for some $\alpha > 0$ and $n > 0$ for $E \in \mathbb{R}$ for $k \geq 1$ and $0 < \varepsilon < 1$, there exists $C(E) > 0$ such that one has
\[
\mathbb{P}\left(\left\{ \text{dist} \left(\sigma(H_{\omega, \Lambda_k}), E \right) \leq \epsilon \right\} \right) \leq C(E) \cdot |\Lambda_k|^\alpha \cdot \epsilon^\alpha.
\]

(2.2)

Here \(H_{\omega, \Lambda_k} \) is \(H_\omega \) restricted to the box of size \(k \), \(\Lambda_k \).

Theorem 2.3. Let \(H_\omega \) defined by (1.1). Assume that (A.1), (A.2), and (P2) hold. There exist \(\epsilon_0 > 0 \) such that

(i) \(\Sigma \cap [0, \epsilon_0] = \Sigma_{pp} \cap [0, \epsilon_0] \),

(ii) an eigenfunction corresponding to an eigenvalue in \([0, \epsilon_0] \) decays exponentially.

We will not give the details of the proof of Theorem 2.3 but we notice that the proof of localization can be based on the use of the method of the multiscale analysis [19]. This method was used for the first time by Fröhlich and Spencer, at the early eighties [5], and it knew many extensions and simplifications. This analysis makes it possible to obtain information on the operator in the whole space, starting from information on the operator restricted to cubes of finished size [21]. The proof of Theorem 2.3 is then reduced on a simple verification of the so-called initials estimates (P2) and (P1):

\[
\mathbb{P}\left(\left\{ \text{dist} \left(\sigma(A_{\omega, \Lambda_k}), E_+ \right) \leq \frac{1}{k^p} \right\} \right) \leq \frac{1}{k^p}.
\]

(2.3)

To check (P1) one uses the fact that \(N \), the IDS of \(H_\omega \), decreases exponentially fast at 0 which is the result of Theorem 2.1. This is given in [14, 20]. Indeed, from (P1) we get that the Green function decreases exponentially fast to define regular boxes.

Remark 2.4. Anderson localization was the subject of many studies. For discrete operators we mention that the method for proving localization in the multidimensional case is the fractional moment introduced by Aizenman and Molchanov [1, 6].

3. The proof of Theorem 2.1

To prove Theorem 2.1, we prove lower and upper bounds on \(N(E) - N(0) \). The lower and the upper bounds are proven separately. For the first one is now classic and we just need the right lower for the probability that \(H_{\omega, \Lambda} \) has an eigenvalue in \([-\epsilon, \epsilon] \). As for the second it is more technical.

3.1. The lower bound

The lower bound is proved by constructing a large enough number of orthogonal approximate eigenfunctions of \(H_{\omega, \Lambda_k} \) associated with approximate eigenvalues in \([-\epsilon, \epsilon] \) for \(\epsilon < \delta \) (see assumption (A.1)). This will enable us to lower bound the number of the eigenvalues of \(H_{\omega, \Lambda} \) in the interval \([0, \epsilon]\). By assumption (A.1), there is a spectral gap below 0 of length at least \(\delta > 0 \). Thus, for \(\epsilon < \delta' \) we have

\[
N(\epsilon) - N(0) = N(\epsilon) - N(-\epsilon).
\]

(3.1)

Then, we will lower bound \(N(\epsilon) - N(-\epsilon) \). Indeed, for \(k \) large, we can show that \(H_{\omega, \Lambda_k} \) (\(H_{\omega, \Lambda_k} \) is \(H_\omega \) restricted to \(\Lambda_k \) with Dirichlet boundary conditions) has a large number
of eigenvalues in \([-\varepsilon, \varepsilon]\) with a large probability. For this we construct a family of approximate eigenvectors associated to approximate eigenvalues of \(A_{\omega \Lambda_N}\) in \([-\varepsilon, \varepsilon]\). These functions will be constructed from a Floquet eigenvector of \(H_0\) associated with 0. Locating this eigenvector in \(\theta\) and imposing to \(V_\omega(n)\) to be small for \(n\) in some well-chosen box \(\Lambda_k\), for \(k\) fixed below, one obtains an approximate eigenfunction of \(H_\omega \Lambda_N\). Locating the eigenfunction in \(x\) in several disjointed places, we get several eigenfunctions two by two orthogonal. If we denote by \(N(\varepsilon)\) the number of disjoint boxes \(\Lambda_k\) contained in \(\Lambda_k\), then we get

\[
N_{\Lambda_N}(\varepsilon) - N_{\Lambda_N}(-\varepsilon) = \frac{1}{(2k + 1)^d} \mathbb{E} \left(\#\{\text{eigenvalues of } H_{\omega \Lambda_k} \text{ in } [-\varepsilon, \varepsilon]\} \right)
\geq \frac{N(\varepsilon)}{(2k + 1)^d} \mathbb{P} \left\{ \text{for any } n \in \Lambda_k \cap \mathbb{Z}^d, V_\omega(n) \in (0, \varepsilon) \right\}
= \frac{N(\varepsilon)}{(2k + 1)^d} \mathbb{P} \left\{ V_\omega(0) \in (0, \varepsilon) \right\} \#(\Lambda_k \cap \mathbb{Z}^d).
\]

Here \(k \varepsilon = \varepsilon^{-(1/2)\varepsilon + \alpha}\) with \(1/2 > \alpha > 0\) small and \(s < 1\) (resp. = 1) if \(n\) is degenerate (resp., nondegenerate) at 0. Notice as \(\varepsilon\) small one gets that there exists \(C > 0\) such that

\[
N(\varepsilon) \geq \frac{(k \varepsilon)^d}{C}.
\]

Taking into account (3.2), (3.3), and assumption (A.2) computing the limit for \(k\) to infinity, we get

\[
\liminf_{\varepsilon \to 0^+} \frac{\log |\log (N(\varepsilon) - N(0))|}{\log \varepsilon} \geq -\frac{sd}{2}.
\]

This ends the proof of the lower bound.

3.2. The upper bound. The upper bound is based on the reduction procedure which consists in decomposing the operator \(H_\omega\) according to various translation-invariants subspaces. The random operators thus obtained are reference operators. They will be used for the upper bound on the IDS. We prove that for an energy \(E\) close to 0, \(N(E) - N(0)\) can be upper bounded by \(N_{\varepsilon_0}(E)\), the IDS of the bounded random operator \(H_\omega^0 = \Pi_0 H_\omega \Pi_0\). Here \(\Pi_0\) is the spectral projection for \(H_0\) on the band starting at 0. So to study the behavior of \(N(E) - N(0)\), we investigate the behavior of \(N_{\varepsilon_0}(E)\). Precisely, we use the following result.

Theorem 3.1. Let \(H_\omega\) be defined by (1.1). Assume that (A.1) and (A.2) hold. There exists \(E_0 > 0\) and \(C > 1\) such that, for \(0 \leq E \leq E_0\),

\[
0 \leq N(E) - N(0) \leq N_{\varepsilon_0}(C \cdot E),
\]

where \(N_{\varepsilon_0}\) is the IDS of \(H_\omega^0 = \Pi_0 H_\omega \Pi_0\).
The proof of Theorem 3.1 is based on the use of the technique of periodic approximations which consists in approaching the density of states of H_ω by the density of states of well-chosen periodic operators.

The periodic approximations. For $k \in \mathbb{N}^*$. Let $H_{\omega,k}$ be the following periodic operator:

$$
(H_{\omega,k}\psi)(n) = (H_0\psi)(n) + V_{\omega,k}(\tilde{n})\psi(n). \tag{3.6}
$$

With $\tilde{n} \in \mathbb{Z}_k^d = \{q \in q_0\mathbb{Z}^d; |q| \leq k\}$ and $\tilde{n} = n$ modulo $(2k + 1)q_0\mathbb{Z}^d$.

As $H_{\omega,k}$ is periodic, the Floquet theory is still valid in this case. The IDS of $H_{\omega,k}$ is denoted by $N_{\omega,k}$. Let $dN_{\omega,k}$ be the derivative of $N_{\omega,k}$ in the distribution sense. As $N_{\omega,k}$ is increasing, $dN_{\omega,k}$ is a positive measure; it is the density of states of $H_{\omega,k}$. We denote by dN the density of states of H_ω. It is proven [9, 12] that $dN_{\omega,k}$ converge to dN in the distribution sense. First we prove an analogous result to Theorem 3.1 for the Floquet operators. Then, by a simple integration, we get the same result in Theorem 3.1 for the new periodic operators $H_{\omega,k}$.

We notice that for the upper bound we suppose that the IDS, n is nondegenerate. Now to prove the upper bound we use Theorem 3.1. Indeed to prove the upper bound, it is enough to prove the same upper bound on N_{E_0} (defined in Theorem 3.1). To do this, we show that when n has a nondegenerate behavior at energy E_+, then N_{E_0} (and so N) may be compared to the IDS of some well-chosen, discrete Andreson model (whose behavior of its IDS is already known). This represents several advantages: first, $H_{\omega,k}^0$ is equivalent to a random Jacobi matrix acting on $L^2(\mathbb{T}^d) \otimes \mathbb{C}^n$ [12]. The second advantage is that while 0 is an interior edge of a gap for H_ω, it becomes the bottom of the spectrum for $H_{\omega,k}^0$. We prove that when n, the IDS of the periodic operator H_0, is nondegenerate at 0, $H_{\omega,k}^0$ is lower bounded by the usual discrete Schrödinger random operator whose behavior of the IDS at the edges of the spectral gaps is already known [2, 17, 18]. This lower bound on the operator immediately yields an upper bound on the density of states. Precisely if n is nondegenerate at 0, then we get

$$
\limsup_{\varepsilon \to 0^+} \frac{\log |\log (N(\varepsilon) - N(0))|}{\log \varepsilon} \leq -\frac{d}{2}. \tag{3.7}
$$

We notice that there exists a constant $C > 0$ such that the operator $C \cdot H_{\omega,k}^0$ is lower bounded by the same discrete operator as those used in [9, 12].

Acknowledgments

The researches are partially supported by DGRSRT-CNRS 06/R 15-04 and Research Unity 01/UR/15-01 Projects. The author would like to thank the referee for his valuable comments and remarks which improved the note significantly.

References

8 Internal Lifshitz tails for discrete Schrödinger operators

Hatem Najar: Département de Mathématiques Physiques, I.P.E.I. Monastir, Monastir 5000, Tunisia

E-mail address: najar@math.univ-paris13.fr
Mathematical Problems in Engineering

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Publication Date</th>
<th>September 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>June 1, 2009</td>
</tr>
<tr>
<td>Manuscript Due</td>
<td>March 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied Mathematics and Computing, Institute of Geosciences and Exact Sciences, State University of São Paulo at Rio Claro, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru