SUBORDINATION PROPERTIES OF p-VALENT FUNCTIONS DEFINED BY INTEGRAL OPERATORS

SAEID SHAMS, S. R. KULKARNI, AND JAY M. JAHANGIRI

Received 20 June 2005; Revised 14 November 2005; Accepted 28 November 2005

By applying certain integral operators to p-valent functions we define a comprehensive family of analytic functions. The subordinations properties of this family is studied, which in certain special cases yield some of the previously obtained results.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

For the natural numbers p let $A(p)$ denote the class of functions of the form $f(z) = z^p + a_{p+1}z^{p+1} + a_{p+2}z^{p+2} + \cdots$, which are analytic in the open unit disk $U = \{z : |z| < 1\}$. For $f(z) \in A(p)$ we define

$$I^\sigma f(z) = \frac{(p+1)^\sigma}{\Gamma(\sigma)} \int_0^z \left(\log \frac{z}{t} \right)^{\sigma-1} f(t) \, dt$$

$$= z^p + \sum_{n=p+1}^{\infty} \left(\frac{p+1}{n+1} \right)^\sigma a_n z^n, \quad \sigma > 0. \quad (1.1)$$

Also, for $-1 \leq B < A \leq 1$ and $\lambda \geq 0$, let $\Omega^\sigma_p(A,B,\lambda)$ be the class of functions $f \in A(p)$ so that

$$\frac{\lambda}{p} I^{\sigma-1} f(z) + \frac{p - \lambda}{p} I^\sigma f(z) > 1 + Az, \quad 1 + Bz, \quad \lambda \geq 0, \quad (1.2)$$

where “$<$” denotes the usual subordination. See [2].

The family $\Omega^\sigma_p(A,B,\lambda)$ is a comprehensive family containing various well-known as well as new classes of analytic functions. For example, for $\sigma = 0$ and $\lambda = p + 1$ we obtain the class $\Omega^0_p(A,B,p + 1)$ studied by Patel and Mohanty [3] or for nonzero σ see Liu [1].

2. Main results

Our first theorem examines the containment properties of the family $\Omega^\sigma_p(A,B,\lambda)$.
2 p-valent functions

Theorem 2.1. For $f \in A(p)$ suppose that $f \in \Omega^p_\sigma(A,B,\lambda)$ and $0 \leq \lambda \leq p(p + 1)$. Then $f \in \Omega^p_\sigma(A,B,0)$.

To prove our theorem we will need the following lemma which is due to Miller and Mocanu [2].

Lemma 2.2. Let $g(z)$ be analytic and convex univalent in U and $g(0) = 1$. Also let $p(z)$ be analytic in U with $p(0) = 1$. If $p(z) + (zp'(z))/\gamma < g(z)$, where $\gamma \neq 0$ and $\text{Re} \gamma \geq 0$, then

$$p(z) \prec \gamma z - \gamma \int_0^z t^{p-1} g(t) \, dt.$$

Proof of Theorem 2.1. First, we note that

$$z(I^\sigma f(z))' = (p + 1)I^{\sigma-1}f(z) - I^\sigma f(z).$$ \hspace{1cm} (2.1)

Setting $p(z) = (I^\sigma f(z))/z^p$ we also observe that

$$\frac{(I^\sigma f(z))'}{pz^{p-1}} = p(z) + \frac{zp'(z)}{p},$$
$$\frac{I^{\sigma-1}f(z)}{z^p} = p(z) + \frac{zp'(z)}{p + 1}.$$ \hspace{1cm} (2.2)

Therefore, for $f \in \Omega^p_\sigma(A,B,\lambda)$, we conclude that

$$p(z) + \frac{\lambda}{p(p + 1)}zp'(z) < \frac{1 + Az}{1 + Bz}.$$ \hspace{1cm} (2.3)

Now from Lemma 2.2 for $\gamma = p(p + 1)/\lambda$ it follows that

$$\frac{I^\sigma f(z)}{z^p} < \frac{p(p + 1)}{\lambda}z^{-p(p + 1)/\lambda}\int_0^z t^{p(p + 1)/\lambda - 1}\frac{1 + At}{1 + Bt} \, dt = q(z) < \frac{1 + Az}{1 + Bz}.$$ \hspace{1cm} (2.4)

Thus $f \in \Omega^p_\sigma(A,B,0)$.

As a special case to Theorem 2.1, we obtain the following.

Corollary 2.3. Let $f \in A(p)$. Then $(1/(p + 1))[(zf'(z) + f(z))/z^p] < (1 + Az)/(1 + Bz)$, implies $f(z)/z^p < (1 + Az)/(1 + Bz)$.

Theorem 2.4. For $f \in A(p)$ suppose that $f \in \Omega^p_\sigma(A,B,\lambda)$. If $0 \leq \lambda \leq p(p + 1)$, then

$$\text{Re} \left(\frac{I^\sigma f(z)}{z^p} \right) \geq \frac{p(p + 1)}{\lambda} \int_0^1 u^{p(p + 1)/\lambda - 1}\frac{1 - Au}{1 - Bu} \, du.$$ \hspace{1cm} (2.5)

The result is sharp.

Proof. Set $p(z) = I^\sigma f(z)/z^p$. Then, by Theorem 2.1, we have

$$p(z) < \frac{p(p + 1)}{\lambda}z^{-p(p + 1)/\lambda}\int_0^z t^{p(p + 1)/\lambda - 1}\frac{1 + At}{1 + Bt} \, dt < \frac{1 + Az}{1 + Bz}.$$ \hspace{1cm} (2.6)
This is equivalent to

\[
\frac{I^\sigma f(z)}{z^p} = \frac{p(p+1)}{\lambda} \int_0^1 u^{p(p+1)/\lambda-1} \frac{1+uAw(z)}{1+uBw(z)} \, du,
\]

(2.7)

where \(w(z)\) is analytic in \(U\) with \(w(0) = 0\) and \(|w(z)| < 1\) in \(U\). Therefore

\[
\text{Re} \left(\frac{I^\sigma f(z)}{z^p} \right) = \frac{p(p+1)}{\lambda} \int_0^1 u^{p(p+1)/\lambda-1} \text{Re} \left\{ \frac{1+uAw(z)}{1+uBw(z)} \right\} \, du \geq \frac{p(p+1)}{\lambda} \int_0^1 u^{p(p+1)/\lambda-1} \frac{1-Au}{1-Bu} \, du.
\]

(2.8)

Therefore

\[
\frac{I^\sigma f(z)}{z^p} = \frac{p(p+1)}{\lambda} \int_0^1 u^{p(p+1)/\lambda-1} \frac{1+Au}{1+Bu} \, du,
\]

(2.9)

such that for this function we have

\[
\frac{\lambda}{p} \frac{I^\sigma f(z)}{z^p} + \frac{p-\lambda}{p} \frac{I^\sigma f(z)}{z^p} = \frac{1+Az}{1+Bz}.
\]

(2.10)

Letting \(z \to -1\) yields

\[
\frac{I^\sigma f(z)}{z^p} \to \frac{p(p+1)}{\lambda} \int_0^1 u^{p(p+1)/\lambda-1} \frac{1-Au}{1-Bu} \, du.
\]

(2.11)

□

References

Saeid Shams: Department of Mathematics, University of Urmia, Urmia-57153, Iran
E-mail address: sa40shams@yahoo.com

S. R. Kulkarni: Department of Mathematics, Fergusson College, Pune-411004, India
E-mail address: kulkarni_ferg@yahoo.com

Jay M. Jahangiri: Department of Mathematical Sciences, Kent State University, Ohio, USA
E-mail address: jjahangi@kent.edu
Special Issue on
Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal's Author Guidelines, which are located at http://www.hindawi.com/journals/bvp/guidelines.html. Authors should follow the Boundary Value Problems manuscript format described at the journal site http://www.hindawi.com/journals/bvp/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>May 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>November 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es

Guest Editor

Donal O’Regan, Department of Mathematics, National University of Ireland, Galway, Ireland; donal.oregan@nuigalway.ie

Hindawi Publishing Corporation
http://www.hindawi.com